| 1 | /*! | 
|---|
| 2 |  | 
|---|
| 3 | \page graphs How to use graphs | 
|---|
| 4 |  | 
|---|
| 5 | The primary data structures of LEMON are the graph classes. They all | 
|---|
| 6 | provide a node list - edge list interface, i.e. they have | 
|---|
| 7 | functionalities to list the nodes and the edges of the graph as well | 
|---|
| 8 | as  incoming and outgoing edges of a given node. | 
|---|
| 9 |  | 
|---|
| 10 |  | 
|---|
| 11 | Each graph should meet the | 
|---|
| 12 | \ref lemon::concept::StaticGraph "StaticGraph" concept. | 
|---|
| 13 | This concept does not | 
|---|
| 14 | make it possible to change the graph (i.e. it is not possible to add | 
|---|
| 15 | or delete edges or nodes). Most of the graph algorithms will run on | 
|---|
| 16 | these graphs. | 
|---|
| 17 |  | 
|---|
| 18 | The graphs meeting the | 
|---|
| 19 | \ref lemon::concept::ExtendableGraph "ExtendableGraph" | 
|---|
| 20 | concept allow node and | 
|---|
| 21 | edge addition. You can also "clear" such a graph (i.e. erase all edges and nodes ). | 
|---|
| 22 |  | 
|---|
| 23 | In case of graphs meeting the full feature | 
|---|
| 24 | \ref lemon::concept::ErasableGraph "ErasableGraph" | 
|---|
| 25 | concept | 
|---|
| 26 | you can also erase individual edges and nodes in arbitrary order. | 
|---|
| 27 |  | 
|---|
| 28 | The implemented graph structures are the following. | 
|---|
| 29 | \li \ref lemon::ListGraph "ListGraph" is the most versatile graph class. It meets | 
|---|
| 30 | the \ref lemon::concept::ErasableGraph "ErasableGraph" concept | 
|---|
| 31 | and it also has some convenient extra features. | 
|---|
| 32 | \li \ref lemon::SmartGraph "SmartGraph" is a more memory | 
|---|
| 33 | efficient version of \ref lemon::ListGraph "ListGraph". The | 
|---|
| 34 | price of this is that it only meets the | 
|---|
| 35 | \ref lemon::concept::ExtendableGraph "ExtendableGraph" concept, | 
|---|
| 36 | so you cannot delete individual edges or nodes. | 
|---|
| 37 | \li \ref lemon::SymListGraph "SymListGraph" and | 
|---|
| 38 | \ref lemon::SymSmartGraph "SymSmartGraph" classes are very similar to | 
|---|
| 39 | \ref lemon::ListGraph "ListGraph" and \ref lemon::SmartGraph "SmartGraph". | 
|---|
| 40 | The difference is that whenever you add a | 
|---|
| 41 | new edge to the graph, it actually adds a pair of oppositely directed edges. | 
|---|
| 42 | They are linked together so it is possible to access the counterpart of an | 
|---|
| 43 | edge. An even more important feature is that using these classes you can also | 
|---|
| 44 | attach data to the edges in such a way that the stored data | 
|---|
| 45 | are shared by the edge pairs. | 
|---|
| 46 | \li \ref lemon::FullGraph "FullGraph" | 
|---|
| 47 | implements a complete graph. It is a | 
|---|
| 48 | \ref lemon::concept::StaticGraph "StaticGraph", so you cannot | 
|---|
| 49 | change the number of nodes once it is constructed. It is extremely memory | 
|---|
| 50 | efficient: it uses constant amount of memory independently from the number of | 
|---|
| 51 | the nodes of the graph. Of course, the size of the \ref maps-page "NodeMap"'s and | 
|---|
| 52 | \ref maps-page "EdgeMap"'s will depend on the number of nodes. | 
|---|
| 53 |  | 
