COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/concept/bpugraph.h @ 1911:c925a077cf73

Last change on this file since 1911:c925a077cf73 was 1911:c925a077cf73, checked in by Balazs Dezso, 18 years ago

The pre BpUGraph concept

File size: 28.4 KB
Line 
1/* -*- C++ -*-
2 *
3 * lemon/concept/ugraph_component.h - Part of LEMON, a generic
4 * C++ optimization library
5 *
6 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
7 * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
8 * EGRES).
9 *
10 * Permission to use, modify and distribute this software is granted
11 * provided that this copyright notice appears in all copies. For
12 * precise terms see the accompanying LICENSE file.
13 *
14 * This software is provided "AS IS" with no warranty of any kind,
15 * express or implied, and with no claim as to its suitability for any
16 * purpose.
17 *
18 */
19
20/// \ingroup graph_concepts
21/// \file
22/// \brief Undirected bipartite graphs and components of.
23
24
25#ifndef LEMON_CONCEPT_BPUGRAPH_H
26#define LEMON_CONCEPT_BPUGRAPH_H
27
28#include <lemon/concept/graph_component.h>
29
30#include <lemon/concept/graph.h>
31#include <lemon/concept/ugraph.h>
32
33#include <lemon/utility.h>
34
35namespace lemon {
36  namespace concept {
37
38    /// \addtogroup graph_concepts
39    /// @{
40
41
42    /// \brief Class describing the concept of Bipartite Undirected Graphs.
43    ///
44    /// This class describes the common interface of all
45    /// Undirected Bipartite Graphs.
46    ///
47    /// As all concept describing classes it provides only interface
48    /// without any sensible implementation. So any algorithm for
49    /// bipartite undirected graph should compile with this class, but it
50    /// will not run properly, of course.
51    ///
52    /// In LEMON bipartite undirected graphs also fulfill the concept of
53    /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept").
54    ///
55    /// You can assume that all undirected bipartite graph can be handled
56    /// as an undirected graph and consequently as a static graph.
57    ///
58    /// The bipartite graph stores two types of nodes which are named
59    /// ANode and BNode. Even so the graph type does not contain ANode
60    /// and BNode classes, becaue the nodes can be accessed just with the
61    /// common Node class.
62    ///
63    /// The iteration on the partition can be done with the ANodeIt and
64    /// BNodeIt classes. The node map can be used to map values to the nodes
65    /// and similarly we can use to map values for just the ANodes and
66    /// BNodes the ANodeMap and BNodeMap template classes.
67
68    class BpUGraph {
69    public:
70      /// \todo undocumented
71      ///
72      typedef True UTag;
73
74      /// \brief The base type of node iterators,
75      /// or in other words, the trivial node iterator.
76      ///
77      /// This is the base type of each node iterator,
78      /// thus each kind of node iterator converts to this.
79      /// More precisely each kind of node iterator should be inherited
80      /// from the trivial node iterator. The Node class represents
81      /// both of two types of nodes.
82      class Node {
83      public:
84        /// Default constructor
85
86        /// @warning The default constructor sets the iterator
87        /// to an undefined value.
88        Node() { }
89        /// Copy constructor.
90
91        /// Copy constructor.
92        ///
93        Node(const Node&) { }
94
95        /// Invalid constructor \& conversion.
96
97        /// This constructor initializes the iterator to be invalid.
98        /// \sa Invalid for more details.
99        Node(Invalid) { }
100        /// Equality operator
101
102        /// Two iterators are equal if and only if they point to the
103        /// same object or both are invalid.
104        bool operator==(Node) const { return true; }
105
106        /// Inequality operator
107       
108        /// \sa operator==(Node n)
109        ///
110        bool operator!=(Node) const { return true; }
111
112        /// Artificial ordering operator.
113       
114        /// To allow the use of graph descriptors as key type in std::map or
115        /// similar associative container we require this.
