COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/capacity_scaling.h @ 2620:8f41a3129746

Last change on this file since 2620:8f41a3129746 was 2620:8f41a3129746, checked in by Peter Kovacs, 16 years ago

Doc improvements

File size: 21.9 KB
RevLine 
[2440]1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
[2553]5 * Copyright (C) 2003-2008
[2440]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_CAPACITY_SCALING_H
20#define LEMON_CAPACITY_SCALING_H
21
22/// \ingroup min_cost_flow
23///
24/// \file
[2574]25/// \brief Capacity scaling algorithm for finding a minimum cost flow.
26
27#include <vector>
[2535]28#include <lemon/bin_heap.h>
[2457]29
[2440]30namespace lemon {
31
32  /// \addtogroup min_cost_flow
33  /// @{
34
[2574]35  /// \brief Implementation of the capacity scaling algorithm for
36  /// finding a minimum cost flow.
[2440]37  ///
[2535]38  /// \ref CapacityScaling implements the capacity scaling version
39  /// of the successive shortest path algorithm for finding a minimum
40  /// cost flow.
[2440]41  ///
[2574]42  /// \tparam Graph The directed graph type the algorithm runs on.
43  /// \tparam LowerMap The type of the lower bound map.
44  /// \tparam CapacityMap The type of the capacity (upper bound) map.
45  /// \tparam CostMap The type of the cost (length) map.
46  /// \tparam SupplyMap The type of the supply map.
[2440]47  ///
48  /// \warning
[2574]49  /// - Edge capacities and costs should be \e non-negative \e integers.
50  /// - Supply values should be \e signed \e integers.
[2581]51  /// - The value types of the maps should be convertible to each other.
52  /// - \c CostMap::Value must be signed type.
[2440]53  ///
54  /// \author Peter Kovacs
[2533]55  template < typename Graph,
[2535]56             typename LowerMap = typename Graph::template EdgeMap<int>,
[2574]57             typename CapacityMap = typename Graph::template EdgeMap<int>,
[2535]58             typename CostMap = typename Graph::template EdgeMap<int>,
[2574]59             typename SupplyMap = typename Graph::template NodeMap<int> >
[2440]60  class CapacityScaling
61  {
[2556]62    GRAPH_TYPEDEFS(typename Graph);
[2440]63
64    typedef typename CapacityMap::Value Capacity;
65    typedef typename CostMap::Value Cost;
66    typedef typename SupplyMap::Value Supply;
[2556]67    typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
68    typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
[2535]69    typedef typename Graph::template NodeMap<Edge> PredMap;
[2440]70
71  public:
72
[2556]73    /// The type of the flow map.
74    typedef typename Graph::template EdgeMap<Capacity> FlowMap;
75    /// The type of the potential map.
[2440]76    typedef typename Graph::template NodeMap<Cost> PotentialMap;
77
[2574]78  private:
[2440]79
[2535]80    /// \brief Special implementation of the \ref Dijkstra algorithm
[2574]81    /// for finding shortest paths in the residual network.
82    ///
83    /// \ref ResidualDijkstra is a special implementation of the
84    /// \ref Dijkstra algorithm for finding shortest paths in the
85    /// residual network of the graph with respect to the reduced edge
86    /// costs and modifying the node potentials according to the
87    /// distance of the nodes.
[2535]88    class ResidualDijkstra
[2440]89    {
[2535]90      typedef typename Graph::template NodeMap<int> HeapCrossRef;
91      typedef BinHeap<Cost, HeapCrossRef> Heap;
92
[2574]93    private:
[2535]94
[2574]95      // The directed graph the algorithm runs on
96      const Graph &_graph;
[2535]97
[2574]98      // The main maps
99      const FlowMap &_flow;
100      const CapacityEdgeMap &_res_cap;
101      const CostMap &_cost;
102      const SupplyNodeMap &_excess;
103      PotentialMap &_potential;
[2535]104
[2574]105      // The distance map
[2588]106      PotentialMap _dist;
[2574]107      // The pred edge map
108      PredMap &_pred;
109      // The processed (i.e. permanently labeled) nodes
110      std::vector<Node> _proc_nodes;
[2440]111
112    public:
113
[2581]114      /// Constructor.
