COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/bellman_ford.h @ 1922:1ee37068316b

Last change on this file since 1922:1ee37068316b was 1875:98698b69a902, checked in by Alpar Juttner, 18 years ago

Happy new year to LEMON

File size: 31.8 KB
Line 
1/* -*- C++ -*-
2 * lemon/bellman_ford.h - Part of LEMON, a generic C++ optimization library
3 *
4 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
17#ifndef LEMON_BELMANN_FORD_H
18#define LEMON_BELMANN_FORD_H
19
20/// \ingroup flowalgs
21/// \file
22/// \brief BellmanFord algorithm.
23///
24
25#include <lemon/list_graph.h>
26#include <lemon/invalid.h>
27#include <lemon/error.h>
28#include <lemon/maps.h>
29
30#include <limits>
31
32namespace lemon {
33
34  /// \brief Default OperationTraits for the BellmanFord algorithm class.
35  /// 
36  /// It defines all computational operations and constants which are
37  /// used in the bellman ford algorithm. The default implementation
38  /// is based on the numeric_limits class. If the numeric type does not
39  /// have infinity value then the maximum value is used as extremal
40  /// infinity value.
41  template <
42    typename Value,
43    bool has_infinity = std::numeric_limits<Value>::has_infinity>
44  struct BellmanFordDefaultOperationTraits {
45    /// \brief Gives back the zero value of the type.
46    static Value zero() {
47      return static_cast<Value>(0);
48    }
49    /// \brief Gives back the positive infinity value of the type.
50    static Value infinity() {
51      return std::numeric_limits<Value>::infinity();
52    }
53    /// \brief Gives back the sum of the given two elements.
54    static Value plus(const Value& left, const Value& right) {
55      return left + right;
56    }
57    /// \brief Gives back true only if the first value less than the second.
58    static bool less(const Value& left, const Value& right) {
59      return left < right;
60    }
61  };
62
63  template <typename Value>
64  struct BellmanFordDefaultOperationTraits<Value, false> {
65    static Value zero() {
66      return static_cast<Value>(0);
67    }
68    static Value infinity() {
69      return std::numeric_limits<Value>::max();
70    }
71    static Value plus(const Value& left, const Value& right) {
72      if (left == infinity() || right == infinity()) return infinity();
73      return left + right;
74    }
75    static bool less(const Value& left, const Value& right) {
76      return left < right;
77    }
78  };
79 
80  /// \brief Default traits class of BellmanFord class.
81  ///
82  /// Default traits class of BellmanFord class.
83  /// \param _Graph Graph type.
84  /// \param _LegthMap Type of length map.
85  template<class _Graph, class _LengthMap>
86  struct BellmanFordDefaultTraits {
87    /// The graph type the algorithm runs on.
88    typedef _Graph Graph;
89
90    /// \brief The type of the map that stores the edge lengths.
91    ///
92    /// The type of the map that stores the edge lengths.
93    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
94    typedef _LengthMap LengthMap;
95
96    // The type of the length of the edges.
97    typedef typename _LengthMap::Value Value;
98
99    /// \brief Operation traits for bellman-ford algorithm.
100    ///
101    /// It defines the infinity type on the given Value type
102    /// and the used operation.
103    /// \see BellmanFordDefaultOperationTraits
104    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
105 
106    /// \brief The type of the map that stores the last edges of the
107    /// shortest paths.
108    ///
109    /// The type of the map that stores the last
110    /// edges of the shortest paths.
111    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
112    ///
113    typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
114
115    /// \brief Instantiates a PredMap.
116    ///
117    /// This function instantiates a \ref PredMap.
118    /// \param graph is the graph, to which we would like to define the PredMap.
119    static PredMap *createPredMap(const _Graph& graph) {
120      return new PredMap(graph);
121    }
122
123    /// \brief The type of the map that stores the dists of the nodes.
124    ///
125    /// The type of the map that stores the dists of the nodes.
