1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_BIPARTITE_MATCHING |
---|
20 | #define LEMON_BIPARTITE_MATCHING |
---|
21 | |
---|
22 | #include <functional> |
---|
23 | |
---|
24 | #include <lemon/bin_heap.h> |
---|
25 | #include <lemon/maps.h> |
---|
26 | |
---|
27 | #include <iostream> |
---|
28 | |
---|
29 | ///\ingroup matching |
---|
30 | ///\file |
---|
31 | ///\brief Maximum matching algorithms in bipartite graphs. |
---|
32 | /// |
---|
33 | ///\note The pr_bipartite_matching.h file also contains algorithms to |
---|
34 | ///solve maximum cardinality bipartite matching problems. |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | /// \ingroup matching |
---|
39 | /// |
---|
40 | /// \brief Bipartite Max Cardinality Matching algorithm |
---|
41 | /// |
---|
42 | /// Bipartite Max Cardinality Matching algorithm. This class implements |
---|
43 | /// the Hopcroft-Karp algorithm which has \f$ O(e\sqrt{n}) \f$ time |
---|
44 | /// complexity. |
---|
45 | /// |
---|
46 | /// \note In several cases the push-relabel based algorithms have |
---|
47 | /// better runtime performance than the augmenting path based ones. |
---|
48 | /// |
---|
49 | /// \see PrBipartiteMatching |
---|
50 | template <typename BpUGraph> |
---|
51 | class MaxBipartiteMatching { |
---|
52 | protected: |
---|
53 | |
---|
54 | typedef BpUGraph Graph; |
---|
55 | |
---|
56 | typedef typename Graph::Node Node; |
---|
57 | typedef typename Graph::ANodeIt ANodeIt; |
---|
58 | typedef typename Graph::BNodeIt BNodeIt; |
---|
59 | typedef typename Graph::UEdge UEdge; |
---|
60 | typedef typename Graph::UEdgeIt UEdgeIt; |
---|
61 | typedef typename Graph::IncEdgeIt IncEdgeIt; |
---|
62 | |
---|
63 | typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap; |
---|
64 | typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap; |
---|
65 | |
---|
66 | |
---|
67 | public: |
---|
68 | |
---|
69 | /// \brief Constructor. |
---|
70 | /// |
---|
71 | /// Constructor of the algorithm. |
---|
72 | MaxBipartiteMatching(const BpUGraph& graph) |
---|
73 | : _matching(graph), _rmatching(graph), _reached(graph), _graph(&graph) {} |
---|
74 | |
---|
75 | /// \name Execution control |
---|
76 | /// The simplest way to execute the algorithm is to use |
---|
77 | /// one of the member functions called \c run(). |
---|
78 | /// \n |
---|
79 | /// If you need more control on the execution, |
---|
80 | /// first you must call \ref init() or one alternative for it. |
---|
81 | /// Finally \ref start() will perform the matching computation or |
---|
82 | /// with step-by-step execution you can augment the solution. |
---|
83 | |
---|
84 | /// @{ |
---|
85 | |
---|
86 | /// \brief Initalize the data structures. |
---|
87 | /// |
---|
88 | /// It initalizes the data structures and creates an empty matching. |
---|
89 | void init() { |
---|
90 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
91 | _matching.set(it, INVALID); |
---|
92 | } |
---|
93 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
94 | _rmatching.set(it, INVALID); |
---|
95 | _reached.set(it, -1); |
---|
96 | } |
---|
97 | _size = 0; |
---|
98 | _phase = -1; |
---|
99 | } |
---|
100 | |
---|
101 | /// \brief Initalize the data structures. |
---|
102 | /// |
---|
103 | /// It initalizes the data structures and creates a greedy |
---|
104 | /// matching. From this matching sometimes it is faster to get |
---|
105 | /// the matching than from the initial empty matching. |
---|
106 | void greedyInit() { |
---|
107 | _size = 0; |
---|
108 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
109 | _rmatching.set(it, INVALID); |
---|
110 | _reached.set(it, 0); |
---|
111 | } |
---|
112 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
113 | _matching[it] = INVALID; |
---|
114 | for (IncEdgeIt jt(*_graph, it); jt != INVALID; ++jt) { |
---|
115 | if (_rmatching[_graph->bNode(jt)] == INVALID) { |
---|
116 | _matching.set(it, jt); |
---|
117 | _rmatching.set(_graph->bNode(jt), jt); |
---|
118 | _reached.set(_graph->bNode(jt), -1); |
---|
119 | ++_size; |
---|
120 | break; |
---|
121 | } |
---|
122 | } |
---|
123 | } |
---|
124 | _phase = 0; |
---|
125 | } |
---|
126 | |
---|
127 | /// \brief Initalize the data structures with an initial matching. |
---|
128 | /// |
---|
129 | /// It initalizes the data structures with an initial matching. |
---|
130 | template <typename MatchingMap> |
---|
131 | void matchingInit(const MatchingMap& mm) { |
---|
132 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
133 | _matching.set(it, INVALID); |
---|
134 | } |
---|
135 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
136 | _rmatching.set(it, INVALID); |
---|
137 | _reached.set(it, 0); |
---|
138 | } |
---|
139 | _size = 0; |
---|
140 | for (UEdgeIt it(*_graph); it != INVALID; ++it) { |
---|
141 | if (mm[it]) { |
---|
142 | ++_size; |
---|
143 | _matching.set(_graph->aNode(it), it); |
---|
144 | _rmatching.set(_graph->bNode(it), it); |
---|
145 | _reached.set(it, 0); |
---|
146 | } |
---|
147 | } |
---|
148 | _phase = 0; |
---|
149 | } |
---|
150 | |
---|
151 | /// \brief Initalize the data structures with an initial matching. |
---|
152 | /// |
---|
153 | /// It initalizes the data structures with an initial matching. |
---|
154 | /// \return %True when the given map contains really a matching. |
---|
155 | template <typename MatchingMap> |
---|
156 | bool checkedMatchingInit(const MatchingMap& mm) { |
---|
157 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
158 | _matching.set(it, INVALID); |
---|
159 | } |
---|
160 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
161 | _rmatching.set(it, INVALID); |
---|
162 | _reached.set(it, 0); |
---|
163 | } |
---|
164 | _size = 0; |
---|
165 | for (UEdgeIt it(*_graph); it != INVALID; ++it) { |
---|
166 | if (mm[it]) { |
---|
167 | ++_size; |
---|
168 | if (_matching[_graph->aNode(it)] != INVALID) { |
---|
169 | return false; |
---|
170 | } |
---|
171 | _matching.set(_graph->aNode(it), it); |
---|
172 | if (_matching[_graph->bNode(it)] != INVALID) { |
---|
173 | return false; |
---|
174 | } |
---|
175 | _matching.set(_graph->bNode(it), it); |
---|
176 | _reached.set(_graph->bNode(it), -1); |
---|
177 | } |
---|
178 | } |
---|
179 | _phase = 0; |
---|
180 | return true; |
---|
181 | } |
---|
182 | |
---|
183 | private: |
---|
184 | |
---|
185 | bool _find_path(Node anode, int maxlevel, |
---|
186 | typename Graph::template BNodeMap<int>& level) { |
---|
187 | for (IncEdgeIt it(*_graph, anode); it != INVALID; ++it) { |
---|
188 | Node bnode = _graph->bNode(it); |
---|
189 | if (level[bnode] == maxlevel) { |
---|
190 | level.set(bnode, -1); |
---|
191 | if (maxlevel == 0) { |
---|
192 | _matching.set(anode, it); |
---|
193 | _rmatching.set(bnode, it); |
---|
194 | return true; |
---|
195 | } else { |
---|
196 | Node nnode = _graph->aNode(_rmatching[bnode]); |
---|
197 | if (_find_path(nnode, maxlevel - 1, level)) { |
---|
198 | _matching.set(anode, it); |
---|
199 | _rmatching.set(bnode, it); |
---|
200 | return true; |
---|
201 | } |
---|
202 | } |
---|
203 | } |
---|
204 | } |
---|
205 | return false; |
---|
206 | } |
---|
207 | |
---|
208 | public: |
---|
209 | |
---|
210 | /// \brief An augmenting phase of the Hopcroft-Karp algorithm |
---|
211 | /// |
---|
212 | /// It runs an augmenting phase of the Hopcroft-Karp |
---|
213 | /// algorithm. This phase finds maximal edge disjoint augmenting |
---|
214 | /// paths and augments on these paths. The algorithm consists at |
---|
215 | /// most of \f$ O(\sqrt{n}) \f$ phase and one phase is \f$ O(e) |
---|
216 | /// \f$ long. |
---|
217 | bool augment() { |
---|
218 | |
---|
219 | ++_phase; |
---|
220 | |
---|
221 | typename Graph::template BNodeMap<int> _level(*_graph, -1); |
---|
222 | typename Graph::template ANodeMap<bool> _found(*_graph, false); |
---|
223 | |
---|
224 | std::vector<Node> queue, aqueue; |
---|
225 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
226 | if (_rmatching[it] == INVALID) { |
---|
227 | queue.push_back(it); |
---|
228 | _reached.set(it, _phase); |
---|
229 | _level.set(it, 0); |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | bool success = false; |
---|
234 | |
---|
235 | int level = 0; |
---|
236 | while (!success && !queue.empty()) { |
---|
237 | std::vector<Node> nqueue; |
---|
238 | for (int i = 0; i < int(queue.size()); ++i) { |
---|
239 | Node bnode = queue[i]; |
---|
240 | for (IncEdgeIt jt(*_graph, bnode); jt != INVALID; ++jt) { |
---|
241 | Node anode = _graph->aNode(jt); |
---|
242 | if (_matching[anode] == INVALID) { |