|---|
| 54 | \li \ref lemon::NodeSet "NodeSet" implements a graph with no edges. This class | 
|---|
| 55 | can be used as a base class of \ref lemon::EdgeSet "EdgeSet". | 
|---|
| 56 | \li \ref lemon::EdgeSet "EdgeSet" can be used to create a new graph on | 
|---|
| 57 | the node set of another graph. The base graph can be an arbitrary graph and it | 
|---|
| 58 | is possible to attach several \ref lemon::EdgeSet "EdgeSet"'s to a base graph. | 
|---|
| 59 |  | 
|---|
| 60 | \todo Don't we need SmartNodeSet and SmartEdgeSet? | 
|---|
| 61 | \todo Some cross-refs are wrong. | 
|---|
| 62 |  | 
|---|
| 63 | The graph structures themselves can not store data attached | 
|---|
| 64 | to the edges and nodes. However they all provide | 
|---|
| 65 | \ref maps-page "map classes" | 
|---|
| 66 | to dynamically attach data the to graph components. | 
|---|
| 67 |  | 
|---|
| 68 | The following program demonstrates the basic features of LEMON's graph | 
|---|
| 69 | structures. | 
|---|
| 70 |  | 
|---|
| 71 | \code | 
|---|
| 72 | #include <iostream> | 
|---|
| 73 | #include <lemon/list_graph.h> | 
|---|
| 74 |  | 
|---|
| 75 | using namespace lemon; | 
|---|
| 76 |  | 
|---|
| 77 | int main() | 
|---|
| 78 | { | 
|---|
| 79 | typedef ListGraph Graph; | 
|---|
| 80 | \endcode | 
|---|
| 81 |  | 
|---|
| 82 | ListGraph is one of LEMON's graph classes. It is based on linked lists, | 
|---|
| 83 | therefore iterating throuh its edges and nodes is fast. | 
|---|
| 84 |  | 
|---|
| 85 | \code | 
|---|
| 86 | typedef Graph::Edge Edge; | 
|---|
| 87 | typedef Graph::InEdgeIt InEdgeIt; | 
|---|
| 88 | typedef Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 89 | typedef Graph::EdgeIt EdgeIt; | 
|---|
| 90 | typedef Graph::Node Node; | 
|---|
| 91 | typedef Graph::NodeIt NodeIt; | 
|---|
| 92 |  | 
|---|
| 93 | Graph g; | 
|---|
| 94 |  | 
|---|
| 95 | for (int i = 0; i < 3; i++) | 
|---|
| 96 | g.addNode(); | 
|---|
| 97 |  | 
|---|
| 98 | for (NodeIt i(g); i!=INVALID; ++i) | 
|---|
| 99 | for (NodeIt j(g); j!=INVALID; ++j) | 
|---|
| 100 | if (i != j) g.addEdge(i, j); | 
|---|
| 101 | \endcode | 
|---|
| 102 |  | 
|---|
| 103 | After some convenient typedefs we create a graph and add three nodes to it. | 
|---|
| 104 | Then we add edges to it to form a complete graph. | 
|---|
| 105 |  | 
|---|
| 106 | \code | 
|---|
| 107 | std::cout << "Nodes:"; | 
|---|
| 108 | for (NodeIt i(g); i!=INVALID; ++i) | 
|---|
| 109 | std::cout << " " << g.id(i); | 
|---|
| 110 | std::cout << std::endl; | 
|---|
| 111 | \endcode | 
|---|
| 112 |  | 
|---|
| 113 | Here we iterate through all nodes of the graph. We use a constructor of the | 
|---|
| 114 | node iterator to initialize it to the first node. The operator++ is used to | 
|---|
| 115 | step to the next node. Using operator++ on the iterator pointing to the last | 
|---|
| 116 | node invalidates the iterator i.e. sets its value to | 
|---|
| 117 | \ref lemon::INVALID "INVALID". This is what we exploit in the stop condition. | 
|---|
| 118 |  | 
|---|
| 119 | The previous code fragment prints out the following: | 
|---|
| 120 |  | 
|---|
| 121 | \code | 
|---|
| 122 | Nodes: 2 1 0 | 
|---|
| 123 | \endcode | 
|---|
| 124 |  | 
|---|