126    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
127    ///
128    typedef typename Graph::template NodeMap<typename _LengthMap::Value>
129    DistMap;
130
131    /// \brief Instantiates a DistMap.
132    ///
133    /// This function instantiates a \ref DistMap.
134    /// \param graph is the graph, to which we would like to define the
135    /// \ref DistMap
136    static DistMap *createDistMap(const _Graph& graph) {
137      return new DistMap(graph);
138    }
139
140  };
141 
142  /// \brief %BellmanFord algorithm class.
143  ///
144  /// \ingroup flowalgs
145  /// This class provides an efficient implementation of \c Bellman-Ford
146  /// algorithm. The edge lengths are passed to the algorithm using a
147  /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any
148  /// kind of length.
149  ///
150  /// The Bellman-Ford algorithm solves the shortest path from one node
151  /// problem when the edges can have negative length but the graph should
152  /// not contain cycles with negative sum of length. If we can assume
153  /// that all edge is non-negative in the graph then the dijkstra algorithm
154  /// should be used rather.
155  ///
156  /// The complexity of the algorithm is O(n * e).
157  ///
158  /// The type of the length is determined by the
159  /// \ref concept::ReadMap::Value "Value" of the length map.
160  ///
161  /// \param _Graph The graph type the algorithm runs on. The default value
162  /// is \ref ListGraph. The value of _Graph is not used directly by
163  /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
164  /// \param _LengthMap This read-only EdgeMap determines the lengths of the
165  /// edges. The default map type is \ref concept::StaticGraph::EdgeMap
166  /// "Graph::EdgeMap<int>".  The value of _LengthMap is not used directly
167  /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits. 
168  /// \param _Traits Traits class to set various data types used by the
169  /// algorithm.  The default traits class is \ref BellmanFordDefaultTraits
170  /// "BellmanFordDefaultTraits<_Graph,_LengthMap>".  See \ref
171  /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
172  /// class.
173  ///
174  /// \author Balazs Dezso
175
176#ifdef DOXYGEN
177  template <typename _Graph, typename _LengthMap, typename _Traits>
178#else
179  template <typename _Graph=ListGraph,
180            typename _LengthMap=typename _Graph::template EdgeMap<int>,
181            typename _Traits=BellmanFordDefaultTraits<_Graph,_LengthMap> >
182#endif
183  class BellmanFord {
184  public:
185   
186    /// \brief \ref Exception for uninitialized parameters.
187    ///
188    /// This error represents problems in the initialization
189    /// of the parameters of the algorithms.
190
191    class UninitializedParameter : public lemon::UninitializedParameter {
192    public:
193      virtual const char* exceptionName() const {
194        return "lemon::BellmanFord::UninitializedParameter";
195      }
196    };
197
198    typedef _Traits Traits;
199    ///The type of the underlying graph.
200    typedef typename _Traits::Graph Graph;
201
202    typedef typename Graph::Node Node;
203    typedef typename Graph::NodeIt NodeIt;
204    typedef typename Graph::Edge Edge;
205    typedef typename Graph::OutEdgeIt OutEdgeIt;
206   
207    /// \brief The type of the length of the edges.
208    typedef typename _Traits::LengthMap::Value Value;
209    /// \brief The type of the map that stores the edge lengths.
210    typedef typename _Traits::LengthMap LengthMap;
211    /// \brief The type of the map that stores the last
212    /// edges of the shortest paths.
213    typedef typename _Traits::PredMap PredMap;
214    /// \brief The type of the map that stores the dists of the nodes.
215    typedef typename _Traits::DistMap DistMap;
216    /// \brief The operation traits.
217    typedef typename _Traits::OperationTraits OperationTraits;
218  private:
219    /// Pointer to the underlying graph.
220    const Graph *graph;
221    /// Pointer to the length map
222    const LengthMap *length;
223    ///Pointer to the map of predecessors edges.
224    PredMap *_pred;
225    ///Indicates if \ref _pred is locally allocated (\c true) or not.
226    bool local_pred;
227    ///Pointer to the map of distances.