116        ///
117        /// \note This operator only have to define some strict ordering of
118        /// the items; this order has nothing to do with the iteration
119        /// ordering of the items.
120        ///
121        /// \bug This is a technical requirement. Do we really need this?
122        bool operator<(Node) const { return false; }
123
124      };
125   
126      /// This iterator goes through each node.
127
128      /// This iterator goes through each node.
129      /// Its usage is quite simple, for example you can count the number
130      /// of nodes in graph \c g of type \c Graph like this:
131      /// \code
132      /// int count=0;
133      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
134      /// \endcode
135      class NodeIt : public Node {
136      public:
137        /// Default constructor
138
139        /// @warning The default constructor sets the iterator
140        /// to an undefined value.
141        NodeIt() { }
142        /// Copy constructor.
143       
144        /// Copy constructor.
145        ///
146        NodeIt(const NodeIt& n) : Node(n) { }
147        /// Invalid constructor \& conversion.
148
149        /// Initialize the iterator to be invalid.
150        /// \sa Invalid for more details.
151        NodeIt(Invalid) { }
152        /// Sets the iterator to the first node.
153
154        /// Sets the iterator to the first node of \c g.
155        ///
156        NodeIt(const BpUGraph&) { }
157        /// Node -> NodeIt conversion.
158
159        /// Sets the iterator to the node of \c the graph pointed by
160        /// the trivial iterator.
161        /// This feature necessitates that each time we
162        /// iterate the edge-set, the iteration order is the same.
163        NodeIt(const BpUGraph&, const Node&) { }
164        /// Next node.
165
166        /// Assign the iterator to the next node.
167        ///
168        NodeIt& operator++() { return *this; }
169      };
170
171      /// This iterator goes through each ANode.
172
173      /// This iterator goes through each ANode.
174      /// Its usage is quite simple, for example you can count the number
175      /// of nodes in graph \c g of type \c Graph like this:
176      /// \code
177      /// int count=0;
178      /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
179      /// \endcode
180      class ANodeIt : public Node {
181      public:
182        /// Default constructor
183
184        /// @warning The default constructor sets the iterator
185        /// to an undefined value.
186        ANodeIt() { }
187        /// Copy constructor.
188       
189        /// Copy constructor.
190        ///
191        ANodeIt(const ANodeIt& n) : Node(n) { }
192        /// Invalid constructor \& conversion.
193
194        /// Initialize the iterator to be invalid.
195        /// \sa Invalid for more details.
196        ANodeIt(Invalid) { }
197        /// Sets the iterator to the first node.
198
199        /// Sets the iterator to the first node of \c g.
200        ///
201        ANodeIt(const BpUGraph&) { }
202        /// Node -> ANodeIt conversion.
203
204        /// Sets the iterator to the node of \c the graph pointed by
205        /// the trivial iterator.
206        /// This feature necessitates that each time we
207        /// iterate the edge-set, the iteration order is the same.
208        ANodeIt(const BpUGraph&, const Node&) { }
209        /// Next node.
210
211        /// Assign the iterator to the next node.
212        ///
213        ANodeIt& operator++() { return *this; }
214      };
215
216      /// This iterator goes through each BNode.
217
218      /// This iterator goes through each BNode.
219      /// Its usage is quite simple, for example you can count the number
220      /// of nodes in graph \c g of type \c Graph like this:
221      /// \code
222      /// int count=0;
223      /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
224      /// \endcode
225      class BNodeIt : public Node {
226      public:
227        /// Default constructor
228
229        /// @warning The default constructor sets the iterator
230        /// to an undefined value.
231        BNodeIt() { }
232        /// Copy constructor.
233       
234        /// Copy constructor.
235        ///
236        BNodeIt(const BNodeIt& n) : Node(n) { }
237        /// Invalid constructor \& conversion.
238
239        /// Initialize the iterator to be invalid.
240        /// \sa Invalid for more details.
241        BNodeIt(Invalid) { }
242        /// Sets the iterator to the first node.