[2574]115      ResidualDijkstra( const Graph &graph,
116                        const FlowMap &flow,
117                        const CapacityEdgeMap &res_cap,
118                        const CostMap &cost,
119                        const SupplyMap &excess,
120                        PotentialMap &potential,
121                        PredMap &pred ) :
122        _graph(graph), _flow(flow), _res_cap(res_cap), _cost(cost),
123        _excess(excess), _potential(potential), _dist(graph),
124        _pred(pred)
[2535]125      {}
[2440]126
[2620]127      /// Run the algorithm from the given source node.
[2588]128      Node run(Node s, Capacity delta = 1) {
[2574]129        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
[2535]130        Heap heap(heap_cross_ref);
131        heap.push(s, 0);
[2574]132        _pred[s] = INVALID;
133        _proc_nodes.clear();
[2535]134
135        // Processing nodes
[2574]136        while (!heap.empty() && _excess[heap.top()] > -delta) {
[2535]137          Node u = heap.top(), v;
[2574]138          Cost d = heap.prio() + _potential[u], nd;
139          _dist[u] = heap.prio();
[2535]140          heap.pop();
[2574]141          _proc_nodes.push_back(u);
[2535]142
143          // Traversing outgoing edges
[2574]144          for (OutEdgeIt e(_graph, u); e != INVALID; ++e) {
145            if (_res_cap[e] >= delta) {
146              v = _graph.target(e);
[2535]147              switch(heap.state(v)) {
148              case Heap::PRE_HEAP:
[2574]149                heap.push(v, d + _cost[e] - _potential[v]);
150                _pred[v] = e;
[2535]151                break;
152              case Heap::IN_HEAP:
[2574]153                nd = d + _cost[e] - _potential[v];
[2535]154                if (nd < heap[v]) {
155                  heap.decrease(v, nd);
[2574]156                  _pred[v] = e;
[2535]157                }
158                break;
159              case Heap::POST_HEAP:
160                break;
161              }
162            }
163          }
164
165          // Traversing incoming edges
[2574]166          for (InEdgeIt e(_graph, u); e != INVALID; ++e) {
167            if (_flow[e] >= delta) {
168              v = _graph.source(e);
[2535]169              switch(heap.state(v)) {
170              case Heap::PRE_HEAP:
[2574]171                heap.push(v, d - _cost[e] - _potential[v]);
172                _pred[v] = e;
[2535]173                break;
174              case Heap::IN_HEAP:
[2574]175                nd = d - _cost[e] - _potential[v];
[2535]176                if (nd < heap[v]) {
177                  heap.decrease(v, nd);
[2574]178                  _pred[v] = e;
[2535]179                }
180                break;
181              case Heap::POST_HEAP:
182                break;
183              }
184            }
185          }
186        }
187        if (heap.empty()) return INVALID;
188
189        // Updating potentials of processed nodes
190        Node t = heap.top();
[2574]191        Cost t_dist = heap.prio();
192        for (int i = 0; i < int(_proc_nodes.size()); ++i)
193          _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
[2535]194
195        return t;
[2440]196      }
197
[2535]198    }; //class ResidualDijkstra
[2440]199
[2574]200  private:
[2440]201
[2574]202    // The directed graph the algorithm runs on
203    const Graph &_graph;
204    // The original lower bound map
205    const LowerMap *_lower;
206    // The modified capacity map
207    CapacityEdgeMap _capacity;
208    // The original cost map
209    const CostMap &_cost;
210    // The modified supply map
211    SupplyNodeMap _supply;
212    bool _valid_supply;
[2440]213
[2574]214    // Edge map of the current flow
[2581]215    FlowMap *_flow;
216    bool _local_flow;
[2574]217    // Node map of the current potentials
[2581]218    PotentialMap *_potential;
219    bool _local_potential;
[2440]220
[2574]221    // The residual capacity map
222    CapacityEdgeMap _res_cap;
223    // The excess map
224    SupplyNodeMap _excess;
225    // The excess nodes (i.e. nodes with positive excess)
226    std::vector<Node> _excess_nodes;
227    // The deficit nodes (i.e. nodes with negative excess)
228    std::vector<Node> _deficit_nodes;
[2440]229
[2574]230    // The delta parameter used for capacity scaling
231    Capacity _delta;
232    // The maximum number of phases
233    int _phase_num;
[2440]234
[2574]235    // The pred edge map
236    PredMap _pred;
237    // Implementation of the Dijkstra algorithm for finding augmenting
238    // shortest paths in the residual network
[2581]239    ResidualDijkstra *_dijkstra;
[2440]240
[2581]241  public:
[2440]242
[2581]243    /// \brief General constructor (with lower bounds).