228    DistMap *_dist;
229    ///Indicates if \ref _dist is locally allocated (\c true) or not.
230    bool local_dist;
231
232    typedef typename Graph::template NodeMap<bool> MaskMap;
233    MaskMap *_mask;
234
235    std::vector<Node> _process;
236
237    /// Creates the maps if necessary.
238    void create_maps() {
239      if(!_pred) {
240        local_pred = true;
241        _pred = Traits::createPredMap(*graph);
242      }
243      if(!_dist) {
244        local_dist = true;
245        _dist = Traits::createDistMap(*graph);
246      }
247      _mask = new MaskMap(*graph, false);
248    }
249   
250  public :
251 
252    typedef BellmanFord Create;
253
254    /// \name Named template parameters
255
256    ///@{
257
258    template <class T>
259    struct DefPredMapTraits : public Traits {
260      typedef T PredMap;
261      static PredMap *createPredMap(const Graph&) {
262        throw UninitializedParameter();
263      }
264    };
265
266    /// \brief \ref named-templ-param "Named parameter" for setting PredMap
267    /// type
268    /// \ref named-templ-param "Named parameter" for setting PredMap type
269    ///
270    template <class T>
271    struct DefPredMap
272      : public BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > {
273      typedef BellmanFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
274    };
275   
276    template <class T>
277    struct DefDistMapTraits : public Traits {
278      typedef T DistMap;
279      static DistMap *createDistMap(const Graph& graph) {
280        throw UninitializedParameter();
281      }
282    };
283
284    /// \brief \ref named-templ-param "Named parameter" for setting DistMap
285    /// type
286    ///
287    /// \ref named-templ-param "Named parameter" for setting DistMap type
288    ///
289    template <class T>
290    struct DefDistMap
291      : public BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > {
292      typedef BellmanFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
293    };
294   
295    template <class T>
296    struct DefOperationTraitsTraits : public Traits {
297      typedef T OperationTraits;
298    };
299   
300    /// \brief \ref named-templ-param "Named parameter" for setting
301    /// OperationTraits type
302    ///
303    /// \ref named-templ-param "Named parameter" for setting OperationTraits
304    /// type
305    template <class T>
306    struct DefOperationTraits
307      : public BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
308      typedef BellmanFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
309      Create;
310    };
311   
312    ///@}
313
314  protected:
315   
316    BellmanFord() {}
317
318  public:     
319   
320    /// \brief Constructor.
321    ///
322    /// \param _graph the graph the algorithm will run on.
323    /// \param _length the length map used by the algorithm.
324    BellmanFord(const Graph& _graph, const LengthMap& _length) :
325      graph(&_graph), length(&_length),
326      _pred(0), local_pred(false),
327      _dist(0), local_dist(false) {}
328   
329    ///Destructor.
330    ~BellmanFord() {
331      if(local_pred) delete _pred;
332      if(local_dist) delete _dist;
333      delete _mask;
334    }
335
336    /// \brief Sets the length map.
337    ///
338    /// Sets the length map.
339    /// \return \c (*this)
340    BellmanFord &lengthMap(const LengthMap &m) {
341      length = &m;
342      return *this;
343    }
344
345    /// \brief Sets the map storing the predecessor edges.
346    ///
347    /// Sets the map storing the predecessor edges.
348    /// If you don't use this function before calling \ref run(),
349    /// it will allocate one. The destuctor deallocates this
350    /// automatically allocated map, of course.
351    /// \return \c (*this)
352    BellmanFord &predMap(PredMap &m) {
353      if(local_pred) {
354        delete _pred;
355        local_pred=false;
356      }
357      _pred = &m;
358      return *this;
359    }
360
361    /// \brief Sets the map storing the distances calculated by the algorithm.
362    ///
363    /// Sets the map storing the distances calculated by the algorithm.
364    /// If you don't use this function before calling \ref run(),
365    /// it will allocate one. The destuctor deallocates this
366    /// automatically allocated map, of course.
