/* -*- C++ -*- * lemon/bfs.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BFS_H #define LEMON_BFS_H ///\ingroup flowalgs ///\file ///\brief Bfs algorithm. #include #include #include #include #include namespace lemon { ///Default traits class of Bfs class. ///Default traits class of Bfs class. ///\param GR Graph type. template struct BfsDefaultTraits { ///The graph type the algorithm runs on. typedef GR Graph; ///\brief The type of the map that stores the last ///edges of the shortest paths. /// ///The type of the map that stores the last ///edges of the shortest paths. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef typename Graph::template NodeMap PredMap; ///Instantiates a PredMap. ///This function instantiates a \ref PredMap. ///\param G is the graph, to which we would like to define the PredMap. ///\todo The graph alone may be insufficient to initialize static PredMap *createPredMap(const GR &G) { return new PredMap(G); } // ///\brief The type of the map that stores the last but one // ///nodes of the shortest paths. // /// // ///The type of the map that stores the last but one // ///nodes of the shortest paths. // ///It must meet the \ref concept::WriteMap "WriteMap" concept. // /// // typedef NullMap PredNodeMap; // ///Instantiates a PredNodeMap. // ///This function instantiates a \ref PredNodeMap. // ///\param G is the graph, to which // ///we would like to define the \ref PredNodeMap // static PredNodeMap *createPredNodeMap(const GR &G) // { // return new PredNodeMap(); // } ///The type of the map that indicates which nodes are processed. ///The type of the map that indicates which nodes are processed. ///It must meet the \ref concept::WriteMap "WriteMap" concept. ///\todo named parameter to set this type, function to read and write. typedef NullMap ProcessedMap; ///Instantiates a ProcessedMap. ///This function instantiates a \ref ProcessedMap. ///\param G is the graph, to which ///we would like to define the \ref ProcessedMap static ProcessedMap *createProcessedMap(const GR &) { return new ProcessedMap(); } ///The type of the map that indicates which nodes are reached. ///The type of the map that indicates which nodes are reached. ///It must meet the \ref concept::WriteMap "WriteMap" concept. ///\todo named parameter to set this type, function to read and write. typedef typename Graph::template NodeMap ReachedMap; ///Instantiates a ReachedMap. ///This function instantiates a \ref ReachedMap. ///\param G is the graph, to which ///we would like to define the \ref ReachedMap. static ReachedMap *createReachedMap(const GR &G) { return new ReachedMap(G); } ///The type of the map that stores the dists of the nodes. ///The type of the map that stores the dists of the nodes. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef typename Graph::template NodeMap DistMap; ///Instantiates a DistMap. ///This function instantiates a \ref DistMap. ///\param G is the graph, to which we would like to define the \ref DistMap static DistMap *createDistMap(const GR &G) { return new DistMap(G); } }; ///%BFS algorithm class. ///\ingroup flowalgs ///This class provides an efficient implementation of the %BFS algorithm. /// ///\param GR The graph type the algorithm runs on. The default value is ///\ref ListGraph. The value of GR is not used directly by Bfs, it ///is only passed to \ref BfsDefaultTraits. ///\param TR Traits class to set various data types used by the algorithm. ///The default traits class is ///\ref BfsDefaultTraits "BfsDefaultTraits". ///See \ref BfsDefaultTraits for the documentation of ///a Bfs traits class. /// ///\author Alpar Juttner ///\todo A compare object would be nice. #ifdef DOXYGEN template #else template > #endif class Bfs { public: /** * \brief \ref Exception for uninitialized parameters. * * This error represents problems in the initialization * of the parameters of the algorithms. */ class UninitializedParameter : public lemon::UninitializedParameter { public: virtual const char* exceptionName() const { return "lemon::Bfs::UninitializedParameter"; } }; typedef TR Traits; ///The type of the underlying graph. typedef typename TR::Graph Graph; ///\e