[2440]244    ///
[2581]245    /// General constructor (with lower bounds).
[2440]246    ///
[2574]247    /// \param graph The directed graph the algorithm runs on.
248    /// \param lower The lower bounds of the edges.
249    /// \param capacity The capacities (upper bounds) of the edges.
250    /// \param cost The cost (length) values of the edges.
251    /// \param supply The supply values of the nodes (signed).
252    CapacityScaling( const Graph &graph,
253                     const LowerMap &lower,
254                     const CapacityMap &capacity,
255                     const CostMap &cost,
256                     const SupplyMap &supply ) :
257      _graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
[2581]258      _supply(graph), _flow(0), _local_flow(false),
259      _potential(0), _local_potential(false),
260      _res_cap(graph), _excess(graph), _pred(graph)
[2440]261    {
[2556]262      // Removing non-zero lower bounds
[2574]263      _capacity = subMap(capacity, lower);
264      _res_cap = _capacity;
[2440]265      Supply sum = 0;
[2574]266      for (NodeIt n(_graph); n != INVALID; ++n) {
267        Supply s = supply[n];
268        for (InEdgeIt e(_graph, n); e != INVALID; ++e)
269          s += lower[e];
270        for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
271          s -= lower[e];
272        _supply[n] = s;
[2535]273        sum += s;
[2440]274      }
[2574]275      _valid_supply = sum == 0;
[2440]276    }
277
[2581]278    /// \brief General constructor (without lower bounds).
[2440]279    ///
[2581]280    /// General constructor (without lower bounds).
[2440]281    ///
[2574]282    /// \param graph The directed graph the algorithm runs on.
283    /// \param capacity The capacities (upper bounds) of the edges.
284    /// \param cost The cost (length) values of the edges.
285    /// \param supply The supply values of the nodes (signed).
286    CapacityScaling( const Graph &graph,
287                     const CapacityMap &capacity,
288                     const CostMap &cost,
289                     const SupplyMap &supply ) :
290      _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
[2581]291      _supply(supply), _flow(0), _local_flow(false),
292      _potential(0), _local_potential(false),
293      _res_cap(capacity), _excess(graph), _pred(graph)
[2440]294    {
295      // Checking the sum of supply values
296      Supply sum = 0;
[2574]297      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
298      _valid_supply = sum == 0;
[2440]299    }
300
[2581]301    /// \brief Simple constructor (with lower bounds).
[2440]302    ///
[2581]303    /// Simple constructor (with lower bounds).
[2440]304    ///
[2574]305    /// \param graph The directed graph the algorithm runs on.
306    /// \param lower The lower bounds of the edges.
307    /// \param capacity The capacities (upper bounds) of the edges.
308    /// \param cost The cost (length) values of the edges.
309    /// \param s The source node.
310    /// \param t The target node.
311    /// \param flow_value The required amount of flow from node \c s
312    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
313    CapacityScaling( const Graph &graph,
314                     const LowerMap &lower,
315                     const CapacityMap &capacity,
316                     const CostMap &cost,
317                     Node s, Node t,
318                     Supply flow_value ) :
319      _graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
[2581]320      _supply(graph), _flow(0), _local_flow(false),
321      _potential(0), _local_potential(false),
322      _res_cap(graph), _excess(graph), _pred(graph)
[2440]323    {
[2556]324      // Removing non-zero lower bounds
[2574]325      _capacity = subMap(capacity, lower);
326      _res_cap = _capacity;
327      for (NodeIt n(_graph); n != INVALID; ++n) {
328        Supply sum = 0;
329        if (n == s) sum =  flow_value;
330        if (n == t) sum = -flow_value;
331        for (InEdgeIt e(_graph, n); e != INVALID; ++e)
332          sum += lower[e];
333        for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
334          sum -= lower[e];
335        _supply[n] = sum;
[2440]336      }
[2574]337      _valid_supply = true;
[2440]338    }
339
[2581]340    /// \brief Simple constructor (without lower bounds).