367    /// \return \c (*this)
368    BellmanFord &distMap(DistMap &m) {
369      if(local_dist) {
370        delete _dist;
371        local_dist=false;
372      }
373      _dist = &m;
374      return *this;
375    }
376
377    /// \name Execution control
378    /// The simplest way to execute the algorithm is to use
379    /// one of the member functions called \c run(...).
380    /// \n
381    /// If you need more control on the execution,
382    /// first you must call \ref init(), then you can add several source nodes
383    /// with \ref addSource().
384    /// Finally \ref start() will perform the actual path
385    /// computation.
386
387    ///@{
388
389    /// \brief Initializes the internal data structures.
390    ///
391    /// Initializes the internal data structures.
392    void init(const Value value = OperationTraits::infinity()) {
393      create_maps();
394      for (NodeIt it(*graph); it != INVALID; ++it) {
395        _pred->set(it, INVALID);
396        _dist->set(it, value);
397      }
398      _process.clear();
399      if (OperationTraits::less(value, OperationTraits::infinity())) {
400        for (NodeIt it(*graph); it != INVALID; ++it) {
401          _process.push_back(it);
402          _mask->set(it, true);
403        }
404      }
405    }
406   
407    /// \brief Adds a new source node.
408    ///
409    /// The optional second parameter is the initial distance of the node.
410    /// It just sets the distance of the node to the given value.
411    void addSource(Node source, Value dst = OperationTraits::zero()) {
412      _dist->set(source, dst);
413      if (!(*_mask)[source]) {
414        _process.push_back(source);
415        _mask->set(source, true);
416      }
417    }
418
419    /// \brief Executes one round from the bellman ford algorithm.
420    ///
421    /// If the algoritm calculated the distances in the previous round
422    /// strictly for all at most k length paths then it will calculate the
423    /// distances strictly for all at most k + 1 length paths. With k
424    /// iteration this function calculates the at most k length paths.
425    /// \return %True when the algorithm have not found more shorter paths.
426    bool processNextRound() {
427      for (int i = 0; i < (int)_process.size(); ++i) {
428        _mask->set(_process[i], false);
429      }
430      std::vector<Node> nextProcess;
431      std::vector<Value> values(_process.size());
432      for (int i = 0; i < (int)_process.size(); ++i) {
433        values[i] = (*_dist)[_process[i]];
434      }
435      for (int i = 0; i < (int)_process.size(); ++i) {
436        for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
437          Node target = graph->target(it);
438          Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
439          if (OperationTraits::less(relaxed, (*_dist)[target])) {
440            _pred->set(target, it);
441            _dist->set(target, relaxed);
442            if (!(*_mask)[target]) {
443              _mask->set(target, true);
444              nextProcess.push_back(target);
445            }
446          }       
447        }
448      }
449      _process.swap(nextProcess);
450      return _process.empty();
451    }
452
453    /// \brief Executes one weak round from the bellman ford algorithm.
454    ///
455    /// If the algorithm calculated the distances in the
456    /// previous round at least for all at most k length paths then it will
457    /// calculate the distances at least for all at most k + 1 length paths.
458    /// This function does not make it possible to calculate strictly the
459    /// at most k length minimal paths, this is why it is
460    /// called just weak round.
461    /// \return %True when the algorithm have not found more shorter paths.
462    bool processNextWeakRound() {
463      for (int i = 0; i < (int)_process.size(); ++i) {
464        _mask->set(_process[i], false);
465      }
466      std::vector<Node> nextProcess;
467      for (int i = 0; i < (int)_process.size(); ++i) {
468        for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
469          Node target = graph->target(it);
470          Value relaxed =
471            OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
472          if (OperationTraits::less(relaxed, (*_dist)[target])) {
473            _pred->set(target, it);
474            _dist->set(target, relaxed);
475            if (!(*_mask)[target]) {
476              _mask->set(target, true);
477              nextProcess.push_back(target);
478            }
479          }       
480        }
481      }
482      _process.swap(nextProcess);
483      return _process.empty();
484    }
485
486    /// \brief Executes the algorithm.