243
244        /// Sets the iterator to the first node of \c g.
245        ///
246        BNodeIt(const BpUGraph&) { }
247        /// Node -> BNodeIt conversion.
248
249        /// Sets the iterator to the node of \c the graph pointed by
250        /// the trivial iterator.
251        /// This feature necessitates that each time we
252        /// iterate the edge-set, the iteration order is the same.
253        BNodeIt(const BpUGraph&, const Node&) { }
254        /// Next node.
255
256        /// Assign the iterator to the next node.
257        ///
258        BNodeIt& operator++() { return *this; }
259      };
260   
261   
262      /// The base type of the undirected edge iterators.
263
264      /// The base type of the undirected edge iterators.
265      ///
266      class UEdge {
267      public:
268        /// Default constructor
269
270        /// @warning The default constructor sets the iterator
271        /// to an undefined value.
272        UEdge() { }
273        /// Copy constructor.
274
275        /// Copy constructor.
276        ///
277        UEdge(const UEdge&) { }
278        /// Initialize the iterator to be invalid.
279
280        /// Initialize the iterator to be invalid.
281        ///
282        UEdge(Invalid) { }
283        /// Equality operator
284
285        /// Two iterators are equal if and only if they point to the
286        /// same object or both are invalid.
287        bool operator==(UEdge) const { return true; }
288        /// Inequality operator
289
290        /// \sa operator==(UEdge n)
291        ///
292        bool operator!=(UEdge) const { return true; }
293
294        /// Artificial ordering operator.
295       
296        /// To allow the use of graph descriptors as key type in std::map or
297        /// similar associative container we require this.
298        ///
299        /// \note This operator only have to define some strict ordering of
300        /// the items; this order has nothing to do with the iteration
301        /// ordering of the items.
302        ///
303        /// \bug This is a technical requirement. Do we really need this?
304        bool operator<(UEdge) const { return false; }
305      };
306
307      /// This iterator goes through each undirected edge.
308
309      /// This iterator goes through each undirected edge of a graph.
310      /// Its usage is quite simple, for example you can count the number
311      /// of undirected edges in a graph \c g of type \c Graph as follows:
312      /// \code
313      /// int count=0;
314      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
315      /// \endcode
316      class UEdgeIt : public UEdge {
317      public:
318        /// Default constructor
319
320        /// @warning The default constructor sets the iterator
321        /// to an undefined value.
322        UEdgeIt() { }
323        /// Copy constructor.
324
325        /// Copy constructor.
326        ///
327        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
328        /// Initialize the iterator to be invalid.
329
330        /// Initialize the iterator to be invalid.
331        ///
332        UEdgeIt(Invalid) { }
333        /// This constructor sets the iterator to the first undirected edge.
334   
335        /// This constructor sets the iterator to the first undirected edge.
336        UEdgeIt(const BpUGraph&) { }
337        /// UEdge -> UEdgeIt conversion
338
339        /// Sets the iterator to the value of the trivial iterator.
340        /// This feature necessitates that each time we
341        /// iterate the undirected edge-set, the iteration order is the
342        /// same.
343        UEdgeIt(const BpUGraph&, const UEdge&) { }
344        /// Next undirected edge
345       
346        /// Assign the iterator to the next undirected edge.
347        UEdgeIt& operator++() { return *this; }
348      };
349
350      /// \brief This iterator goes trough the incident undirected
351      /// edges of a node.
352      ///
353      /// This iterator goes trough the incident undirected edges
354      /// of a certain node
355      /// of a graph.
356      /// Its usage is quite simple, for example you can compute the
357      /// degree (i.e. count the number
358      /// of incident edges of a node \c n
359      /// in graph \c g of type \c Graph as follows.
360      /// \code
361      /// int count=0;
362      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
363      /// \endcode
364      class IncEdgeIt : public UEdge {
365      public:
366        /// Default constructor
367
368        /// @warning The default constructor sets the iterator
369        /// to an undefined value.