[2440]341    ///
[2581]342    /// Simple constructor (without lower bounds).
[2440]343    ///
[2574]344    /// \param graph The directed graph the algorithm runs on.
345    /// \param capacity The capacities (upper bounds) of the edges.
346    /// \param cost The cost (length) values of the edges.
347    /// \param s The source node.
348    /// \param t The target node.
349    /// \param flow_value The required amount of flow from node \c s
350    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
351    CapacityScaling( const Graph &graph,
352                     const CapacityMap &capacity,
353                     const CostMap &cost,
354                     Node s, Node t,
355                     Supply flow_value ) :
356      _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
[2581]357      _supply(graph, 0), _flow(0), _local_flow(false),
358      _potential(0), _local_potential(false),
359      _res_cap(capacity), _excess(graph), _pred(graph)
[2440]360    {
[2574]361      _supply[s] =  flow_value;
362      _supply[t] = -flow_value;
363      _valid_supply = true;
[2440]364    }
365
[2581]366    /// Destructor.
367    ~CapacityScaling() {
368      if (_local_flow) delete _flow;
369      if (_local_potential) delete _potential;
370      delete _dijkstra;
371    }
372
[2620]373    /// \brief Set the flow map.
[2581]374    ///
[2620]375    /// Set the flow map.
[2581]376    ///
377    /// \return \c (*this)
378    CapacityScaling& flowMap(FlowMap &map) {
379      if (_local_flow) {
380        delete _flow;
381        _local_flow = false;
382      }
383      _flow = &map;
384      return *this;
385    }
386
[2620]387    /// \brief Set the potential map.
[2581]388    ///
[2620]389    /// Set the potential map.
[2581]390    ///
391    /// \return \c (*this)
392    CapacityScaling& potentialMap(PotentialMap &map) {
393      if (_local_potential) {
394        delete _potential;
395        _local_potential = false;
396      }
397      _potential = &map;
398      return *this;
399    }
400
401    /// \name Execution control
402
403    /// @{
404
[2620]405    /// \brief Run the algorithm.
[2556]406    ///
[2620]407    /// This function runs the algorithm.
[2556]408    ///
[2574]409    /// \param scaling Enable or disable capacity scaling.
[2556]410    /// If the maximum edge capacity and/or the amount of total supply
[2574]411    /// is rather small, the algorithm could be slightly faster without
[2556]412    /// scaling.
413    ///
414    /// \return \c true if a feasible flow can be found.
[2574]415    bool run(bool scaling = true) {
416      return init(scaling) && start();
[2556]417    }
418
[2581]419    /// @}
420
421    /// \name Query Functions
[2620]422    /// The results of the algorithm can be obtained using these
423    /// functions.\n
424    /// \ref lemon::CapacityScaling::run() "run()" must be called before
425    /// using them.
[2581]426
427    /// @{
428
[2620]429    /// \brief Return a const reference to the edge map storing the
[2574]430    /// found flow.
[2440]431    ///
[2620]432    /// Return a const reference to the edge map storing the found flow.
[2440]433    ///
434    /// \pre \ref run() must be called before using this function.
435    const FlowMap& flowMap() const {
[2581]436      return *_flow;
[2440]437    }
438
[2620]439    /// \brief Return a const reference to the node map storing the
[2574]440    /// found potentials (the dual solution).
[2440]441    ///
[2620]442    /// Return a const reference to the node map storing the found
[2574]443    /// potentials (the dual solution).
[2440]444    ///
445    /// \pre \ref run() must be called before using this function.
446    const PotentialMap& potentialMap() const {
[2581]447      return *_potential;
448    }
449
[2620]450    /// \brief Return the flow on the given edge.
[2581]451    ///
[2620]452    /// Return the flow on the given edge.
[2581]453    ///
454    /// \pre \ref run() must be called before using this function.
455    Capacity flow(const Edge& edge) const {
456      return (*_flow)[edge];
457    }
458
[2620]459    /// \brief Return the potential of the given node.
[2581]460    ///
[2620]461    /// Return the potential of the given node.
[2581]462    ///
463    /// \pre \ref run() must be called before using this function.
464    Cost potential(const Node& node) const {
465      return (*_potential)[node];
[2440]466    }
467
[2620]468    /// \brief Return the total cost of the found flow.