487    ///
488    /// \pre init() must be called and at least one node should be added
489    /// with addSource() before using this function.
490    ///
491    /// This method runs the %BellmanFord algorithm from the root node(s)
492    /// in order to compute the shortest path to each node. The algorithm
493    /// computes
494    /// - The shortest path tree.
495    /// - The distance of each node from the root(s).
496    void start() {
497      int num = countNodes(*graph) - 1;
498      for (int i = 0; i < num; ++i) {
499        if (processNextWeakRound()) break;
500      }
501    }
502
503    /// \brief Executes the algorithm and checks the negative cycles.
504    ///
505    /// \pre init() must be called and at least one node should be added
506    /// with addSource() before using this function. If there is
507    /// a negative cycles in the graph it gives back false.
508    ///
509    /// This method runs the %BellmanFord algorithm from the root node(s)
510    /// in order to compute the shortest path to each node. The algorithm
511    /// computes
512    /// - The shortest path tree.
513    /// - The distance of each node from the root(s).
514    bool checkedStart() {
515      int num = countNodes(*graph);
516      for (int i = 0; i < num; ++i) {
517        if (processNextWeakRound()) return true;
518      }
519      return false;
520    }
521
522    /// \brief Executes the algorithm with path length limit.
523    ///
524    /// \pre init() must be called and at least one node should be added
525    /// with addSource() before using this function.
526    ///
527    /// This method runs the %BellmanFord algorithm from the root node(s)
528    /// in order to compute the shortest path with at most \c length edge
529    /// long paths to each node. The algorithm computes
530    /// - The shortest path tree.
531    /// - The limited distance of each node from the root(s).
532    void limitedStart(int length) {
533      for (int i = 0; i < length; ++i) {
534        if (processNextRound()) break;
535      }
536    }
537   
538    /// \brief Runs %BellmanFord algorithm from node \c s.
539    ///   
540    /// This method runs the %BellmanFord algorithm from a root node \c s
541    /// in order to compute the shortest path to each node. The algorithm
542    /// computes
543    /// - The shortest path tree.
544    /// - The distance of each node from the root.
545    ///
546    /// \note d.run(s) is just a shortcut of the following code.
547    /// \code
548    ///  d.init();
549    ///  d.addSource(s);
550    ///  d.start();
551    /// \endcode
552    void run(Node s) {
553      init();
554      addSource(s);
555      start();
556    }
557   
558    /// \brief Runs %BellmanFord algorithm with limited path length
559    /// from node \c s.
560    ///   
561    /// This method runs the %BellmanFord algorithm from a root node \c s
562    /// in order to compute the shortest path with at most \c len edges
563    /// to each node. The algorithm computes
564    /// - The shortest path tree.
565    /// - The distance of each node from the root.
566    ///
567    /// \note d.run(s, len) is just a shortcut of the following code.
568    /// \code
569    ///  d.init();
570    ///  d.addSource(s);
571    ///  d.limitedStart(len);
572    /// \endcode
573    void run(Node s, int len) {
574      init();
575      addSource(s);
576      limitedStart(len);
577    }
578   
579    ///@}
580
581    /// \name Query Functions
582    /// The result of the %BellmanFord algorithm can be obtained using these
583    /// functions.\n
584    /// Before the use of these functions,
585    /// either run() or start() must be called.
586   
587    ///@{
588
589    /// \brief Copies the shortest path to \c t into \c p
590    ///   
591    /// This function copies the shortest path to \c t into \c p.
592    /// If it \c t is a source itself or unreachable, then it does not
593    /// alter \c p.
594    ///
595    /// \return Returns \c true if a path to \c t was actually copied to \c p,
596    /// \c false otherwise.
597    /// \sa DirPath
598    template <typename Path>
599    bool getPath(Path &p, Node t) {
600      if(reached(t)) {
601        p.clear();
602        typename Path::Builder b(p);
603        for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
604          b.pushFront(predEdge(t));
605        b.commit();
606        return true;
607      }
608      return false;
609    }
610         
611    /// \brief The distance of a node from the root.