---|
243 | |
---|
244 | if (!_found[anode]) { |
---|
245 | if (_find_path(anode, level, _level)) { |
---|
246 | ++_size; |
---|
247 | } |
---|
248 | _found.set(anode, true); |
---|
249 | } |
---|
250 | success = true; |
---|
251 | } else { |
---|
252 | Node nnode = _graph->bNode(_matching[anode]); |
---|
253 | if (_reached[nnode] != _phase) { |
---|
254 | _reached.set(nnode, _phase); |
---|
255 | nqueue.push_back(nnode); |
---|
256 | _level.set(nnode, level + 1); |
---|
257 | } |
---|
258 | } |
---|
259 | } |
---|
260 | } |
---|
261 | ++level; |
---|
262 | queue.swap(nqueue); |
---|
263 | } |
---|
264 | |
---|
265 | return success; |
---|
266 | } |
---|
267 | private: |
---|
268 | |
---|
269 | void _find_path_bfs(Node anode, |
---|
270 | typename Graph::template ANodeMap<UEdge>& pred) { |
---|
271 | while (true) { |
---|
272 | UEdge uedge = pred[anode]; |
---|
273 | Node bnode = _graph->bNode(uedge); |
---|
274 | |
---|
275 | UEdge nedge = _rmatching[bnode]; |
---|
276 | |
---|
277 | _matching.set(anode, uedge); |
---|
278 | _rmatching.set(bnode, uedge); |
---|
279 | |
---|
280 | if (nedge == INVALID) break; |
---|
281 | anode = _graph->aNode(nedge); |
---|
282 | } |
---|
283 | } |
---|
284 | |
---|
285 | public: |
---|
286 | |
---|
287 | /// \brief An augmenting phase with single path augementing |
---|
288 | /// |
---|
289 | /// This phase finds only one augmenting paths and augments on |
---|
290 | /// these paths. The algorithm consists at most of \f$ O(n) \f$ |
---|
291 | /// phase and one phase is \f$ O(e) \f$ long. |
---|
292 | bool simpleAugment() { |
---|
293 | ++_phase; |
---|
294 | |
---|
295 | typename Graph::template ANodeMap<UEdge> _pred(*_graph); |
---|
296 | |
---|
297 | std::vector<Node> queue, aqueue; |
---|
298 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
299 | if (_rmatching[it] == INVALID) { |
---|
300 | queue.push_back(it); |
---|
301 | _reached.set(it, _phase); |
---|
302 | } |
---|
303 | } |
---|
304 | |
---|
305 | bool success = false; |
---|
306 | |
---|
307 | int level = 0; |
---|
308 | while (!success && !queue.empty()) { |
---|
309 | std::vector<Node> nqueue; |
---|
310 | for (int i = 0; i < int(queue.size()); ++i) { |
---|
311 | Node bnode = queue[i]; |
---|
312 | for (IncEdgeIt jt(*_graph, bnode); jt != INVALID; ++jt) { |
---|
313 | Node anode = _graph->aNode(jt); |
---|
314 | if (_matching[anode] == INVALID) { |
---|
315 | _pred.set(anode, jt); |
---|
316 | _find_path_bfs(anode, _pred); |
---|
317 | ++_size; |
---|
318 | return true; |
---|
319 | } else { |
---|
320 | Node nnode = _graph->bNode(_matching[anode]); |
---|
321 | if (_reached[nnode] != _phase) { |
---|
322 | _pred.set(anode, jt); |
---|
323 | _reached.set(nnode, _phase); |
---|
324 | nqueue.push_back(nnode); |
---|
325 | } |
---|
326 | } |
---|
327 | } |
---|
328 | } |
---|
329 | ++level; |
---|
330 | queue.swap(nqueue); |
---|
331 | } |
---|
332 | |
---|
333 | return success; |
---|
334 | } |
---|
335 | |
---|
336 | |
---|
337 | |
---|
338 | /// \brief Starts the algorithm. |
---|
339 | /// |
---|
340 | /// Starts the algorithm. It runs augmenting phases until the optimal |
---|
341 | /// solution reached. |
---|
342 | void start() { |
---|
343 | while (augment()) {} |
---|
344 | } |
---|
345 | |
---|
346 | /// \brief Runs the algorithm. |
---|
347 | /// |
---|
348 | /// It just initalize the algorithm and then start it. |
---|
349 | void run() { |
---|
350 | greedyInit(); |
---|
351 | start(); |
---|
352 | } |
---|
353 | |
---|
354 | /// @} |
---|
355 | |
---|
356 | /// \name Query Functions |
---|
357 | /// The result of the %Matching algorithm can be obtained using these |
---|
358 | /// functions.\n |
---|
359 | /// Before the use of these functions, |
---|
360 | /// either run() or start() must be called. |
---|
361 | |
---|
362 | ///@{ |
---|
363 | |
---|
364 | /// \brief Return true if the given uedge is in the matching. |
---|
365 | /// |
---|
366 | /// It returns true if the given uedge is in the matching. |
---|
367 | bool matchingEdge(const UEdge& edge) const { |
---|
368 | return _matching[_graph->aNode(edge)] == edge; |
---|
369 | } |
---|
370 | |
---|
371 | /// \brief Returns the matching edge from the node. |
---|
372 | /// |
---|
373 | /// Returns the matching edge from the node. If there is not such |
---|
374 | /// edge it gives back \c INVALID. |
---|
375 | /// \note If the parameter node is a B-node then the running time is |
---|
376 | /// propotional to the degree of the node. |
---|
377 | UEdge matchingEdge(const Node& node) const { |
---|
378 | if (_graph->aNode(node)) { |
---|
379 | return _matching[node]; |
---|
380 | } else { |
---|
381 | return _rmatching[node]; |
---|
382 | } |
---|
383 | } |
---|
384 | |
---|
385 | /// \brief Set true all matching uedge in the map. |
---|
386 | /// |
---|
387 | /// Set true all matching uedge in the map. It does not change the |
---|
388 | /// value mapped to the other uedges. |
---|
389 | /// \return The number of the matching edges. |
---|
390 | template <typename MatchingMap> |
---|
391 | int quickMatching(MatchingMap& mm) const { |
---|
392 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
393 | if (_matching[it] != INVALID) { |
---|
394 | mm.set(_matching[it], true); |
---|
395 | } |
---|
396 | } |
---|
397 | return _size; |
---|
398 | } |
---|
399 | |
---|
400 | /// \brief Set true all matching uedge in the map and the others to false. |
---|
401 | /// |
---|
402 | /// Set true all matching uedge in the map and the others to false. |
---|
403 | /// \return The number of the matching edges. |
---|
404 | template <typename MatchingMap> |
---|
405 | int matching(MatchingMap& mm) const { |
---|
406 | for (UEdgeIt it(*_graph); it != INVALID; ++it) { |
---|
407 | mm.set(it, it == _matching[_graph->aNode(it)]); |
---|
408 | } |
---|
409 | return _size; |
---|
410 | } |
---|
411 | |
---|
412 | ///Gives back the matching in an ANodeMap. |
---|
413 | |
---|
414 | ///Gives back the matching in an ANodeMap. The parameter should |
---|
415 | ///be a write ANodeMap of UEdge values. |
---|
416 | ///\return The number of the matching edges. |
---|
417 | template<class MatchingMap> |
---|
418 | int aMatching(MatchingMap& mm) const { |
---|
419 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
420 | mm.set(it, _matching[it]); |
---|
421 | } |
---|
422 | return _size; |
---|
423 | } |
---|
424 | |
---|
425 | ///Gives back the matching in a BNodeMap. |
---|
426 | |
---|
427 | ///Gives back the matching in a BNodeMap. The parameter should |
---|
428 | ///be a write BNodeMap of UEdge values. |
---|
429 | ///\return The number of the matching edges. |
---|
430 | template<class MatchingMap> |
---|
431 | int bMatching(MatchingMap& mm) const { |
---|
432 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
433 | mm.set(it, _rmatching[it]); |
---|
434 | } |
---|
435 | return _size; |
---|
436 | } |
---|
437 | |
---|
438 | /// \brief Returns a minimum covering of the nodes. |
---|
439 | /// |
---|
440 | /// The minimum covering set problem is the dual solution of the |
---|
441 | /// maximum bipartite matching. It provides a solution for this |
---|
442 | /// problem what is proof of the optimality of the matching. |
---|
443 | /// \return The size of the cover set. |
---|
444 | template <typename CoverMap> |
---|
445 | int coverSet(CoverMap& covering) const { |
---|
446 | |
---|
447 | int size = 0; |
---|
448 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
449 | bool cn = _matching[it] != INVALID && |
---|
450 | _reached[_graph->bNode(_matching[it])] == _phase; |
---|
451 | covering.set(it, cn); |
---|
452 | if (cn) ++size; |
---|
453 | } |
---|
454 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
455 | bool cn = _reached[it] != _phase; |
---|
456 | covering.set(it, cn); |
---|
457 | if (cn) ++size; |
---|
458 | } |
---|
459 | return size; |
---|
460 | } |
---|
461 | |
---|
462 | /// \brief Gives back a barrier on the A-nodes |
---|
463 | /// |
---|
464 | /// The barrier is s subset of the nodes on the same side of the |
---|
465 | /// graph, which size minus its neighbours is exactly the |
---|
466 | /// unmatched nodes on the A-side. |
---|
467 | /// \retval barrier A WriteMap on the ANodes with bool value. |
---|
468 | template <typename BarrierMap> |
---|
469 | void aBarrier(BarrierMap& barrier) const { |
---|
470 | |
---|
471 | for (ANodeIt it(*_graph); it != INVALID; ++it) { |
---|
472 | barrier.set(it, _matching[it] == INVALID || |
---|
473 | _reached[_graph->bNode(_matching[it])] != _phase); |