typedef typename Graph::Node Node; ///\e typedef typename Graph::NodeIt NodeIt; ///\e typedef typename Graph::Edge Edge; ///\e typedef typename Graph::OutEdgeIt OutEdgeIt; ///\brief The type of the map that stores the last ///edges of the shortest paths. typedef typename TR::PredMap PredMap; // ///\brief The type of the map that stores the last but one // ///nodes of the shortest paths. // typedef typename TR::PredNodeMap PredNodeMap; ///The type of the map indicating which nodes are reached. typedef typename TR::ReachedMap ReachedMap; ///The type of the map indicating which nodes are processed. typedef typename TR::ProcessedMap ProcessedMap; ///The type of the map that stores the dists of the nodes. typedef typename TR::DistMap DistMap; private: /// Pointer to the underlying graph. const Graph *G; ///Pointer to the map of predecessors edges. PredMap *_pred; ///Indicates if \ref _pred is locally allocated (\c true) or not. bool local_pred; // ///Pointer to the map of predecessors nodes. // PredNodeMap *_predNode; // ///Indicates if \ref _predNode is locally allocated (\c true) or not. // bool local_predNode; ///Pointer to the map of distances. DistMap *_dist; ///Indicates if \ref _dist is locally allocated (\c true) or not. bool local_dist; ///Pointer to the map of reached status of the nodes. ReachedMap *_reached; ///Indicates if \ref _reached is locally allocated (\c true) or not. bool local_reached; ///Pointer to the map of processed status of the nodes. ProcessedMap *_processed; ///Indicates if \ref _processed is locally allocated (\c true) or not. bool local_processed; std::vector _queue; int _queue_head,_queue_tail,_queue_next_dist; int _curr_dist; // ///The source node of the last execution. // Node source; ///Creates the maps if necessary. ///\todo Error if \c G are \c NULL. ///\todo Better memory allocation (instead of new). void create_maps() { if(!_pred) { local_pred = true; _pred = Traits::createPredMap(*G); } // if(!_predNode) { // local_predNode = true; // _predNode = Traits::createPredNodeMap(*G); // } if(!_dist) { local_dist = true; _dist = Traits::createDistMap(*G); } if(!_reached) { local_reached = true; _reached = Traits::createReachedMap(*G); } if(!_processed) { local_processed = true; _processed = Traits::createProcessedMap(*G); } } public : ///\name Named template parameters ///@{ template struct DefPredMapTraits : public Traits { typedef T PredMap; static PredMap *createPredMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting PredMap type ///\ref named-templ-param "Named parameter" for setting PredMap type /// template class DefPredMap : public Bfs< Graph, DefPredMapTraits > { }; // template // struct DefPredNodeMapTraits : public Traits { // typedef T PredNodeMap; // static PredNodeMap *createPredNodeMap(const Graph &G) // { // throw UninitializedParameter(); // } // }; // ///\ref named-templ-param "Named parameter" for setting PredNodeMap type // ///\ref named-templ-param "Named parameter" for setting PredNodeMap type // /// // template // class DefPredNodeMap : public Bfs< Graph, // LengthMap, // DefPredNodeMapTraits > { }; template struct DefDistMapTraits : public Traits { typedef T DistMap; static DistMap *createDistMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting DistMap type ///\ref named-templ-param "Named parameter" for setting DistMap type /// template class DefDistMap : public Bfs< Graph, DefDistMapTraits > { }; template struct DefReachedMapTraits : public Traits { typedef T ReachedMap; static ReachedMap *createReachedMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting ReachedMap type ///\ref named-templ-param "Named parameter" for setting ReachedMap type /// template class DefReachedMap : public Bfs< Graph, DefReachedMapTraits > { }; struct DefGraphReachedMapTraits : public Traits { typedef typename Graph::template NodeMap ReachedMap; static ReachedMap *createReachedMap(const Graph &G) { return new ReachedMap(G); } }; template struct DefProcessedMapTraits : public Traits { typedef T ProcessedMap; static ProcessedMap *createProcessedMap(const Graph &G) { throw UninitializedParameter(); } }; ///\ref named-templ-param "Named parameter" for setting ProcessedMap type ///\ref named-templ-param "Named parameter" for setting ProcessedMap type /// template class DefProcessedMap : public Bfs< Graph, DefProcessedMapTraits > { }; struct DefGraphProcessedMapTraits : public Traits { typedef typename Graph::template NodeMap ProcessedMap; static ProcessedMap *createProcessedMap(const Graph &G) { return new ProcessedMap(G); } }; ///\brief \ref named-templ-param "Named parameter" ///for setting the ProcessedMap type to be Graph::NodeMap. /// ///\ref named-templ-param "Named parameter" ///for setting the ProcessedMap type to be Graph::NodeMap. ///If you don't set it explicitly, it will be automatically allocated. template class DefProcessedMapToBeDefaultMap : public Bfs< Graph, DefGraphProcessedMapTraits> { }; ///@} public: ///Constructor. ///\param _G the graph the algorithm will run on. /// Bfs(const Graph& _G) : G(&_G), _pred(NULL), local_pred(false), // _predNode(NULL), local_predNode(false), _dist(NULL), local_dist(false), _reached(NULL), local_reached(false), _processed(NULL), local_processed(false) { } ///Destructor. ~Bfs() { if(local_pred) delete _pred; // if(local_predNode) delete _predNode; if(local_dist) delete _dist; if(local_reached) delete _reached; if(local_processed) delete _processed; } ///Sets the map storing the predecessor edges. ///Sets the map storing the predecessor edges. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Bfs &predMap(PredMap &m) { if(local_pred) { delete _pred; local_pred=false; } _pred = &m; return *this; } ///Sets the map indicating the reached nodes. ///Sets the map indicating the reached nodes. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Bfs &reachedMap(ReachedMap &m) { if(local_reached) { delete _reached; local_reached=false; } _reached = &m; return *this; } ///Sets the map indicating the processed nodes. ///Sets the map indicating the processed nodes. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Bfs &processedMap(ProcessedMap &m) { if(local_processed) { delete _processed; local_processed=false; } _processed = &m; return *this; } // ///Sets the map storing the predecessor nodes. // ///Sets the map storing the predecessor nodes. // ///If you don't use this function before calling \ref run(), // ///it will allocate one. The destructor deallocates this // ///automatically allocated map, of course. // ///\return (*this) // Bfs &predNodeMap(PredNodeMap &m) // { // if(local_predNode) { // delete _predNode; // local_predNode=false; // } // _predNode = &m; // return *this; // } ///Sets the map storing the distances calculated by the algorithm. ///Sets the map storing the distances calculated by the algorithm. ///If you don't use this function before calling \ref run(), ///it will allocate one. The destructor deallocates this ///automatically allocated map, of course. ///\return (*this) Bfs &distMap(DistMap &m) { if(local_dist) { delete _dist; local_dist=false; } _dist = &m; return *this; } public: ///\name Execution control ///The simplest way to execute the algorithm is to use ///one of the member functions called \c run(...). ///\n ///If you need more control on the execution, ///first you must call \ref init(), then you can add several source nodes ///with \ref addSource(). ///Finally \ref start() will perform the actual path ///computation. ///@{ ///Initializes the internal data structures. ///Initializes the internal data structures. /// void init() { create_maps(); _queue.resize(countNodes(*G)); _queue_head=_queue_tail=0; _curr_dist=1; for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { _pred->set(u,INVALID); // _predNode->set(u,INVALID); _reached->set(u,false); _processed->set(u,false); } } ///Adds a new source node. ///Adds a new source node to the set of nodes to be processed. /// void addSource(Node s) { if(!(*_reached)[s]) { _reached->set(s,true); _pred->set(s,INVALID); _dist->set(s,0); _queue[_queue_head++]=s; _queue_next_dist=_queue_head; } } ///Processes the next node. ///Processes the next node. /// ///\return The processed node. /// ///\warning The queue must not be empty! Node processNextNode() { if(_queue_tail==_queue_next_dist) { _curr_dist++; _queue_next_dist=_queue_head; } Node n=_queue[_queue_tail++]; _processed->set(n,true); Node m; for(OutEdgeIt e(*G,n);e!