612    ///
613    /// Returns the distance of a node from the root.
614    /// \pre \ref run() must be called before using this function.
615    /// \warning If node \c v in unreachable from the root the return value
616    /// of this funcion is undefined.
617    Value dist(Node v) const { return (*_dist)[v]; }
618
619    /// \brief Returns the 'previous edge' of the shortest path tree.
620    ///
621    /// For a node \c v it returns the 'previous edge' of the shortest path
622    /// tree, i.e. it returns the last edge of a shortest path from the root
623    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or
624    /// if \c v=s. The shortest path tree used here is equal to the shortest
625    /// path tree used in \ref predNode().
626    /// \pre \ref run() must be called before using
627    /// this function.
628    Edge predEdge(Node v) const { return (*_pred)[v]; }
629
630    /// \brief Returns the 'previous node' of the shortest path tree.
631    ///
632    /// For a node \c v it returns the 'previous node' of the shortest path
633    /// tree, i.e. it returns the last but one node from a shortest path from
634    /// the root to \c /v. It is INVALID if \c v is unreachable from the root
635    /// or if \c v=s. The shortest path tree used here is equal to the
636    /// shortest path tree used in \ref predEdge().  \pre \ref run() must be
637    /// called before using this function.
638    Node predNode(Node v) const {
639      return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]);
640    }
641   
642    /// \brief Returns a reference to the NodeMap of distances.
643    ///
644    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
645    /// be called before using this function.
646    const DistMap &distMap() const { return *_dist;}
647 
648    /// \brief Returns a reference to the shortest path tree map.
649    ///
650    /// Returns a reference to the NodeMap of the edges of the
651    /// shortest path tree.
652    /// \pre \ref run() must be called before using this function.
653    const PredMap &predMap() const { return *_pred; }
654 
655    /// \brief Checks if a node is reachable from the root.
656    ///
657    /// Returns \c true if \c v is reachable from the root.
658    /// \pre \ref run() must be called before using this function.
659    ///
660    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
661   
662    ///@}
663  };
664 
665  /// \brief Default traits class of BellmanFord function.
666  ///
667  /// Default traits class of BellmanFord function.
668  /// \param _Graph Graph type.
669  /// \param _LengthMap Type of length map.
670  template <typename _Graph, typename _LengthMap>
671  struct BellmanFordWizardDefaultTraits {
672    /// \brief The graph type the algorithm runs on.
673    typedef _Graph Graph;
674
675    /// \brief The type of the map that stores the edge lengths.
676    ///
677    /// The type of the map that stores the edge lengths.
678    /// It must meet the \ref concept::ReadMap "ReadMap" concept.
679    typedef _LengthMap LengthMap;
680
681    /// \brief The value type of the length map.
682    typedef typename _LengthMap::Value Value;
683
684    /// \brief Operation traits for bellman-ford algorithm.
685    ///
686    /// It defines the infinity type on the given Value type
687    /// and the used operation.
688    /// \see BellmanFordDefaultOperationTraits
689    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
690
691    /// \brief The type of the map that stores the last
692    /// edges of the shortest paths.
693    ///
694    /// The type of the map that stores the last
695    /// edges of the shortest paths.
696    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
697    typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
698
699    /// \brief Instantiates a PredMap.
700    ///
701    /// This function instantiates a \ref PredMap.
702    static PredMap *createPredMap(const _Graph &) {
703      return new PredMap();
704    }
705    /// \brief The type of the map that stores the dists of the nodes.
706    ///
707    /// The type of the map that stores the dists of the nodes.
708    /// It must meet the \ref concept::WriteMap "WriteMap" concept.
709    typedef NullMap<typename Graph::Node, Value> DistMap;
710    /// \brief Instantiates a DistMap.
711    ///
712    /// This function instantiates a \ref DistMap.
713    static DistMap *createDistMap(const _Graph &) {
714      return new DistMap();
715    }
716  };
717 
718  /// \brief Default traits used by \ref BellmanFordWizard
719  ///
720  /// To make it easier to use BellmanFord algorithm
721  /// we have created a wizard class.