| 125 | \code | 
|---|
| 126 | std::cout << "Edges:"; | 
|---|
| 127 | for (EdgeIt i(g); i!=INVALID; ++i) | 
|---|
| 128 | std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; | 
|---|
| 129 | std::cout << std::endl; | 
|---|
| 130 | \endcode | 
|---|
| 131 |  | 
|---|
| 132 | \code | 
|---|
| 133 | Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0) | 
|---|
| 134 | \endcode | 
|---|
| 135 |  | 
|---|
| 136 | We can also iterate through all edges of the graph very similarly. The | 
|---|
| 137 | \c target and | 
|---|
| 138 | \c source member functions can be used to access the endpoints of an edge. | 
|---|
| 139 |  | 
|---|
| 140 | \code | 
|---|
| 141 | NodeIt first_node(g); | 
|---|
| 142 |  | 
|---|
| 143 | std::cout << "Out-edges of node " << g.id(first_node) << ":"; | 
|---|
| 144 | for (OutEdgeIt i(g, first_node); i!=INVALID; ++i) | 
|---|
| 145 | std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; | 
|---|
| 146 | std::cout << std::endl; | 
|---|
| 147 |  | 
|---|
| 148 | std::cout << "In-edges of node " << g.id(first_node) << ":"; | 
|---|
| 149 | for (InEdgeIt i(g, first_node); i!=INVALID; ++i) | 
|---|
| 150 | std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; | 
|---|
| 151 | std::cout << std::endl; | 
|---|
| 152 | \endcode | 
|---|
| 153 |  | 
|---|
| 154 | \code | 
|---|
| 155 | Out-edges of node 2: (2,0) (2,1) | 
|---|
| 156 | In-edges of node 2: (0,2) (1,2) | 
|---|
| 157 | \endcode | 
|---|
| 158 |  | 
|---|
| 159 | We can also iterate through the in and out-edges of a node. In the above | 
|---|
| 160 | example we print out the in and out-edges of the first node of the graph. | 
|---|
| 161 |  | 
|---|
| 162 | \code | 
|---|
| 163 | Graph::EdgeMap<int> m(g); | 
|---|
| 164 |  | 
|---|
| 165 | for (EdgeIt e(g); e!=INVALID; ++e) | 
|---|
| 166 | m.set(e, 10 - g.id(e)); | 
|---|
| 167 |  | 
|---|
| 168 | std::cout << "Id Edge  Value" << std::endl; | 
|---|
| 169 | for (EdgeIt e(g); e!=INVALID; ++e) | 
|---|
| 170 | std::cout << g.id(e) << "  (" << g.id(g.source(e)) << "," << g.id(g.target(e)) | 
|---|
| 171 | << ") " << m[e] << std::endl; | 
|---|
| 172 | \endcode | 
|---|
| 173 |  | 
|---|
| 174 | \code | 
|---|
| 175 | Id Edge  Value | 
|---|
| 176 | 4  (0,2) 6 | 
|---|
| 177 | 2  (1,2) 8 | 
|---|
| 178 | 5  (0,1) 5 | 
|---|
| 179 | 0  (2,1) 10 | 
|---|
| 180 | 3  (1,0) 7 | 
|---|
| 181 | 1  (2,0) 9 | 
|---|
| 182 | \endcode | 
|---|
| 183 |  | 
|---|
| 184 | As we mentioned above, graphs are not containers rather | 
|---|
| 185 | incidence structures which are iterable in many ways. LEMON introduces | 
|---|
| 186 | concepts that allow us to attach containers to graphs. These containers are | 
|---|
| 187 | called maps. | 
|---|
| 188 |  | 
|---|
| 189 | In the example above we create an EdgeMap which assigns an integer value to all | 
|---|
| 190 | edges of the graph. We use the set member function of the map to write values | 
|---|
| 191 | into the map and the operator[] to retrieve them. | 
|---|
| 192 |  | 
|---|
| 193 | Here we used the maps provided by the ListGraph class, but you can also write | 
|---|
| 194 | your own maps. You can read more about using maps \ref maps-page "here". | 
|---|
| 195 |  | 
|---|
| 196 | */ | 
|---|