=INVALID;++e) if(!(*_reached)[m=G->target(e)]) { _queue[_queue_head++]=m; _reached->set(m,true); _pred->set(m,e); // _pred_node->set(m,n); _dist->set(m,_curr_dist); } return n; } ///\brief Returns \c false if there are nodes ///to be processed in the queue /// ///Returns \c false if there are nodes ///to be processed in the queue bool emptyQueue() { return _queue_tail==_queue_head; } ///Returns the number of the nodes to be processed. ///Returns the number of the nodes to be processed in the queue. /// int queueSize() { return _queue_head-_queue_tail; } ///Executes the algorithm. ///Executes the algorithm. /// ///\pre init() must be called and at least one node should be added ///with addSource() before using this function. /// ///This method runs the %BFS algorithm from the root node(s) ///in order to ///compute the ///shortest path to each node. The algorithm computes ///- The shortest path tree. ///- The distance of each node from the root(s). /// void start() { while ( !emptyQueue() ) processNextNode(); } ///Executes the algorithm until \c dest is reached. ///Executes the algorithm until \c dest is reached. /// ///\pre init() must be called and at least one node should be added ///with addSource() before using this function. /// ///This method runs the %BFS algorithm from the root node(s) ///in order to ///compute the ///shortest path to \c dest. The algorithm computes ///- The shortest path to \c dest. ///- The distance of \c dest from the root(s). /// void start(Node dest) { while ( !emptyQueue() && _queue[_queue_tail]!=dest ) processNextNode(); } ///Executes the algorithm until a condition is met. ///Executes the algorithm until a condition is met. /// ///\pre init() must be called and at least one node should be added ///with addSource() before using this function. /// ///\param nm must be a bool (or convertible) node map. The algorithm ///will stop when it reaches a node \c v with nm[v]==true. template void start(const NM &nm) { while ( !emptyQueue() && !nm[_queue[_queue_tail]] ) processNextNode(); } ///Runs %BFS algorithm from node \c s. ///This method runs the %BFS algorithm from a root node \c s ///in order to ///compute the ///shortest path to each node. The algorithm computes ///- The shortest path tree. ///- The distance of each node from the root. /// ///\note d.run(s) is just a shortcut of the following code. ///\code /// d.init(); /// d.addSource(s); /// d.start(); ///\endcode void run(Node s) { init(); addSource(s); start(); } ///Finds the shortest path between \c s and \c t. ///Finds the shortest path between \c s and \c t. /// ///\return The length of the shortest s---t path if there exists one, ///0 otherwise. ///\note Apart from the return value, d.run(s) is ///just a shortcut of the following code. ///\code /// d.init(); /// d.addSource(s); /// d.start(t); ///\endcode int run(Node s,Node t) { init(); addSource(s); start(t); return reached(t)?_curr_dist-1+(_queue_tail==_queue_next_dist):0; } ///@} ///\name Query Functions ///The result of the %BFS algorithm can be obtained using these ///functions.\n ///Before the use of these functions, ///either run() or start() must be called. ///@{ ///Copies the shortest path to \c t into \c p ///This function copies the shortest path to \c t into \c p. ///If it \c \t is a source itself or unreachable, then it does not ///alter \c p. ///\todo Is it the right way to handle unreachable nodes? ///\return Returns \c true if a path to \c t was actually copied to \c p, ///\c false otherwise. ///\sa DirPath template bool getPath(P &p,Node t) { if(reached(t)) { p.clear(); typename P::Builder b(p); for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t)) b.pushFront(pred(t)); b.commit(); return true; } return false; } ///The distance of a node from the root(s). ///Returns the distance of a node from the root(s). ///\pre \ref run() must be called before using this function. ///\warning If node \c v in unreachable from the root(s) the return value ///of this function is undefined. int