---|
474 | } |
---|
475 | } |
---|
476 | |
---|
477 | /// \brief Gives back a barrier on the B-nodes |
---|
478 | /// |
---|
479 | /// The barrier is s subset of the nodes on the same side of the |
---|
480 | /// graph, which size minus its neighbours is exactly the |
---|
481 | /// unmatched nodes on the B-side. |
---|
482 | /// \retval barrier A WriteMap on the BNodes with bool value. |
---|
483 | template <typename BarrierMap> |
---|
484 | void bBarrier(BarrierMap& barrier) const { |
---|
485 | |
---|
486 | for (BNodeIt it(*_graph); it != INVALID; ++it) { |
---|
487 | barrier.set(it, _reached[it] == _phase); |
---|
488 | } |
---|
489 | } |
---|
490 | |
---|
491 | /// \brief Gives back the number of the matching edges. |
---|
492 | /// |
---|
493 | /// Gives back the number of the matching edges. |
---|
494 | int matchingSize() const { |
---|
495 | return _size; |
---|
496 | } |
---|
497 | |
---|
498 | /// @} |
---|
499 | |
---|
500 | private: |
---|
501 | |
---|
502 | typename BpUGraph::template ANodeMap<UEdge> _matching; |
---|
503 | typename BpUGraph::template BNodeMap<UEdge> _rmatching; |
---|
504 | |
---|
505 | typename BpUGraph::template BNodeMap<int> _reached; |
---|
506 | |
---|
507 | int _phase; |
---|
508 | const Graph *_graph; |
---|
509 | |
---|
510 | int _size; |
---|
511 | |
---|
512 | }; |
---|
513 | |
---|
514 | /// \ingroup matching |
---|
515 | /// |
---|
516 | /// \brief Maximum cardinality bipartite matching |
---|
517 | /// |
---|
518 | /// This function calculates the maximum cardinality matching |
---|
519 | /// in a bipartite graph. It gives back the matching in an undirected |
---|
520 | /// edge map. |
---|
521 | /// |
---|
522 | /// \param graph The bipartite graph. |
---|
523 | /// \return The size of the matching. |
---|
524 | template <typename BpUGraph> |
---|
525 | int maxBipartiteMatching(const BpUGraph& graph) { |
---|
526 | MaxBipartiteMatching<BpUGraph> bpmatching(graph); |
---|
527 | bpmatching.run(); |
---|
528 | return bpmatching.matchingSize(); |
---|
529 | } |
---|
530 | |
---|
531 | /// \ingroup matching |
---|
532 | /// |
---|
533 | /// \brief Maximum cardinality bipartite matching |
---|
534 | /// |
---|
535 | /// This function calculates the maximum cardinality matching |
---|
536 | /// in a bipartite graph. It gives back the matching in an undirected |
---|
537 | /// edge map. |
---|
538 | /// |
---|
539 | /// \param graph The bipartite graph. |
---|
540 | /// \retval matching The ANodeMap of UEdges which will be set to covered |
---|
541 | /// matching undirected edge. |
---|
542 | /// \return The size of the matching. |
---|
543 | template <typename BpUGraph, typename MatchingMap> |
---|
544 | int maxBipartiteMatching(const BpUGraph& graph, MatchingMap& matching) { |
---|
545 | MaxBipartiteMatching<BpUGraph> bpmatching(graph); |
---|
546 | bpmatching.run(); |
---|
547 | bpmatching.aMatching(matching); |
---|
548 | return bpmatching.matchingSize(); |
---|
549 | } |
---|
550 | |
---|
551 | /// \ingroup matching |
---|
552 | /// |
---|
553 | /// \brief Maximum cardinality bipartite matching |
---|
554 | /// |
---|
555 | /// This function calculates the maximum cardinality matching |
---|
556 | /// in a bipartite graph. It gives back the matching in an undirected |
---|
557 | /// edge map. |
---|
558 | /// |
---|
559 | /// \param graph The bipartite graph. |
---|
560 | /// \retval matching The ANodeMap of UEdges which will be set to covered |
---|
561 | /// matching undirected edge. |
---|
562 | /// \retval barrier The BNodeMap of bools which will be set to a barrier |
---|
563 | /// of the BNode-set. |
---|
564 | /// \return The size of the matching. |
---|
565 | template <typename BpUGraph, typename MatchingMap, typename BarrierMap> |
---|
566 | int maxBipartiteMatching(const BpUGraph& graph, |
---|
567 | MatchingMap& matching, BarrierMap& barrier) { |
---|
568 | MaxBipartiteMatching<BpUGraph> bpmatching(graph); |
---|
569 | bpmatching.run(); |
---|
570 | bpmatching.aMatching(matching); |
---|
571 | bpmatching.bBarrier(barrier); |
---|
572 | return bpmatching.matchingSize(); |
---|
573 | } |
---|
574 | |
---|
575 | /// \brief Default traits class for weighted bipartite matching algoritms. |
---|
576 | /// |
---|
577 | /// Default traits class for weighted bipartite matching algoritms. |
---|
578 | /// \param _BpUGraph The bipartite undirected graph type. |
---|
579 | /// \param _WeightMap Type of weight map. |
---|
580 | template <typename _BpUGraph, typename _WeightMap> |
---|
581 | struct MaxWeightedBipartiteMatchingDefaultTraits { |
---|
582 | /// \brief The type of the weight of the undirected edges. |
---|
583 | typedef typename _WeightMap::Value Value; |
---|
584 | |
---|
585 | /// The undirected bipartite graph type the algorithm runs on. |
---|
586 | typedef _BpUGraph BpUGraph; |
---|
587 | |
---|
588 | /// The map of the edges weights |
---|
589 | typedef _WeightMap WeightMap; |
---|
590 | |
---|
591 | /// \brief The cross reference type used by heap. |
---|
592 | /// |
---|
593 | /// The cross reference type used by heap. |
---|
594 | /// Usually it is \c Graph::ANodeMap<int>. |
---|
595 | typedef typename BpUGraph::template ANodeMap<int> HeapCrossRef; |
---|
596 | |
---|
597 | /// \brief Instantiates a HeapCrossRef. |
---|
598 | /// |
---|
599 | /// This function instantiates a \ref HeapCrossRef. |
---|
600 | /// \param graph is the graph, to which we would like to define the |
---|
601 | /// HeapCrossRef. |
---|
602 | static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) { |
---|
603 | return new HeapCrossRef(graph); |
---|
604 | } |
---|
605 | |
---|
606 | /// \brief The heap type used by weighted matching algorithms. |
---|
607 | /// |
---|
608 | /// The heap type used by weighted matching algorithms. It should |
---|
609 | /// minimize the priorities and the heap's key type is the graph's |
---|
610 | /// anode graph's node. |
---|
611 | /// |
---|
612 | /// \sa BinHeap |
---|
613 | typedef BinHeap<Value, HeapCrossRef> Heap; |
---|
614 | |
---|
615 | /// \brief Instantiates a Heap. |
---|
616 | /// |
---|
617 | /// This function instantiates a \ref Heap. |
---|
618 | /// \param crossref The cross reference of the heap. |
---|
619 | static Heap *createHeap(HeapCrossRef& crossref) { |
---|
620 | return new Heap(crossref); |
---|
621 | } |
---|
622 | |
---|
623 | }; |
---|
624 | |
---|
625 | |
---|
626 | /// \ingroup matching |
---|
627 | /// |
---|
628 | /// \brief Bipartite Max Weighted Matching algorithm |
---|
629 | /// |
---|
630 | /// This class implements the bipartite Max Weighted Matching |
---|
631 | /// algorithm. It uses the successive shortest path algorithm to |
---|
632 | /// calculate the maximum weighted matching in the bipartite |
---|
633 | /// graph. The algorithm can be used also to calculate the maximum |
---|
634 | /// cardinality maximum weighted matching. The time complexity |
---|
635 | /// of the algorithm is \f$ O(ne\log(n)) \f$ with the default binary |
---|
636 | /// heap implementation but this can be improved to |
---|
637 | /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps. |
---|
638 | /// |
---|
639 | /// The algorithm also provides a potential function on the nodes |
---|
640 | /// which a dual solution of the matching algorithm and it can be |
---|
641 | /// used to proof the optimality of the given pimal solution. |
---|
642 | #ifdef DOXYGEN |
---|
643 | template <typename _BpUGraph, typename _WeightMap, typename _Traits> |
---|
644 | #else |
---|
645 | template <typename _BpUGraph, |
---|
646 | typename _WeightMap = typename _BpUGraph::template UEdgeMap<int>, |
---|
647 | typename _Traits = |
---|
648 | MaxWeightedBipartiteMatchingDefaultTraits<_BpUGraph, _WeightMap> > |
---|
649 | #endif |
---|
650 | class MaxWeightedBipartiteMatching { |
---|
651 | public: |
---|
652 | |
---|
653 | typedef _Traits Traits; |
---|
654 | typedef typename Traits::BpUGraph BpUGraph; |
---|
655 | typedef typename Traits::WeightMap WeightMap; |
---|
656 | typedef typename Traits::Value Value; |
---|
657 | |
---|
658 | protected: |
---|
659 | |
---|
660 | typedef typename Traits::HeapCrossRef HeapCrossRef; |
---|
661 | typedef typename Traits::Heap Heap; |
---|
662 | |
---|
663 | |
---|
664 | typedef typename BpUGraph::Node Node; |
---|
665 | typedef typename BpUGraph::ANodeIt ANodeIt; |
---|
666 | typedef typename BpUGraph::BNodeIt BNodeIt; |
---|
667 | typedef typename BpUGraph::UEdge UEdge; |
---|
668 | typedef typename BpUGraph::UEdgeIt UEdgeIt; |
---|