[2440]469    ///
[2620]470    /// Return the total cost of the found flow. The complexity of the
[2440]471    /// function is \f$ O(e) \f$.
472    ///
473    /// \pre \ref run() must be called before using this function.
474    Cost totalCost() const {
475      Cost c = 0;
[2574]476      for (EdgeIt e(_graph); e != INVALID; ++e)
[2581]477        c += (*_flow)[e] * _cost[e];
[2440]478      return c;
479    }
480
[2581]481    /// @}
482
[2574]483  private:
[2440]484
[2620]485    /// Initialize the algorithm.
[2574]486    bool init(bool scaling) {
487      if (!_valid_supply) return false;
[2581]488
489      // Initializing maps
490      if (!_flow) {
491        _flow = new FlowMap(_graph);
492        _local_flow = true;
493      }
494      if (!_potential) {
495        _potential = new PotentialMap(_graph);
496        _local_potential = true;
497      }
498      for (EdgeIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
499      for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
[2574]500      _excess = _supply;
[2440]501
[2581]502      _dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost,
503                                        _excess, *_potential, _pred );
504
505      // Initializing delta value
[2574]506      if (scaling) {
[2535]507        // With scaling
508        Supply max_sup = 0, max_dem = 0;
[2574]509        for (NodeIt n(_graph); n != INVALID; ++n) {
510          if ( _supply[n] > max_sup) max_sup =  _supply[n];
511          if (-_supply[n] > max_dem) max_dem = -_supply[n];
[2535]512        }
[2588]513        Capacity max_cap = 0;
514        for (EdgeIt e(_graph); e != INVALID; ++e) {
515          if (_capacity[e] > max_cap) max_cap = _capacity[e];
516        }
517        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
[2574]518        _phase_num = 0;
519        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2)
520          ++_phase_num;
[2535]521      } else {
522        // Without scaling
[2574]523        _delta = 1;
[2440]524      }
[2581]525
[2440]526      return true;
527    }
528
[2535]529    bool start() {
[2574]530      if (_delta > 1)
[2535]531        return startWithScaling();
532      else
533        return startWithoutScaling();
534    }
535
[2620]536    /// Execute the capacity scaling algorithm.
[2535]537    bool startWithScaling() {
538      // Processing capacity scaling phases
539      Node s, t;
540      int phase_cnt = 0;
541      int factor = 4;
542      while (true) {
543        // Saturating all edges not satisfying the optimality condition
[2574]544        for (EdgeIt e(_graph); e != INVALID; ++e) {
545          Node u = _graph.source(e), v = _graph.target(e);
[2581]546          Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v];
[2574]547          if (c < 0 && _res_cap[e] >= _delta) {
548            _excess[u] -= _res_cap[e];
549            _excess[v] += _res_cap[e];
[2581]550            (*_flow)[e] = _capacity[e];
[2574]551            _res_cap[e] = 0;
[2535]552          }
[2581]553          else if (c > 0 && (*_flow)[e] >= _delta) {
554            _excess[u] += (*_flow)[e];
555            _excess[v] -= (*_flow)[e];
556            (*_flow)[e] = 0;
[2574]557            _res_cap[e] = _capacity[e];
[2535]558          }
559        }
560
561        // Finding excess nodes and deficit nodes
[2574]562        _excess_nodes.clear();
563        _deficit_nodes.clear();
564        for (NodeIt n(_graph); n != INVALID; ++n) {
565          if (_excess[n] >=  _delta) _excess_nodes.push_back(n);
566          if (_excess[n] <= -_delta) _deficit_nodes.push_back(n);
[2535]567        }
[2620]568        int next_node = 0, next_def_node = 0;
[2535]569
570        // Finding augmenting shortest paths
[2574]571        while (next_node < int(_excess_nodes.size())) {
[2535]572          // Checking deficit nodes
[2574]573          if (_delta > 1) {
[2535]574            bool delta_deficit = false;
[2620]575            for ( ; next_def_node < int(_deficit_nodes.size());
576                    ++next_def_node ) {
577              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
[2535]578                delta_deficit = true;
579                break;
580              }
581            }
582            if (!delta_deficit) break;
583          }
584
585          // Running Dijkstra
[2574]586          s = _excess_nodes[next_node];
[2581]587          if ((t = _dijkstra->run(s, _delta)) == INVALID) {
[2574]588            if (_delta > 1) {
[2535]589              ++next_node;
590              continue;
591            }
592            return false;
593          }
594
595          // Augmenting along a shortest path from s to t.