dist(Node v) const { return (*_dist)[v]; } ///Returns the 'previous edge' of the shortest path tree. ///For a node \c v it returns the 'previous edge' ///of the shortest path tree, ///i.e. it returns the last edge of a shortest path from the root(s) to \c ///v. It is \ref INVALID ///if \c v is unreachable from the root(s) or \c v is a root. The ///shortest path tree used here is equal to the shortest path tree used in ///\ref predNode(Node v). ///\pre Either \ref run() or \ref start() must be called before using ///this function. ///\todo predEdge could be a better name. Edge pred(Node v) const { return (*_pred)[v];} ///Returns the 'previous node' of the shortest path tree. ///For a node \c v it returns the 'previous node' ///of the shortest path tree, ///i.e. it returns the last but one node from a shortest path from the ///root(a) to \c /v. ///It is INVALID if \c v is unreachable from the root(s) or ///if \c v itself a root. ///The shortest path tree used here is equal to the shortest path ///tree used in \ref pred(Node v). ///\pre Either \ref run() or \ref start() must be called before ///using this function. Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: G->source((*_pred)[v]); } ///Returns a reference to the NodeMap of distances. ///Returns a reference to the NodeMap of distances. ///\pre Either \ref run() or \ref init() must ///be called before using this function. const DistMap &distMap() const { return *_dist;} ///Returns a reference to the shortest path tree map. ///Returns a reference to the NodeMap of the edges of the ///shortest path tree. ///\pre Either \ref run() or \ref init() ///must be called before using this function. const PredMap &predMap() const { return *_pred;} // ///Returns a reference to the map of nodes of shortest paths. // ///Returns a reference to the NodeMap of the last but one nodes of the // ///shortest path tree. // ///\pre \ref run() must be called before using this function. // const PredNodeMap &predNodeMap() const { return *_predNode;} ///Checks if a node is reachable from the root. ///Returns \c true if \c v is reachable from the root. ///\warning The source nodes are indicated as unreached. ///\pre Either \ref run() or \ref start() ///must be called before using this function. /// bool reached(Node v) { return (*_reached)[v]; } ///@} }; ///Default traits class of Bfs function. ///Default traits class of Bfs function. ///\param GR Graph type. template struct BfsWizardDefaultTraits { ///The graph type the algorithm runs on. typedef GR Graph; ///\brief The type of the map that stores the last ///edges of the shortest paths. /// ///The type of the map that stores the last ///edges of the shortest paths. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef NullMap PredMap; ///Instantiates a PredMap. ///This function instantiates a \ref PredMap. ///\param G is the graph, to which we would like to define the PredMap. ///\todo The graph alone may be insufficient to initialize static PredMap *createPredMap(const GR &) { return new PredMap(); } // ///\brief The type of the map that stores the last but one // ///nodes of the shortest paths. // /// // ///The type of the map that stores the last but one // ///nodes of the shortest paths. // ///It must meet the \ref concept::WriteMap "WriteMap" concept. // /// // typedef NullMap PredNodeMap; // ///Instantiates a PredNodeMap. // ///This function instantiates a \ref PredNodeMap. // ///\param G is the graph, to which // ///we would like to define the \ref PredNodeMap // static PredNodeMap *createPredNodeMap(const GR &G) // { // return new PredNodeMap(); // } ///The type of the map that indicates which nodes are processed. ///The type of the map that indicates which nodes are processed. ///It must meet the \ref concept::WriteMap "WriteMap" concept. ///\todo named parameter to set this type, function to read and write. typedef NullMap ProcessedMap; ///Instantiates a ProcessedMap. ///This function instantiates a \ref ProcessedMap. ///\param G is the graph, to which ///we would like to define the \ref ProcessedMap static ProcessedMap *createProcessedMap(const GR &) { return new