370        IncEdgeIt() { }
371        /// Copy constructor.
372
373        /// Copy constructor.
374        ///
375        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
376        /// Initialize the iterator to be invalid.
377
378        /// Initialize the iterator to be invalid.
379        ///
380        IncEdgeIt(Invalid) { }
381        /// This constructor sets the iterator to first incident edge.
382   
383        /// This constructor set the iterator to the first incident edge of
384        /// the node.
385        IncEdgeIt(const BpUGraph&, const Node&) { }
386        /// UEdge -> IncEdgeIt conversion
387
388        /// Sets the iterator to the value of the trivial iterator \c e.
389        /// This feature necessitates that each time we
390        /// iterate the edge-set, the iteration order is the same.
391        IncEdgeIt(const BpUGraph&, const UEdge&) { }
392        /// Next incident edge
393
394        /// Assign the iterator to the next incident edge
395        /// of the corresponding node.
396        IncEdgeIt& operator++() { return *this; }
397      };
398
399      /// The directed edge type.
400
401      /// The directed edge type. It can be converted to the
402      /// undirected edge.
403      class Edge : public UEdge {
404      public:
405        /// Default constructor
406
407        /// @warning The default constructor sets the iterator
408        /// to an undefined value.
409        Edge() { }
410        /// Copy constructor.
411
412        /// Copy constructor.
413        ///
414        Edge(const Edge& e) : UEdge(e) { }
415        /// Initialize the iterator to be invalid.
416
417        /// Initialize the iterator to be invalid.
418        ///
419        Edge(Invalid) { }
420        /// Equality operator
421
422        /// Two iterators are equal if and only if they point to the
423        /// same object or both are invalid.
424        bool operator==(Edge) const { return true; }
425        /// Inequality operator
426
427        /// \sa operator==(Edge n)
428        ///
429        bool operator!=(Edge) const { return true; }
430
431        /// Artificial ordering operator.
432       
433        /// To allow the use of graph descriptors as key type in std::map or
434        /// similar associative container we require this.
435        ///
436        /// \note This operator only have to define some strict ordering of
437        /// the items; this order has nothing to do with the iteration
438        /// ordering of the items.
439        ///
440        /// \bug This is a technical requirement. Do we really need this?
441        bool operator<(Edge) const { return false; }
442       
443      };
444      /// This iterator goes through each directed edge.
445
446      /// This iterator goes through each edge of a graph.
447      /// Its usage is quite simple, for example you can count the number
448      /// of edges in a graph \c g of type \c Graph as follows:
449      /// \code
450      /// int count=0;
451      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
452      /// \endcode
453      class EdgeIt : public Edge {
454      public:
455        /// Default constructor
456
457        /// @warning The default constructor sets the iterator
458        /// to an undefined value.
459        EdgeIt() { }
460        /// Copy constructor.
461
462        /// Copy constructor.
463        ///
464        EdgeIt(const EdgeIt& e) : Edge(e) { }
465        /// Initialize the iterator to be invalid.
466
467        /// Initialize the iterator to be invalid.
468        ///
469        EdgeIt(Invalid) { }
470        /// This constructor sets the iterator to the first edge.
471   
472        /// This constructor sets the iterator to the first edge of \c g.
473        ///@param g the graph
474        EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
475        /// Edge -> EdgeIt conversion
476
477        /// Sets the iterator to the value of the trivial iterator \c e.
478        /// This feature necessitates that each time we
479        /// iterate the edge-set, the iteration order is the same.
480        EdgeIt(const BpUGraph&, const Edge&) { }
481        ///Next edge
482       
483        /// Assign the iterator to the next edge.
484        EdgeIt& operator++() { return *this; }
485      };
486   
487      /// This iterator goes trough the outgoing directed edges of a node.
488
489      /// This iterator goes trough the \e outgoing edges of a certain node
490      /// of a graph.