[2588]596          Capacity d = std::min(_excess[s], -_excess[t]);
[2535]597          Node u = t;
598          Edge e;
[2574]599          if (d > _delta) {
600            while ((e = _pred[u]) != INVALID) {
[2535]601              Capacity rc;
[2574]602              if (u == _graph.target(e)) {
603                rc = _res_cap[e];
604                u = _graph.source(e);
[2535]605              } else {
[2581]606                rc = (*_flow)[e];
[2574]607                u = _graph.target(e);
[2535]608              }
609              if (rc < d) d = rc;
610            }
611          }
612          u = t;
[2574]613          while ((e = _pred[u]) != INVALID) {
614            if (u == _graph.target(e)) {
[2581]615              (*_flow)[e] += d;
[2574]616              _res_cap[e] -= d;
617              u = _graph.source(e);
[2535]618            } else {
[2581]619              (*_flow)[e] -= d;
[2574]620              _res_cap[e] += d;
621              u = _graph.target(e);
[2535]622            }
623          }
[2574]624          _excess[s] -= d;
625          _excess[t] += d;
[2535]626
[2574]627          if (_excess[s] < _delta) ++next_node;
[2535]628        }
629
[2574]630        if (_delta == 1) break;
631        if (++phase_cnt > _phase_num / 4) factor = 2;
632        _delta = _delta <= factor ? 1 : _delta / factor;
[2535]633      }
634
[2556]635      // Handling non-zero lower bounds
[2574]636      if (_lower) {
637        for (EdgeIt e(_graph); e != INVALID; ++e)
[2581]638          (*_flow)[e] += (*_lower)[e];
[2535]639      }
640      return true;
641    }
642
[2620]643    /// Execute the successive shortest path algorithm.
[2535]644    bool startWithoutScaling() {
[2440]645      // Finding excess nodes
[2574]646      for (NodeIt n(_graph); n != INVALID; ++n)
647        if (_excess[n] > 0) _excess_nodes.push_back(n);
648      if (_excess_nodes.size() == 0) return true;
[2556]649      int next_node = 0;
[2440]650
[2457]651      // Finding shortest paths
[2535]652      Node s, t;
[2574]653      while ( _excess[_excess_nodes[next_node]] > 0 ||
654              ++next_node < int(_excess_nodes.size()) )
[2440]655      {
[2535]656        // Running Dijkstra
[2574]657        s = _excess_nodes[next_node];
[2589]658        if ((t = _dijkstra->run(s)) == INVALID) return false;
[2440]659
[2535]660        // Augmenting along a shortest path from s to t
[2588]661        Capacity d = std::min(_excess[s], -_excess[t]);
[2535]662        Node u = t;
663        Edge e;
[2588]664        if (d > 1) {
665          while ((e = _pred[u]) != INVALID) {
666            Capacity rc;
667            if (u == _graph.target(e)) {
668              rc = _res_cap[e];
669              u = _graph.source(e);
670            } else {
671              rc = (*_flow)[e];
672              u = _graph.target(e);
673            }
674            if (rc < d) d = rc;
[2535]675          }
676        }
677        u = t;
[2574]678        while ((e = _pred[u]) != INVALID) {
679          if (u == _graph.target(e)) {
[2581]680            (*_flow)[e] += d;
[2574]681            _res_cap[e] -= d;
682            u = _graph.source(e);
[2535]683          } else {
[2581]684            (*_flow)[e] -= d;
[2574]685            _res_cap[e] += d;
686            u = _graph.target(e);
[2535]687          }
688        }
[2574]689        _excess[s] -= d;
690        _excess[t] += d;
[2440]691      }
692
[2556]693      // Handling non-zero lower bounds
[2574]694      if (_lower) {
695        for (EdgeIt e(_graph); e != INVALID; ++e)
[2581]696          (*_flow)[e] += (*_lower)[e];
[2440]697      }
698      return true;
699    }
700
701  }; //class CapacityScaling
702
703  ///@}
704
705} //namespace lemon
706
707#endif //LEMON_CAPACITY_SCALING_H
Note: See TracBrowser for help on using the repository browser.