ProcessedMap(); } ///The type of the map that indicates which nodes are reached. ///The type of the map that indicates which nodes are reached. ///It must meet the \ref concept::WriteMap "WriteMap" concept. ///\todo named parameter to set this type, function to read and write. typedef typename Graph::template NodeMap ReachedMap; ///Instantiates a ReachedMap. ///This function instantiates a \ref ReachedMap. ///\param G is the graph, to which ///we would like to define the \ref ReachedMap. static ReachedMap *createReachedMap(const GR &G) { return new ReachedMap(G); } ///The type of the map that stores the dists of the nodes. ///The type of the map that stores the dists of the nodes. ///It must meet the \ref concept::WriteMap "WriteMap" concept. /// typedef NullMap DistMap; ///Instantiates a DistMap. ///This function instantiates a \ref DistMap. ///\param G is the graph, to which we would like to define the \ref DistMap static DistMap *createDistMap(const GR &) { return new DistMap(); } }; /// Default traits used by \ref BfsWizard /// To make it easier to use Bfs algorithm ///we have created a wizard class. /// This \ref BfsWizard class needs default traits, ///as well as the \ref Bfs class. /// The \ref BfsWizardBase is a class to be the default traits of the /// \ref BfsWizard class. template class BfsWizardBase : public BfsWizardDefaultTraits { typedef BfsWizardDefaultTraits Base; protected: /// Type of the nodes in the graph. typedef typename Base::Graph::Node Node; /// Pointer to the underlying graph. void *_g; ///Pointer to the map of reached nodes. void *_reached; ///Pointer to the map of processed nodes. void *_processed; ///Pointer to the map of predecessors edges. void *_pred; // ///Pointer to the map of predecessors nodes. // void *_predNode; ///Pointer to the map of distances. void *_dist; ///Pointer to the source node. Node _source; public: /// Constructor. /// This constructor does not require parameters, therefore it initiates /// all of the attributes to default values (0, INVALID). BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), // _predNode(0), _dist(0), _source(INVALID) {} /// Constructor. /// This constructor requires some parameters, /// listed in the parameters list. /// Others are initiated to 0. /// \param g is the initial value of \ref _g /// \param s is the initial value of \ref _source BfsWizardBase(const GR &g, Node s=INVALID) : _g((void *)&g), _reached(0), _processed(0), _pred(0), // _predNode(0), _dist(0), _source(s) {} }; /// A class to make the usage of Bfs algorithm easier /// This class is created to make it easier to use Bfs algorithm. /// It uses the functions and features of the plain \ref Bfs, /// but it is much simpler to use it. /// /// Simplicity means that the way to change the types defined /// in the traits class is based on functions that returns the new class /// and not on templatable built-in classes. /// When using the plain \ref Bfs /// the new class with the modified type comes from /// the original class by using the :: /// operator. In the case of \ref BfsWizard only /// a function have to be called and it will /// return the needed class. /// /// It does not have own \ref run method. When its \ref run method is called /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run /// method of it. template class BfsWizard : public TR { typedef TR Base; ///The type of the underlying graph. typedef typename TR::Graph Graph; //\e typedef typename Graph::Node Node; //\e typedef typename Graph::NodeIt NodeIt; //\e typedef typename Graph::Edge Edge; //\e typedef typename Graph::OutEdgeIt OutEdgeIt; ///\brief The type of the map that stores ///the reached nodes typedef typename TR::ReachedMap ReachedMap; ///\brief The type of the map that stores ///the processed nodes typedef typename TR::ProcessedMap ProcessedMap; ///\brief The type of the map that stores the last ///edges of the shortest paths. typedef typename TR::PredMap PredMap; // ///\brief The type of the map that stores the last but one // ///nodes of the shortest paths. // typedef typename TR::PredNodeMap PredNodeMap; ///The type of the map that stores the dists of the