491      /// Its usage is quite simple, for example you can count the number
492      /// of outgoing edges of a node \c n
493      /// in graph \c g of type \c Graph as follows.
494      /// \code
495      /// int count=0;
496      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
497      /// \endcode
498   
499      class OutEdgeIt : public Edge {
500      public:
501        /// Default constructor
502
503        /// @warning The default constructor sets the iterator
504        /// to an undefined value.
505        OutEdgeIt() { }
506        /// Copy constructor.
507
508        /// Copy constructor.
509        ///
510        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
511        /// Initialize the iterator to be invalid.
512
513        /// Initialize the iterator to be invalid.
514        ///
515        OutEdgeIt(Invalid) { }
516        /// This constructor sets the iterator to the first outgoing edge.
517   
518        /// This constructor sets the iterator to the first outgoing edge of
519        /// the node.
520        ///@param n the node
521        ///@param g the graph
522        OutEdgeIt(const BpUGraph& n, const Node& g) {
523          ignore_unused_variable_warning(n);
524          ignore_unused_variable_warning(g);
525        }
526        /// Edge -> OutEdgeIt conversion
527
528        /// Sets the iterator to the value of the trivial iterator.
529        /// This feature necessitates that each time we
530        /// iterate the edge-set, the iteration order is the same.
531        OutEdgeIt(const BpUGraph&, const Edge&) { }
532        ///Next outgoing edge
533       
534        /// Assign the iterator to the next
535        /// outgoing edge of the corresponding node.
536        OutEdgeIt& operator++() { return *this; }
537      };
538
539      /// This iterator goes trough the incoming directed edges of a node.
540
541      /// This iterator goes trough the \e incoming edges of a certain node
542      /// of a graph.
543      /// Its usage is quite simple, for example you can count the number
544      /// of outgoing edges of a node \c n
545      /// in graph \c g of type \c Graph as follows.
546      /// \code
547      /// int count=0;
548      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
549      /// \endcode
550
551      class InEdgeIt : public Edge {
552      public:
553        /// Default constructor
554
555        /// @warning The default constructor sets the iterator
556        /// to an undefined value.
557        InEdgeIt() { }
558        /// Copy constructor.
559
560        /// Copy constructor.
561        ///
562        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
563        /// Initialize the iterator to be invalid.
564
565        /// Initialize the iterator to be invalid.
566        ///
567        InEdgeIt(Invalid) { }
568        /// This constructor sets the iterator to first incoming edge.
569   
570        /// This constructor set the iterator to the first incoming edge of
571        /// the node.
572        ///@param n the node
573        ///@param g the graph
574        InEdgeIt(const BpUGraph& g, const Node& n) {
575          ignore_unused_variable_warning(n);
576          ignore_unused_variable_warning(g);
577        }
578        /// Edge -> InEdgeIt conversion
579
580        /// Sets the iterator to the value of the trivial iterator \c e.
581        /// This feature necessitates that each time we
582        /// iterate the edge-set, the iteration order is the same.
583        InEdgeIt(const BpUGraph&, const Edge&) { }
584        /// Next incoming edge
585
586        /// Assign the iterator to the next inedge of the corresponding node.
587        ///
588        InEdgeIt& operator++() { return *this; }
589      };
590
591      /// \brief Read write map of the nodes to type \c T.
592      ///
593      /// ReadWrite map of the nodes to type \c T.
594      /// \sa Reference
595      /// \warning Making maps that can handle bool type (NodeMap<bool>)
596      /// needs some extra attention!
597      /// \todo Wrong documentation
598      template<class T>
599      class NodeMap : public ReadWriteMap< Node, T >
600      {
601      public:
602
603        ///\e
604        NodeMap(const BpUGraph&) { }
605        ///\e
606        NodeMap(const BpUGraph&, T) { }
607
608        ///Copy constructor
609        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
610        ///Assignment operator
611        NodeMap& operator=(const NodeMap&) { return *this; }
612        // \todo fix this concept
613      };
614
615      /// \brief Read write map of the ANodes to type \c T.