669 | typedef typename BpUGraph::IncEdgeIt IncEdgeIt; |
---|
670 | |
---|
671 | typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap; |
---|
672 | typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap; |
---|
673 | |
---|
674 | typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap; |
---|
675 | typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap; |
---|
676 | |
---|
677 | |
---|
678 | public: |
---|
679 | |
---|
680 | /// \brief \ref Exception for uninitialized parameters. |
---|
681 | /// |
---|
682 | /// This error represents problems in the initialization |
---|
683 | /// of the parameters of the algorithms. |
---|
684 | class UninitializedParameter : public lemon::UninitializedParameter { |
---|
685 | public: |
---|
686 | virtual const char* what() const throw() { |
---|
687 | return "lemon::MaxWeightedBipartiteMatching::UninitializedParameter"; |
---|
688 | } |
---|
689 | }; |
---|
690 | |
---|
691 | ///\name Named template parameters |
---|
692 | |
---|
693 | ///@{ |
---|
694 | |
---|
695 | template <class H, class CR> |
---|
696 | struct DefHeapTraits : public Traits { |
---|
697 | typedef CR HeapCrossRef; |
---|
698 | typedef H Heap; |
---|
699 | static HeapCrossRef *createHeapCrossRef(const BpUGraph &) { |
---|
700 | throw UninitializedParameter(); |
---|
701 | } |
---|
702 | static Heap *createHeap(HeapCrossRef &) { |
---|
703 | throw UninitializedParameter(); |
---|
704 | } |
---|
705 | }; |
---|
706 | |
---|
707 | /// \brief \ref named-templ-param "Named parameter" for setting heap |
---|
708 | /// and cross reference type |
---|
709 | /// |
---|
710 | /// \ref named-templ-param "Named parameter" for setting heap and cross |
---|
711 | /// reference type |
---|
712 | template <class H, class CR = typename BpUGraph::template NodeMap<int> > |
---|
713 | struct DefHeap |
---|
714 | : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, |
---|
715 | DefHeapTraits<H, CR> > { |
---|
716 | typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, |
---|
717 | DefHeapTraits<H, CR> > Create; |
---|
718 | }; |
---|
719 | |
---|
720 | template <class H, class CR> |
---|
721 | struct DefStandardHeapTraits : public Traits { |
---|
722 | typedef CR HeapCrossRef; |
---|
723 | typedef H Heap; |
---|
724 | static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) { |
---|
725 | return new HeapCrossRef(graph); |
---|
726 | } |
---|
727 | static Heap *createHeap(HeapCrossRef &crossref) { |
---|
728 | return new Heap(crossref); |
---|
729 | } |
---|
730 | }; |
---|
731 | |
---|
732 | /// \brief \ref named-templ-param "Named parameter" for setting heap and |
---|
733 | /// cross reference type with automatic allocation |
---|
734 | /// |
---|
735 | /// \ref named-templ-param "Named parameter" for setting heap and cross |
---|
736 | /// reference type. It can allocate the heap and the cross reference |
---|
737 | /// object if the cross reference's constructor waits for the graph as |
---|
738 | /// parameter and the heap's constructor waits for the cross reference. |
---|
739 | template <class H, class CR = typename BpUGraph::template NodeMap<int> > |
---|
740 | struct DefStandardHeap |
---|
741 | : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, |
---|
742 | DefStandardHeapTraits<H, CR> > { |
---|
743 | typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, |
---|
744 | DefStandardHeapTraits<H, CR> > |
---|
745 | Create; |
---|
746 | }; |
---|
747 | |
---|
748 | ///@} |
---|
749 | |
---|
750 | |
---|
751 | /// \brief Constructor. |
---|
752 | /// |
---|
753 | /// Constructor of the algorithm. |
---|
754 | MaxWeightedBipartiteMatching(const BpUGraph& _graph, |
---|
755 | const WeightMap& _weight) |
---|
756 | : graph(&_graph), weight(&_weight), |
---|
757 | anode_matching(_graph), bnode_matching(_graph), |
---|
758 | anode_potential(_graph), bnode_potential(_graph), |
---|
759 | _heap_cross_ref(0), local_heap_cross_ref(false), |
---|
760 | _heap(0), local_heap(0) {} |
---|
761 | |
---|
762 | /// \brief Destructor. |
---|
763 | /// |
---|
764 | /// Destructor of the algorithm. |
---|
765 | ~MaxWeightedBipartiteMatching() { |
---|
766 | destroyStructures(); |
---|
767 | } |
---|
768 | |
---|
769 | /// \brief Sets the heap and the cross reference used by algorithm. |
---|
770 | /// |
---|
771 | /// Sets the heap and the cross reference used by algorithm. |
---|
772 | /// If you don't use this function before calling \ref run(), |
---|
773 | /// it will allocate one. The destuctor deallocates this |
---|
774 | /// automatically allocated map, of course. |
---|
775 | /// \return \c (*this) |
---|
776 | MaxWeightedBipartiteMatching& heap(Heap& hp, HeapCrossRef &cr) { |
---|
777 | if(local_heap_cross_ref) { |
---|
778 | delete _heap_cross_ref; |
---|
779 | local_heap_cross_ref = false; |
---|
780 | } |
---|
781 | _heap_cross_ref = &cr; |
---|
782 | if(local_heap) { |
---|
783 | delete _heap; |
---|
784 | local_heap = false; |
---|
785 | } |
---|
786 | _heap = &hp; |
---|
787 | return *this; |
---|
788 | } |
---|
789 | |
---|
790 | /// \name Execution control |
---|
791 | /// The simplest way to execute the algorithm is to use |
---|
792 | /// one of the member functions called \c run(). |
---|
793 | /// \n |
---|
794 | /// If you need more control on the execution, |
---|
795 | /// first you must call \ref init() or one alternative for it. |
---|
796 | /// Finally \ref start() will perform the matching computation or |
---|
797 | /// with step-by-step execution you can augment the solution. |
---|
798 | |
---|
799 | /// @{ |
---|
800 | |
---|
801 | /// \brief Initalize the data structures. |
---|
802 | /// |
---|
803 | /// It initalizes the data structures and creates an empty matching. |
---|
804 | void init() { |
---|
805 | initStructures(); |
---|
806 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
807 | anode_matching[it] = INVALID; |
---|
808 | anode_potential[it] = 0; |
---|
809 | } |
---|
810 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
811 | bnode_matching[it] = INVALID; |
---|
812 | bnode_potential[it] = 0; |
---|
813 | for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) { |
---|
814 | if ((*weight)[jt] > bnode_potential[it]) { |
---|
815 | bnode_potential[it] = (*weight)[jt]; |
---|
816 | } |
---|
817 | } |
---|
818 | } |
---|
819 | matching_value = 0; |
---|
820 | matching_size = 0; |
---|
821 | } |
---|
822 | |
---|
823 | |
---|
824 | /// \brief An augmenting phase of the weighted matching algorithm |
---|
825 | /// |
---|
826 | /// It runs an augmenting phase of the weighted matching |
---|
827 | /// algorithm. This phase finds the best augmenting path and |
---|
828 | /// augments only on this paths. |
---|
829 | /// |
---|
830 | /// The algorithm consists at most |
---|
831 | /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ |
---|
832 | /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long |
---|
833 | /// with binary heap. |
---|
834 | /// \param decrease If the given parameter true the matching value |
---|
835 | /// can be decreased in the augmenting phase. If we would like |
---|
836 | /// to calculate the maximum cardinality maximum weighted matching |
---|
837 | /// then we should let the algorithm to decrease the matching |
---|
838 | /// value in order to increase the number of the matching edges. |
---|
839 | bool augment(bool decrease = false) { |
---|
840 | |
---|
841 | typename BpUGraph::template BNodeMap<Value> bdist(*graph); |
---|
842 | typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID); |
---|
843 | |
---|
844 | Node bestNode = INVALID; |
---|
845 | Value bestValue = 0; |
---|
846 | |
---|
847 | _heap->clear(); |
---|
848 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
849 | (*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
---|
850 | } |
---|
851 | |
---|
852 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
853 | if (anode_matching[it] == INVALID) { |
---|
854 | _heap->push(it, 0); |
---|
855 | } |
---|
856 | } |
---|
857 | |
---|
858 | Value bdistMax = 0; |
---|
859 | while (!_heap->empty()) { |
---|
860 | Node anode = _heap->top(); |
---|
861 | Value avalue = _heap->prio(); |
---|
862 | _heap->pop(); |
---|
863 | for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) { |
---|
864 | if (jt == anode_matching[anode]) continue; |
---|
865 | Node bnode = graph->bNode(jt); |
---|
866 | Value bvalue = avalue - (*weight)[jt] + |
---|
867 | anode_potential[anode] + bnode_potential[bnode]; |
---|
868 | if (bvalue > bdistMax) { |
---|
869 | bdistMax = bvalue; |
---|
870 | } |
---|