722  /// This \ref BellmanFordWizard class needs default traits,
723  /// as well as the \ref BellmanFord class.
724  /// The \ref BellmanFordWizardBase is a class to be the default traits of the
725  /// \ref BellmanFordWizard class.
726  /// \todo More named parameters are required...
727  template<class _Graph,class _LengthMap>
728  class BellmanFordWizardBase
729    : public BellmanFordWizardDefaultTraits<_Graph,_LengthMap> {
730
731    typedef BellmanFordWizardDefaultTraits<_Graph,_LengthMap> Base;
732  protected:
733    /// Type of the nodes in the graph.
734    typedef typename Base::Graph::Node Node;
735
736    /// Pointer to the underlying graph.
737    void *_graph;
738    /// Pointer to the length map
739    void *_length;
740    ///Pointer to the map of predecessors edges.
741    void *_pred;
742    ///Pointer to the map of distances.
743    void *_dist;
744    ///Pointer to the source node.
745    Node _source;
746
747    public:
748    /// Constructor.
749   
750    /// This constructor does not require parameters, therefore it initiates
751    /// all of the attributes to default values (0, INVALID).
752    BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
753                           _dist(0), _source(INVALID) {}
754
755    /// Constructor.
756   
757    /// This constructor requires some parameters,
758    /// listed in the parameters list.
759    /// Others are initiated to 0.
760    /// \param graph is the initial value of  \ref _graph
761    /// \param length is the initial value of  \ref _length
762    /// \param source is the initial value of  \ref _source
763    BellmanFordWizardBase(const _Graph& graph,
764                          const _LengthMap& length,
765                          Node source = INVALID) :
766      _graph((void *)&graph), _length((void *)&length), _pred(0),
767      _dist(0), _source(source) {}
768
769  };
770 
771  /// A class to make the usage of BellmanFord algorithm easier
772
773  /// This class is created to make it easier to use BellmanFord algorithm.
774  /// It uses the functions and features of the plain \ref BellmanFord,
775  /// but it is much simpler to use it.
776  ///
777  /// Simplicity means that the way to change the types defined
778  /// in the traits class is based on functions that returns the new class
779  /// and not on templatable built-in classes.
780  /// When using the plain \ref BellmanFord
781  /// the new class with the modified type comes from
782  /// the original class by using the ::
783  /// operator. In the case of \ref BellmanFordWizard only
784  /// a function have to be called and it will
785  /// return the needed class.
786  ///
787  /// It does not have own \ref run method. When its \ref run method is called
788  /// it initiates a plain \ref BellmanFord class, and calls the \ref
789  /// BellmanFord::run method of it.
790  template<class _Traits>
791  class BellmanFordWizard : public _Traits {
792    typedef _Traits Base;
793
794    ///The type of the underlying graph.
795    typedef typename _Traits::Graph Graph;
796
797    typedef typename Graph::Node Node;
798    typedef typename Graph::NodeIt NodeIt;
799    typedef typename Graph::Edge Edge;
800    typedef typename Graph::OutEdgeIt EdgeIt;
801   
802    ///The type of the map that stores the edge lengths.
803    typedef typename _Traits::LengthMap LengthMap;
804
805    ///The type of the length of the edges.
806    typedef typename LengthMap::Value Value;
807
808    ///\brief The type of the map that stores the last
809    ///edges of the shortest paths.
810    typedef typename _Traits::PredMap PredMap;
811
812    ///The type of the map that stores the dists of the nodes.
813    typedef typename _Traits::DistMap DistMap;
814
815  public:
816    /// Constructor.
817    BellmanFordWizard() : _Traits() {}
818
819    /// \brief Constructor that requires parameters.
820    ///
821    /// Constructor that requires parameters.
822    /// These parameters will be the default values for the traits class.