nodes. typedef typename TR::DistMap DistMap; public: /// Constructor. BfsWizard() : TR() {} /// Constructor that requires parameters. /// Constructor that requires parameters. /// These parameters will be the default values for the traits class. BfsWizard(const Graph &g, Node s=INVALID) : TR(g,s) {} ///Copy constructor BfsWizard(const TR &b) : TR(b) {} ~BfsWizard() {} ///Runs Bfs algorithm from a given node. ///Runs Bfs algorithm from a given node. ///The node can be given by the \ref source function. void run() { if(Base::_source==INVALID) throw UninitializedParameter(); Bfs alg(*(Graph*)Base::_g); if(Base::_reached) alg.reachedMap(*(ReachedMap*)Base::_reached); if(Base::_processed) alg.processedMap(*(ProcessedMap*)Base::_processed); if(Base::_pred) alg.predMap(*(PredMap*)Base::_pred); // if(Base::_predNode) alg.predNodeMap(*(PredNodeMap*)Base::_predNode); if(Base::_dist) alg.distMap(*(DistMap*)Base::_dist); alg.run(Base::_source); } ///Runs Bfs algorithm from the given node. ///Runs Bfs algorithm from the given node. ///\param s is the given source. void run(Node s) { Base::_source=s; run(); } template struct DefPredMapBase : public Base { typedef T PredMap; static PredMap *createPredMap(const Graph &) { return 0; }; DefPredMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting PredMap /// /// \ref named-templ-param "Named parameter" ///function for setting PredMap /// template BfsWizard > predMap(const T &t) { Base::_pred=(void *)&t; return BfsWizard >(*this); } template struct DefReachedMapBase : public Base { typedef T ReachedMap; static ReachedMap *createReachedMap(const Graph &) { return 0; }; DefReachedMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting ReachedMap /// /// \ref named-templ-param "Named parameter" ///function for setting ReachedMap /// template BfsWizard > reachedMap(const T &t) { Base::_pred=(void *)&t; return BfsWizard >(*this); } template struct DefProcessedMapBase : public Base { typedef T ProcessedMap; static ProcessedMap *createProcessedMap(const Graph &) { return 0; }; DefProcessedMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting ProcessedMap /// /// \ref named-templ-param "Named parameter" ///function for setting ProcessedMap /// template BfsWizard > processedMap(const T &t) { Base::_pred=(void *)&t; return BfsWizard >(*this); } // template // struct DefPredNodeMapBase : public Base { // typedef T PredNodeMap; // static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; }; // DefPredNodeMapBase(const TR &b) : TR(b) {} // }; // ///\brief \ref named-templ-param "Named parameter" // ///function for setting PredNodeMap type // /// // /// \ref named-templ-param "Named parameter" // ///function for setting PredNodeMap type // /// // template // BfsWizard > predNodeMap(const T &t) // { // Base::_predNode=(void *)&t; // return BfsWizard >(*this); // } template struct DefDistMapBase : public Base { typedef T DistMap; static DistMap *createDistMap(const Graph &) { return 0; }; DefDistMapBase(const TR &b) : TR(b) {} }; ///\brief \ref named-templ-param "Named parameter" ///function for setting DistMap type /// /// \ref named-templ-param "Named parameter" ///function for setting DistMap type /// template BfsWizard > distMap(const T &t) { Base::_dist=(void *)&t; return BfsWizard >(*this); } /// Sets the source node, from which the Bfs algorithm runs. /// Sets the source node, from which the Bfs algorithm runs. /// \param s is the source node. BfsWizard &source(Node s) { Base::_source=s; return *this; } }; ///Function type interface for Bfs algorithm. /// \ingroup flowalgs ///Function type interface for Bfs algorithm. /// ///This function also has several ///\ref named-templ-func-param "named parameters", ///they are declared as the members of class \ref BfsWizard. ///The following ///example shows how to use these parameters. ///\code /// bfs(g,source).predMap(preds).run(); ///\endcode ///\warning Don't forget to put the \ref BfsWizard::run() "run()" ///to the end of the parameter list. ///\sa BfsWizard ///\sa Bfs template BfsWizard > bfs(const GR &g,typename GR::Node s=INVALID) { return BfsWizard >(g,s); } } //END OF NAMESPACE LEMON #endif