871 | if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) { |
---|
872 | bdist[bnode] = bvalue; |
---|
873 | bpred[bnode] = jt; |
---|
874 | } else continue; |
---|
875 | if (bnode_matching[bnode] != INVALID) { |
---|
876 | Node newanode = graph->aNode(bnode_matching[bnode]); |
---|
877 | switch (_heap->state(newanode)) { |
---|
878 | case Heap::PRE_HEAP: |
---|
879 | _heap->push(newanode, bvalue); |
---|
880 | break; |
---|
881 | case Heap::IN_HEAP: |
---|
882 | if (bvalue < (*_heap)[newanode]) { |
---|
883 | _heap->decrease(newanode, bvalue); |
---|
884 | } |
---|
885 | break; |
---|
886 | case Heap::POST_HEAP: |
---|
887 | break; |
---|
888 | } |
---|
889 | } else { |
---|
890 | if (bestNode == INVALID || |
---|
891 | bnode_potential[bnode] - bvalue > bestValue) { |
---|
892 | bestValue = bnode_potential[bnode] - bvalue; |
---|
893 | bestNode = bnode; |
---|
894 | } |
---|
895 | } |
---|
896 | } |
---|
897 | } |
---|
898 | |
---|
899 | if (bestNode == INVALID || (!decrease && bestValue < 0)) { |
---|
900 | return false; |
---|
901 | } |
---|
902 | |
---|
903 | matching_value += bestValue; |
---|
904 | ++matching_size; |
---|
905 | |
---|
906 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
907 | if (bpred[it] != INVALID) { |
---|
908 | bnode_potential[it] -= bdist[it]; |
---|
909 | } else { |
---|
910 | bnode_potential[it] -= bdistMax; |
---|
911 | } |
---|
912 | } |
---|
913 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
914 | if (anode_matching[it] != INVALID) { |
---|
915 | Node bnode = graph->bNode(anode_matching[it]); |
---|
916 | if (bpred[bnode] != INVALID) { |
---|
917 | anode_potential[it] += bdist[bnode]; |
---|
918 | } else { |
---|
919 | anode_potential[it] += bdistMax; |
---|
920 | } |
---|
921 | } |
---|
922 | } |
---|
923 | |
---|
924 | while (bestNode != INVALID) { |
---|
925 | UEdge uedge = bpred[bestNode]; |
---|
926 | Node anode = graph->aNode(uedge); |
---|
927 | |
---|
928 | bnode_matching[bestNode] = uedge; |
---|
929 | if (anode_matching[anode] != INVALID) { |
---|
930 | bestNode = graph->bNode(anode_matching[anode]); |
---|
931 | } else { |
---|
932 | bestNode = INVALID; |
---|
933 | } |
---|
934 | anode_matching[anode] = uedge; |
---|
935 | } |
---|
936 | |
---|
937 | |
---|
938 | return true; |
---|
939 | } |
---|
940 | |
---|
941 | /// \brief Starts the algorithm. |
---|
942 | /// |
---|
943 | /// Starts the algorithm. It runs augmenting phases until the |
---|
944 | /// optimal solution reached. |
---|
945 | /// |
---|
946 | /// \param maxCardinality If the given value is true it will |
---|
947 | /// calculate the maximum cardinality maximum matching instead of |
---|
948 | /// the maximum matching. |
---|
949 | void start(bool maxCardinality = false) { |
---|
950 | while (augment(maxCardinality)) {} |
---|
951 | } |
---|
952 | |
---|
953 | /// \brief Runs the algorithm. |
---|
954 | /// |
---|
955 | /// It just initalize the algorithm and then start it. |
---|
956 | /// |
---|
957 | /// \param maxCardinality If the given value is true it will |
---|
958 | /// calculate the maximum cardinality maximum matching instead of |
---|
959 | /// the maximum matching. |
---|
960 | void run(bool maxCardinality = false) { |
---|
961 | init(); |
---|
962 | start(maxCardinality); |
---|
963 | } |
---|
964 | |
---|
965 | /// @} |
---|
966 | |
---|
967 | /// \name Query Functions |
---|
968 | /// The result of the %Matching algorithm can be obtained using these |
---|
969 | /// functions.\n |
---|
970 | /// Before the use of these functions, |
---|
971 | /// either run() or start() must be called. |
---|
972 | |
---|
973 | ///@{ |
---|
974 | |
---|
975 | /// \brief Gives back the potential in the NodeMap |
---|
976 | /// |
---|
977 | /// Gives back the potential in the NodeMap. The matching is optimal |
---|
978 | /// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$ |
---|
979 | /// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$ |
---|
980 | /// for each edges. |
---|
981 | template <typename PotentialMap> |
---|
982 | void potential(PotentialMap& pt) const { |
---|
983 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
984 | pt.set(it, anode_potential[it]); |
---|
985 | } |
---|
986 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
987 | pt.set(it, bnode_potential[it]); |
---|
988 | } |
---|
989 | } |
---|
990 | |
---|
991 | /// \brief Set true all matching uedge in the map. |
---|
992 | /// |
---|
993 | /// Set true all matching uedge in the map. It does not change the |
---|
994 | /// value mapped to the other uedges. |
---|
995 | /// \return The number of the matching edges. |
---|
996 | template <typename MatchingMap> |
---|
997 | int quickMatching(MatchingMap& mm) const { |
---|
998 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
999 | if (anode_matching[it] != INVALID) { |
---|
1000 | mm.set(anode_matching[it], true); |
---|
1001 | } |
---|
1002 | } |
---|
1003 | return matching_size; |
---|
1004 | } |
---|
1005 | |
---|
1006 | /// \brief Set true all matching uedge in the map and the others to false. |
---|
1007 | /// |
---|
1008 | /// Set true all matching uedge in the map and the others to false. |
---|
1009 | /// \return The number of the matching edges. |
---|
1010 | template <typename MatchingMap> |
---|
1011 | int matching(MatchingMap& mm) const { |
---|
1012 | for (UEdgeIt it(*graph); it != INVALID; ++it) { |
---|
1013 | mm.set(it, it == anode_matching[graph->aNode(it)]); |
---|
1014 | } |
---|
1015 | return matching_size; |
---|
1016 | } |
---|
1017 | |
---|
1018 | ///Gives back the matching in an ANodeMap. |
---|
1019 | |
---|
1020 | ///Gives back the matching in an ANodeMap. The parameter should |
---|
1021 | ///be a write ANodeMap of UEdge values. |
---|
1022 | ///\return The number of the matching edges. |
---|
1023 | template<class MatchingMap> |
---|
1024 | int aMatching(MatchingMap& mm) const { |
---|
1025 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1026 | mm.set(it, anode_matching[it]); |
---|
1027 | } |
---|
1028 | return matching_size; |
---|
1029 | } |
---|
1030 | |
---|
1031 | ///Gives back the matching in a BNodeMap. |
---|
1032 | |
---|
1033 | ///Gives back the matching in a BNodeMap. The parameter should |
---|
1034 | ///be a write BNodeMap of UEdge values. |
---|
1035 | ///\return The number of the matching edges. |
---|
1036 | template<class MatchingMap> |
---|
1037 | int bMatching(MatchingMap& mm) const { |
---|
1038 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
1039 | mm.set(it, bnode_matching[it]); |
---|
1040 | } |
---|
1041 | return matching_size; |
---|
1042 | } |
---|
1043 | |
---|
1044 | |
---|
1045 | /// \brief Return true if the given uedge is in the matching. |
---|
1046 | /// |
---|
1047 | /// It returns true if the given uedge is in the matching. |
---|
1048 | bool matchingEdge(const UEdge& edge) const { |
---|
1049 | return anode_matching[graph->aNode(edge)] == edge; |
---|
1050 | } |
---|
1051 | |
---|
1052 | /// \brief Returns the matching edge from the node. |
---|
1053 | /// |
---|
1054 | /// Returns the matching edge from the node. If there is not such |
---|
1055 | /// edge it gives back \c INVALID. |
---|
1056 | UEdge matchingEdge(const Node& node) const { |
---|
1057 | if (graph->aNode(node)) { |
---|
1058 | return anode_matching[node]; |
---|
1059 | } else { |
---|
1060 | return bnode_matching[node]; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | |
---|
1064 | /// \brief Gives back the sum of weights of the matching edges. |
---|
1065 | /// |
---|
1066 | /// Gives back the sum of weights of the matching edges. |
---|
1067 | Value matchingValue() const { |
---|
1068 | return matching_value; |
---|
1069 | } |
---|
1070 | |
---|
1071 | /// \brief Gives back the number of the matching edges. |
---|
1072 | /// |
---|
1073 | /// Gives back the number of the matching edges. |
---|
1074 | int matchingSize() const { |
---|
1075 | return matching_size; |
---|
1076 | } |
---|
1077 | |
---|
1078 | /// @} |
---|
1079 | |
---|
1080 | private: |
---|
1081 | |
---|
1082 | void initStructures() { |
---|
1083 | if (!_heap_cross_ref) { |
---|
1084 | local_heap_cross_ref = true; |
---|
1085 | _heap_cross_ref = Traits::createHeapCrossRef(*graph); |
---|
1086 | } |
---|
1087 | if (!_heap) { |
---|
1088 | local_heap = true; |
---|
1089 | _heap = Traits::createHeap(*_heap_cross_ref); |
---|
1090 | } |
---|
1091 | } |
---|
1092 | |
---|
1093 | void destroyStructures() { |
---|
1094 | if (local_heap_cross_ref) delete _heap_cross_ref; |
---|
1095 | if (local_heap) delete _heap; |