823    BellmanFordWizard(const Graph& graph, const LengthMap& length,
824                      Node source = INVALID)
825      : _Traits(graph, length, source) {}
826
827    /// \brief Copy constructor
828    BellmanFordWizard(const _Traits &b) : _Traits(b) {}
829
830    ~BellmanFordWizard() {}
831
832    /// \brief Runs BellmanFord algorithm from a given node.
833    ///   
834    /// Runs BellmanFord algorithm from a given node.
835    /// The node can be given by the \ref source function.
836    void run() {
837      if(Base::_source == INVALID) throw UninitializedParameter();
838      BellmanFord<Graph,LengthMap,_Traits>
839        bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
840      if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
841      if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
842      bf.run(Base::_source);
843    }
844
845    /// \brief Runs BellmanFord algorithm from the given node.
846    ///
847    /// Runs BellmanFord algorithm from the given node.
848    /// \param source is the given source.
849    void run(Node source) {
850      Base::_source = source;
851      run();
852    }
853
854    template<class T>
855    struct DefPredMapBase : public Base {
856      typedef T PredMap;
857      static PredMap *createPredMap(const Graph &) { return 0; };
858      DefPredMapBase(const _Traits &b) : _Traits(b) {}
859    };
860   
861    ///\brief \ref named-templ-param "Named parameter"
862    ///function for setting PredMap type
863    ///
864    /// \ref named-templ-param "Named parameter"
865    ///function for setting PredMap type
866    ///
867    template<class T>
868    BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t)
869    {
870      Base::_pred=(void *)&t;
871      return BellmanFordWizard<DefPredMapBase<T> >(*this);
872    }
873   
874    template<class T>
875    struct DefDistMapBase : public Base {
876      typedef T DistMap;
877      static DistMap *createDistMap(const Graph &) { return 0; };
878      DefDistMapBase(const _Traits &b) : _Traits(b) {}
879    };
880   
881    ///\brief \ref named-templ-param "Named parameter"
882    ///function for setting DistMap type
883    ///
884    /// \ref named-templ-param "Named parameter"
885    ///function for setting DistMap type
886    ///
887    template<class T>
888    BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
889      Base::_dist=(void *)&t;
890      return BellmanFordWizard<DefDistMapBase<T> >(*this);
891    }
892
893    template<class T>
894    struct DefOperationTraitsBase : public Base {
895      typedef T OperationTraits;
896      DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
897    };
898   
899    ///\brief \ref named-templ-param "Named parameter"
900    ///function for setting OperationTraits type
901    ///
902    /// \ref named-templ-param "Named parameter"
903    ///function for setting OperationTraits type
904    ///
905    template<class T>
906    BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
907      return BellmanFordWizard<DefDistMapBase<T> >(*this);
908    }
909   
910    /// \brief Sets the source node, from which the BellmanFord algorithm runs.
911    ///
912    /// Sets the source node, from which the BellmanFord algorithm runs.
913    /// \param source is the source node.
914    BellmanFordWizard<_Traits>& source(Node source) {
915      Base::_source = source;
916      return *this;
917    }
918   
919  };
920 
921  /// \brief Function type interface for BellmanFord algorithm.
922  ///
923  /// \ingroup flowalgs
924  /// Function type interface for BellmanFord algorithm.
925  ///
926  /// This function also has several \ref named-templ-func-param
927  /// "named parameters", they are declared as the members of class
928  /// \ref BellmanFordWizard.
929  /// The following
930  /// example shows how to use these parameters.
931  /// \code
932  /// bellmanford(g,length,source).predMap(preds).run();
933  /// \endcode
934  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
935  /// to the end of the parameter list.
936  /// \sa BellmanFordWizard
937  /// \sa BellmanFord
938  template<class _Graph, class _LengthMap>
939  BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
940  bellmanFord(const _Graph& graph,
941              const _LengthMap& length,
942              typename _Graph::Node source = INVALID) {
943    return BellmanFordWizard<BellmanFordWizardBase<_Graph,_LengthMap> >
944      (graph, length, source);
945  }
946
947} //END OF NAMESPACE LEMON
948
949#endif
950
Note: See TracBrowser for help on using the repository browser.