---|
1096 | } |
---|
1097 | |
---|
1098 | |
---|
1099 | private: |
---|
1100 | |
---|
1101 | const BpUGraph *graph; |
---|
1102 | const WeightMap* weight; |
---|
1103 | |
---|
1104 | ANodeMatchingMap anode_matching; |
---|
1105 | BNodeMatchingMap bnode_matching; |
---|
1106 | |
---|
1107 | ANodePotentialMap anode_potential; |
---|
1108 | BNodePotentialMap bnode_potential; |
---|
1109 | |
---|
1110 | Value matching_value; |
---|
1111 | int matching_size; |
---|
1112 | |
---|
1113 | HeapCrossRef *_heap_cross_ref; |
---|
1114 | bool local_heap_cross_ref; |
---|
1115 | |
---|
1116 | Heap *_heap; |
---|
1117 | bool local_heap; |
---|
1118 | |
---|
1119 | }; |
---|
1120 | |
---|
1121 | /// \ingroup matching |
---|
1122 | /// |
---|
1123 | /// \brief Maximum weighted bipartite matching |
---|
1124 | /// |
---|
1125 | /// This function calculates the maximum weighted matching |
---|
1126 | /// in a bipartite graph. It gives back the matching in an undirected |
---|
1127 | /// edge map. |
---|
1128 | /// |
---|
1129 | /// \param graph The bipartite graph. |
---|
1130 | /// \param weight The undirected edge map which contains the weights. |
---|
1131 | /// \retval matching The undirected edge map which will be set to |
---|
1132 | /// the matching. |
---|
1133 | /// \return The value of the matching. |
---|
1134 | template <typename BpUGraph, typename WeightMap, typename MatchingMap> |
---|
1135 | typename WeightMap::Value |
---|
1136 | maxWeightedBipartiteMatching(const BpUGraph& graph, const WeightMap& weight, |
---|
1137 | MatchingMap& matching) { |
---|
1138 | MaxWeightedBipartiteMatching<BpUGraph, WeightMap> |
---|
1139 | bpmatching(graph, weight); |
---|
1140 | bpmatching.run(); |
---|
1141 | bpmatching.matching(matching); |
---|
1142 | return bpmatching.matchingValue(); |
---|
1143 | } |
---|
1144 | |
---|
1145 | /// \ingroup matching |
---|
1146 | /// |
---|
1147 | /// \brief Maximum weighted maximum cardinality bipartite matching |
---|
1148 | /// |
---|
1149 | /// This function calculates the maximum weighted of the maximum cardinality |
---|
1150 | /// matchings of a bipartite graph. It gives back the matching in an |
---|
1151 | /// undirected edge map. |
---|
1152 | /// |
---|
1153 | /// \param graph The bipartite graph. |
---|
1154 | /// \param weight The undirected edge map which contains the weights. |
---|
1155 | /// \retval matching The undirected edge map which will be set to |
---|
1156 | /// the matching. |
---|
1157 | /// \return The value of the matching. |
---|
1158 | template <typename BpUGraph, typename WeightMap, typename MatchingMap> |
---|
1159 | typename WeightMap::Value |
---|
1160 | maxWeightedMaxBipartiteMatching(const BpUGraph& graph, |
---|
1161 | const WeightMap& weight, |
---|
1162 | MatchingMap& matching) { |
---|
1163 | MaxWeightedBipartiteMatching<BpUGraph, WeightMap> |
---|
1164 | bpmatching(graph, weight); |
---|
1165 | bpmatching.run(true); |
---|
1166 | bpmatching.matching(matching); |
---|
1167 | return bpmatching.matchingValue(); |
---|
1168 | } |
---|
1169 | |
---|
1170 | /// \brief Default traits class for minimum cost bipartite matching |
---|
1171 | /// algoritms. |
---|
1172 | /// |
---|
1173 | /// Default traits class for minimum cost bipartite matching |
---|
1174 | /// algoritms. |
---|
1175 | /// |
---|
1176 | /// \param _BpUGraph The bipartite undirected graph |
---|
1177 | /// type. |
---|
1178 | /// |
---|
1179 | /// \param _CostMap Type of cost map. |
---|
1180 | template <typename _BpUGraph, typename _CostMap> |
---|
1181 | struct MinCostMaxBipartiteMatchingDefaultTraits { |
---|
1182 | /// \brief The type of the cost of the undirected edges. |
---|
1183 | typedef typename _CostMap::Value Value; |
---|
1184 | |
---|
1185 | /// The undirected bipartite graph type the algorithm runs on. |
---|
1186 | typedef _BpUGraph BpUGraph; |
---|
1187 | |
---|
1188 | /// The map of the edges costs |
---|
1189 | typedef _CostMap CostMap; |
---|
1190 | |
---|
1191 | /// \brief The cross reference type used by heap. |
---|
1192 | /// |
---|
1193 | /// The cross reference type used by heap. |
---|
1194 | /// Usually it is \c Graph::NodeMap<int>. |
---|
1195 | typedef typename BpUGraph::template NodeMap<int> HeapCrossRef; |
---|
1196 | |
---|
1197 | /// \brief Instantiates a HeapCrossRef. |
---|
1198 | /// |
---|
1199 | /// This function instantiates a \ref HeapCrossRef. |
---|
1200 | /// \param graph is the graph, to which we would like to define the |
---|
1201 | /// HeapCrossRef. |
---|
1202 | static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) { |
---|
1203 | return new HeapCrossRef(graph); |
---|
1204 | } |
---|
1205 | |
---|
1206 | /// \brief The heap type used by costed matching algorithms. |
---|
1207 | /// |
---|
1208 | /// The heap type used by costed matching algorithms. It should |
---|
1209 | /// minimize the priorities and the heap's key type is the graph's |
---|
1210 | /// anode graph's node. |
---|
1211 | /// |
---|
1212 | /// \sa BinHeap |
---|
1213 | typedef BinHeap<Value, HeapCrossRef> Heap; |
---|
1214 | |
---|
1215 | /// \brief Instantiates a Heap. |
---|
1216 | /// |
---|
1217 | /// This function instantiates a \ref Heap. |
---|
1218 | /// \param crossref The cross reference of the heap. |
---|
1219 | static Heap *createHeap(HeapCrossRef& crossref) { |
---|
1220 | return new Heap(crossref); |
---|
1221 | } |
---|
1222 | |
---|
1223 | }; |
---|
1224 | |
---|
1225 | |
---|
1226 | /// \ingroup matching |
---|
1227 | /// |
---|
1228 | /// \brief Bipartite Min Cost Matching algorithm |
---|
1229 | /// |
---|
1230 | /// This class implements the bipartite Min Cost Matching algorithm. |
---|
1231 | /// It uses the successive shortest path algorithm to calculate the |
---|
1232 | /// minimum cost maximum matching in the bipartite graph. The time |
---|
1233 | /// complexity of the algorithm is \f$ O(ne\log(n)) \f$ with the |
---|
1234 | /// default binary heap implementation but this can be improved to |
---|
1235 | /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps. |
---|
1236 | /// |
---|
1237 | /// The algorithm also provides a potential function on the nodes |
---|
1238 | /// which a dual solution of the matching algorithm and it can be |
---|
1239 | /// used to proof the optimality of the given pimal solution. |
---|
1240 | #ifdef DOXYGEN |
---|
1241 | template <typename _BpUGraph, typename _CostMap, typename _Traits> |
---|
1242 | #else |
---|
1243 | template <typename _BpUGraph, |
---|
1244 | typename _CostMap = typename _BpUGraph::template UEdgeMap<int>, |
---|
1245 | typename _Traits = |
---|
1246 | MinCostMaxBipartiteMatchingDefaultTraits<_BpUGraph, _CostMap> > |
---|
1247 | #endif |
---|
1248 | class MinCostMaxBipartiteMatching { |
---|
1249 | public: |
---|
1250 | |
---|
1251 | typedef _Traits Traits; |
---|
1252 | typedef typename Traits::BpUGraph BpUGraph; |
---|
1253 | typedef typename Traits::CostMap CostMap; |
---|
1254 | typedef typename Traits::Value Value; |
---|
1255 | |
---|
1256 | protected: |
---|
1257 | |
---|
1258 | typedef typename Traits::HeapCrossRef HeapCrossRef; |
---|
1259 | typedef typename Traits::Heap Heap; |
---|
1260 | |
---|
1261 | |
---|
1262 | typedef typename BpUGraph::Node Node; |
---|
1263 | typedef typename BpUGraph::ANodeIt ANodeIt; |
---|
1264 | typedef typename BpUGraph::BNodeIt BNodeIt; |
---|
1265 | typedef typename BpUGraph::UEdge UEdge; |
---|
1266 | typedef typename BpUGraph::UEdgeIt UEdgeIt; |
---|
1267 | typedef typename BpUGraph::IncEdgeIt IncEdgeIt; |
---|
1268 | |
---|
1269 | typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap; |
---|
1270 | typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap; |
---|
1271 | |
---|
1272 | typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap; |
---|
1273 | typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap; |
---|
1274 | |
---|
1275 | |
---|
1276 | public: |
---|
1277 | |
---|
1278 | /// \brief \ref Exception for uninitialized parameters. |
---|
1279 | /// |
---|
1280 | /// This error represents problems in the initialization |
---|
1281 | /// of the parameters of the algorithms. |
---|
1282 | class UninitializedParameter : public lemon::UninitializedParameter { |
---|
1283 | public: |
---|
1284 | virtual const char* what() const throw() { |
---|
1285 | return "lemon::MinCostMaxBipartiteMatching::UninitializedParameter"; |
---|
1286 | } |
---|
1287 | }; |
---|
1288 | |
---|
1289 | ///\name Named template parameters |
---|
1290 | |
---|
1291 | ///@{ |
---|
1292 | |
---|
1293 | template <class H, class CR> |
---|
1294 | struct DefHeapTraits : public Traits { |
---|
1295 | typedef CR HeapCrossRef; |
---|
1296 | typedef H Heap; |
---|
1297 | static HeapCrossRef *createHeapCrossRef(const BpUGraph &) { |
---|
1298 | throw UninitializedParameter(); |
---|
1299 | } |
---|
1300 | static Heap *createHeap(HeapCrossRef &) { |
---|
1301 | throw UninitializedParameter(); |
---|
1302 | } |
---|
1303 | }; |
---|
1304 | |
---|
1305 | /// \brief \ref named-templ-param "Named parameter" for setting heap |
---|
1306 | /// and cross reference type |
---|
1307 | /// |
---|
1308 | /// \ref named-templ-param "Named parameter" for setting heap and cross |
---|
1309 | /// reference type |
---|
1310 | template <class H, class CR = typename BpUGraph::template NodeMap<int> > |
---|
1311 | struct DefHeap |
---|
1312 | : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, |
---|
1313 | DefHeapTraits<H, CR> > { |
---|
1314 | typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, |
---|
1315 | DefHeapTraits<H, CR> > Create; |
---|
1316 | }; |
---|
1317 | |
---|
1318 | template <class H, class CR> |
---|
1319 | struct DefStandardHeapTraits : public Traits { |
---|
1320 | typedef CR HeapCrossRef; |
---|
1321 | typedef H Heap; |
---|
1322 | static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) { |
---|
1323 | return new HeapCrossRef(graph); |
---|
1324 | } |
---|
1325 | static Heap *createHeap(HeapCrossRef &crossref) { |
---|
1326 | return new Heap(crossref); |
---|
1327 | } |
---|
1328 | }; |
---|
1329 | |
---|
1330 | /// \brief \ref named-templ-param "Named parameter" for setting heap and |
---|
1331 | /// cross reference type with automatic allocation |
---|
1332 | /// |
---|
1333 | /// \ref named-templ-param "Named parameter" for setting heap and cross |
---|
1334 | /// reference type. It can allocate the heap and the cross reference |
---|
1335 | /// object if the cross reference's constructor waits for the graph as |
---|
1336 | /// parameter and the heap's constructor waits for the cross reference. |
---|
1337 | template <class H, class CR = typename BpUGraph::template NodeMap<int> > |
---|
1338 | struct DefStandardHeap |
---|
1339 | : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, |
---|
1340 | DefStandardHeapTraits<H, CR> > { |
---|
1341 | typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, |
---|
1342 | DefStandardHeapTraits<H, CR> > |
---|
1343 | Create; |
---|
1344 | }; |
---|
1345 | |
---|
1346 | ///@} |
---|
1347 | |
---|
1348 | |
---|
1349 | /// \brief Constructor. |
---|
1350 | /// |
---|
1351 | /// Constructor of the algorithm. |
---|
1352 | MinCostMaxBipartiteMatching(const BpUGraph& _graph, |
---|
1353 | const CostMap& _cost) |
---|
1354 | : graph(&_graph), cost(&_cost), |
---|
1355 | anode_matching(_graph), bnode_matching(_graph), |
---|
1356 | anode_potential(_graph), bnode_potential(_graph), |
---|
1357 | _heap_cross_ref(0), local_heap_cross_ref(false), |
---|
1358 | _heap(0), local_heap(0) {} |
---|
1359 | |
---|
1360 | /// \brief Destructor. |
---|
1361 | /// |
---|
1362 | /// Destructor of the algorithm. |
---|
1363 | ~MinCostMaxBipartiteMatching() { |
---|
1364 | destroyStructures(); |
---|
1365 | } |
---|
1366 | |
---|
1367 | /// \brief Sets the heap and the cross reference used by algorithm. |
---|
1368 | /// |
---|
1369 | /// Sets the heap and the cross reference used by algorithm. |
---|
1370 | /// If you don't use this function before calling \ref run(), |
---|
1371 | /// it will allocate one. The destuctor deallocates this |
---|
1372 | /// automatically allocated map, of course. |
---|
1373 | /// \return \c (*this) |
---|
1374 | MinCostMaxBipartiteMatching& heap(Heap& hp, HeapCrossRef &cr) { |
---|
1375 | if(local_heap_cross_ref) { |
---|
1376 | delete _heap_cross_ref; |
---|
1377 | local_heap_cross_ref = false; |
---|
1378 | } |
---|
1379 | _heap_cross_ref = &cr; |
---|
1380 | if(local_heap) { |
---|
1381 | delete _heap; |
---|
1382 | local_heap = false; |
---|
1383 | } |
---|
1384 | _heap = &hp; |
---|
1385 | return *this; |
---|
1386 | } |
---|
1387 | |
---|
1388 | /// \name Execution control |
---|
1389 | /// The simplest way to execute the algorithm is to use |
---|
1390 | /// one of the member functions called \c run(). |
---|
1391 | /// \n |
---|
1392 | /// If you need more control on the execution, |
---|
1393 | /// first you must call \ref init() or one alternative for it. |
---|
1394 | /// Finally \ref start() will perform the matching computation or |
---|
1395 | /// with step-by-step execution you can augment the solution. |
---|
1396 | |
---|
1397 | /// @{ |
---|
1398 | |
---|
1399 | /// \brief Initalize the data structures. |
---|
1400 | /// |
---|
1401 | /// It initalizes the data structures and creates an empty matching. |
---|
1402 | void init() { |
---|
1403 | initStructures(); |
---|
1404 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1405 | anode_matching[it] = INVALID; |
---|
1406 | anode_potential[it] = 0; |
---|
1407 | } |
---|
1408 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
1409 | bnode_matching[it] = INVALID; |
---|
1410 | bnode_potential[it] = 0; |
---|
1411 | } |
---|
1412 | matching_cost = 0; |
---|
1413 | matching_size = 0; |
---|
1414 | } |
---|
1415 | |
---|
1416 | |
---|
1417 | /// \brief An augmenting phase of the costed matching algorithm |
---|
1418 | /// |
---|
1419 | /// It runs an augmenting phase of the matching algorithm. The |
---|
1420 | /// phase finds the best augmenting path and augments only on this |
---|
1421 | /// paths. |
---|
1422 | /// |
---|
1423 | /// The algorithm consists at most |
---|
1424 | /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ |
---|
1425 | /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long |
---|
1426 | /// with binary heap. |
---|
1427 | bool augment() { |
---|
1428 | |
---|
1429 | typename BpUGraph::template BNodeMap<Value> bdist(*graph); |
---|
1430 | typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID); |
---|
1431 | |
---|
1432 | Node bestNode = INVALID; |
---|
1433 | Value bestValue = 0; |
---|
1434 | |
---|
1435 | _heap->clear(); |
---|
1436 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1437 | (*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
---|
1438 | } |
---|
1439 | |
---|
1440 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1441 | if (anode_matching[it] == INVALID) { |
---|
1442 | _heap->push(it, 0); |
---|
1443 | } |
---|
1444 | } |
---|
1445 | Value bdistMax = 0; |
---|
1446 | |
---|
1447 | while (!_heap->empty()) { |
---|
1448 | Node anode = _heap->top(); |
---|
1449 | Value avalue = _heap->prio(); |
---|
1450 | _heap->pop(); |
---|
1451 | for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) { |
---|
1452 | if (jt == anode_matching[anode]) continue; |
---|
1453 | Node bnode = graph->bNode(jt); |
---|
1454 | Value bvalue = avalue + (*cost)[jt] + |
---|
1455 | anode_potential[anode] - bnode_potential[bnode]; |
---|
1456 | if (bvalue > bdistMax) { |
---|
1457 | bdistMax = bvalue; |
---|
1458 | } |
---|
1459 | if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) { |
---|
1460 | bdist[bnode] = bvalue; |
---|
1461 | bpred[bnode] = jt; |
---|
1462 | } else continue; |
---|
1463 | if (bnode_matching[bnode] != INVALID) { |
---|
1464 | Node newanode = graph->aNode(bnode_matching[bnode]); |
---|
1465 | switch (_heap->state(newanode)) { |
---|
1466 | case Heap::PRE_HEAP: |
---|
1467 | _heap->push(newanode, bvalue); |
---|
1468 | break; |
---|
1469 | case Heap::IN_HEAP: |
---|
1470 | if (bvalue < (*_heap)[newanode]) { |
---|
1471 | _heap->decrease(newanode, bvalue); |
---|
1472 | } |
---|
1473 | break; |
---|
1474 | case Heap::POST_HEAP: |
---|
1475 | break; |
---|
1476 | } |
---|
1477 | } else { |
---|
1478 | if (bestNode == INVALID || |
---|
1479 | bvalue + bnode_potential[bnode] < bestValue) { |
---|
1480 | bestValue = bvalue + bnode_potential[bnode]; |
---|
1481 | bestNode = bnode; |
---|
1482 | } |
---|
1483 | } |
---|
1484 | } |
---|
1485 | } |
---|
1486 | |
---|
1487 | if (bestNode == INVALID) { |
---|
1488 | return false; |
---|
1489 | } |
---|
1490 | |
---|
1491 | matching_cost += bestValue; |
---|
1492 | ++matching_size; |
---|
1493 | |
---|
1494 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
1495 | if (bpred[it] != INVALID) { |
---|
1496 | bnode_potential[it] += bdist[it]; |
---|
1497 | } else { |
---|
1498 | bnode_potential[it] += bdistMax; |
---|
1499 | } |
---|
1500 | } |
---|
1501 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1502 | if (anode_matching[it] != INVALID) { |
---|
1503 | Node bnode = graph->bNode(anode_matching[it]); |
---|
1504 | if (bpred[bnode] != INVALID) { |
---|
1505 | anode_potential[it] += bdist[bnode]; |
---|
1506 | } else { |
---|
1507 | anode_potential[it] += bdistMax; |
---|
1508 | } |
---|
1509 | } |
---|
1510 | } |
---|
1511 | |
---|
1512 | while (bestNode != INVALID) { |
---|
1513 | UEdge uedge = bpred[bestNode]; |
---|
1514 | Node anode = graph->aNode(uedge); |
---|
1515 | |
---|
1516 | bnode_matching[bestNode] = uedge; |
---|
1517 | if (anode_matching[anode] != INVALID) { |
---|
1518 | bestNode = graph->bNode(anode_matching[anode]); |
---|
1519 | } else { |
---|
1520 | bestNode = INVALID; |
---|
1521 | } |
---|
1522 | anode_matching[anode] = uedge; |
---|
1523 | } |
---|
1524 | |
---|
1525 | |
---|
1526 | return true; |
---|
1527 | } |
---|
1528 | |
---|
1529 | /// \brief Starts the algorithm. |
---|
1530 | /// |
---|
1531 | /// Starts the algorithm. It runs augmenting phases until the |
---|
1532 | /// optimal solution reached. |
---|
1533 | void start() { |
---|
1534 | while (augment()) {} |
---|
1535 | } |
---|
1536 | |
---|
1537 | /// \brief Runs the algorithm. |
---|
1538 | /// |
---|
1539 | /// It just initalize the algorithm and then start it. |
---|
1540 | void run() { |
---|
1541 | init(); |
---|
1542 | start(); |
---|
1543 | } |
---|
1544 | |
---|
1545 | /// @} |
---|
1546 | |
---|
1547 | /// \name Query Functions |
---|
1548 | /// The result of the %Matching algorithm can be obtained using these |
---|
1549 | /// functions.\n |
---|
1550 | /// Before the use of these functions, |
---|
1551 | /// either run() or start() must be called. |
---|
1552 | |
---|
1553 | ///@{ |
---|
1554 | |
---|
1555 | /// \brief Gives back the potential in the NodeMap |
---|
1556 | /// |
---|
1557 | /// Gives back the potential in the NodeMap. The matching is optimal |
---|
1558 | /// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$ |
---|
1559 | /// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$ |
---|
1560 | /// for each edges. |
---|
1561 | template <typename PotentialMap> |
---|
1562 | void potential(PotentialMap& pt) const { |
---|
1563 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1564 | pt.set(it, anode_potential[it]); |
---|
1565 | } |
---|
1566 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
1567 | pt.set(it, bnode_potential[it]); |
---|
1568 | } |
---|
1569 | } |
---|
1570 | |
---|
1571 | /// \brief Set true all matching uedge in the map. |
---|
1572 | /// |
---|
1573 | /// Set true all matching uedge in the map. It does not change the |
---|
1574 | /// value mapped to the other uedges. |
---|
1575 | /// \return The number of the matching edges. |
---|
1576 | template <typename MatchingMap> |
---|
1577 | int quickMatching(MatchingMap& mm) const { |
---|
1578 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1579 | if (anode_matching[it] != INVALID) { |
---|
1580 | mm.set(anode_matching[it], true); |
---|
1581 | } |
---|
1582 | } |
---|
1583 | return matching_size; |
---|
1584 | } |
---|
1585 | |
---|
1586 | /// \brief Set true all matching uedge in the map and the others to false. |
---|
1587 | /// |
---|
1588 | /// Set true all matching uedge in the map and the others to false. |
---|
1589 | /// \return The number of the matching edges. |
---|
1590 | template <typename MatchingMap> |
---|
1591 | int matching(MatchingMap& mm) const { |
---|
1592 | for (UEdgeIt it(*graph); it != INVALID; ++it) { |
---|
1593 | mm.set(it, it == anode_matching[graph->aNode(it)]); |
---|
1594 | } |
---|
1595 | return matching_size; |
---|
1596 | } |
---|
1597 | |
---|
1598 | /// \brief Gives back the matching in an ANodeMap. |
---|
1599 | /// |
---|
1600 | /// Gives back the matching in an ANodeMap. The parameter should |
---|
1601 | /// be a write ANodeMap of UEdge values. |
---|
1602 | /// \return The number of the matching edges. |
---|
1603 | template<class MatchingMap> |
---|
1604 | int aMatching(MatchingMap& mm) const { |
---|
1605 | for (ANodeIt it(*graph); it != INVALID; ++it) { |
---|
1606 | mm.set(it, anode_matching[it]); |
---|
1607 | } |
---|
1608 | return matching_size; |
---|
1609 | } |
---|
1610 | |
---|
1611 | /// \brief Gives back the matching in a BNodeMap. |
---|
1612 | /// |
---|
1613 | /// Gives back the matching in a BNodeMap. The parameter should |
---|
1614 | /// be a write BNodeMap of UEdge values. |
---|
1615 | /// \return The number of the matching edges. |
---|
1616 | template<class MatchingMap> |
---|
1617 | int bMatching(MatchingMap& mm) const { |
---|
1618 | for (BNodeIt it(*graph); it != INVALID; ++it) { |
---|
1619 | mm.set(it, bnode_matching[it]); |
---|
1620 | } |
---|
1621 | return matching_size; |
---|
1622 | } |
---|
1623 | |
---|
1624 | /// \brief Return true if the given uedge is in the matching. |
---|
1625 | /// |
---|
1626 | /// It returns true if the given uedge is in the matching. |
---|
1627 | bool matchingEdge(const UEdge& edge) const { |
---|
1628 | return anode_matching[graph->aNode(edge)] == edge; |
---|
1629 | } |
---|
1630 | |
---|
1631 | /// \brief Returns the matching edge from the node. |
---|
1632 | /// |
---|
1633 | /// Returns the matching edge from the node. If there is not such |
---|
1634 | /// edge it gives back \c INVALID. |
---|
1635 | UEdge matchingEdge(const Node& node) const { |
---|
1636 | if (graph->aNode(node)) { |
---|
1637 | return anode_matching[node]; |
---|
1638 | } else { |
---|
1639 | return bnode_matching[node]; |
---|
1640 | } |
---|
1641 | } |
---|
1642 | |
---|
1643 | /// \brief Gives back the sum of costs of the matching edges. |
---|
1644 | /// |
---|
1645 | /// Gives back the sum of costs of the matching edges. |
---|
1646 | Value matchingCost() const { |
---|
1647 | return matching_cost; |
---|
1648 | } |
---|
1649 | |
---|
1650 | /// \brief Gives back the number of the matching edges. |
---|
1651 | /// |
---|
1652 | /// Gives back the number of the matching edges. |
---|
1653 | int matchingSize() const { |
---|
1654 | return matching_size; |
---|
1655 | } |
---|
1656 | |
---|
1657 | /// @} |
---|
1658 | |
---|
1659 | private: |
---|
1660 | |
---|
1661 | void initStructures() { |
---|
1662 | if (!_heap_cross_ref) { |
---|
1663 | local_heap_cross_ref = true; |
---|
1664 | _heap_cross_ref = Traits::createHeapCrossRef(*graph); |
---|
1665 | } |
---|
1666 | if (!_heap) { |
---|
1667 | local_heap = true; |
---|
1668 | _heap = Traits::createHeap(*_heap_cross_ref); |
---|
1669 | } |
---|
1670 | } |
---|
1671 | |
---|
1672 | void destroyStructures() { |
---|
1673 | if (local_heap_cross_ref) delete _heap_cross_ref; |
---|
1674 | if (local_heap) delete _heap; |
---|
1675 | } |
---|
1676 | |
---|
1677 | |
---|
1678 | private: |
---|
1679 | |
---|
1680 | const BpUGraph *graph; |
---|
1681 | const CostMap* cost; |
---|
1682 | |
---|
1683 | ANodeMatchingMap anode_matching; |
---|
1684 | BNodeMatchingMap bnode_matching; |
---|
1685 | |
---|
1686 | ANodePotentialMap anode_potential; |
---|
1687 | BNodePotentialMap bnode_potential; |
---|
1688 | |
---|
1689 | Value matching_cost; |
---|
1690 | int matching_size; |
---|
1691 | |
---|
1692 | HeapCrossRef *_heap_cross_ref; |
---|
1693 | bool local_heap_cross_ref; |
---|
1694 | |
---|
1695 | Heap *_heap; |
---|
1696 | bool local_heap; |
---|
1697 | |
---|
1698 | }; |
---|
1699 | |
---|
1700 | /// \ingroup matching |
---|
1701 | /// |
---|
1702 | /// \brief Minimum cost maximum cardinality bipartite matching |
---|
1703 | /// |
---|
1704 | /// This function calculates the maximum cardinality matching with |
---|
1705 | /// minimum cost of a bipartite graph. It gives back the matching in |
---|
1706 | /// an undirected edge map. |
---|
1707 | /// |
---|
1708 | /// \param graph The bipartite graph. |
---|
1709 | /// \param cost The undirected edge map which contains the costs. |
---|
1710 | /// \retval matching The undirected edge map which will be set to |
---|
1711 | /// the matching. |
---|
1712 | /// \return The cost of the matching. |
---|
1713 | template <typename BpUGraph, typename CostMap, typename MatchingMap> |
---|
1714 | typename CostMap::Value |
---|
1715 | minCostMaxBipartiteMatching(const BpUGraph& graph, |
---|
1716 | const CostMap& cost, |
---|
1717 | MatchingMap& matching) { |
---|
1718 | MinCostMaxBipartiteMatching<BpUGraph, CostMap> |
---|
1719 | bpmatching(graph, cost); |
---|
1720 | bpmatching.run(); |
---|
1721 | bpmatching.matching(matching); |
---|
1722 | return bpmatching.matchingCost(); |
---|
1723 | } |
---|
1724 | |
---|
1725 | } |
---|
1726 | |
---|
1727 | #endif |
---|