616      ///
617      /// ReadWrite map of the ANodes to type \c T.
618      /// \sa Reference
619      /// \warning Making maps that can handle bool type (NodeMap<bool>)
620      /// needs some extra attention!
621      /// \todo Wrong documentation
622      template<class T>
623      class ANodeMap : public ReadWriteMap< Node, T >
624      {
625      public:
626
627        ///\e
628        ANodeMap(const BpUGraph&) { }
629        ///\e
630        ANodeMap(const BpUGraph&, T) { }
631
632        ///Copy constructor
633        ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
634        ///Assignment operator
635        ANodeMap& operator=(const NodeMap&) { return *this; }
636        // \todo fix this concept
637      };
638
639      /// \brief Read write map of the BNodes to type \c T.
640      ///
641      /// ReadWrite map of the BNodes to type \c T.
642      /// \sa Reference
643      /// \warning Making maps that can handle bool type (NodeMap<bool>)
644      /// needs some extra attention!
645      /// \todo Wrong documentation
646      template<class T>
647      class BNodeMap : public ReadWriteMap< Node, T >
648      {
649      public:
650
651        ///\e
652        BNodeMap(const BpUGraph&) { }
653        ///\e
654        BNodeMap(const BpUGraph&, T) { }
655
656        ///Copy constructor
657        BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
658        ///Assignment operator
659        BNodeMap& operator=(const NodeMap&) { return *this; }
660        // \todo fix this concept
661      };
662
663      /// \brief Read write map of the directed edges to type \c T.
664      ///
665      /// Reference map of the directed edges to type \c T.
666      /// \sa Reference
667      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
668      /// needs some extra attention!
669      /// \todo Wrong documentation
670      template<class T>
671      class EdgeMap : public ReadWriteMap<Edge,T>
672      {
673      public:
674
675        ///\e
676        EdgeMap(const BpUGraph&) { }
677        ///\e
678        EdgeMap(const BpUGraph&, T) { }
679        ///Copy constructor
680        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
681        ///Assignment operator
682        EdgeMap& operator=(const EdgeMap&) { return *this; }
683        // \todo fix this concept   
684      };
685
686      /// Read write map of the undirected edges to type \c T.
687
688      /// Reference map of the edges to type \c T.
689      /// \sa Reference
690      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
691      /// needs some extra attention!
692      /// \todo Wrong documentation
693      template<class T>
694      class UEdgeMap : public ReadWriteMap<UEdge,T>
695      {
696      public:
697
698        ///\e
699        UEdgeMap(const BpUGraph&) { }
700        ///\e
701        UEdgeMap(const BpUGraph&, T) { }
702        ///Copy constructor
703        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
704        ///Assignment operator
705        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
706        // \todo fix this concept   
707      };
708
709      /// \brief Direct the given undirected edge.
710      ///
711      /// Direct the given undirected edge. The returned edge source
712      /// will be the given edge.
713      Edge direct(const UEdge&, const Node&) const {
714        return INVALID;
715      }
716
717      /// \brief Direct the given undirected edge.
718      ///
719      /// Direct the given undirected edge. The returned edge source
720      /// will be the source of the undirected edge if the given bool
721      /// is true.
722      Edge direct(const UEdge&, bool) const {
723        return INVALID;
724      }
725
726      /// \brief Returns true when the given node is an ANode.
727      ///
728      /// Returns true when the given node is an ANode.
729      bool aNode(Node) const { return true;}
730
731      /// \brief Returns true when the given node is an BNode.
732      ///
733      /// Returns true when the given node is an BNode.
734      bool bNode(Node) const { return true;}
735
736      /// \brief Returns the edge's end node which is in the ANode set.
737      ///
738      /// Returns the edge's end node which is in the ANode set.
739      Node aNode(UEdge) const { return INVALID;}
740
741      /// \brief Returns the edge's end node which is in the BNode set.
742      ///
743      /// Returns the edge's end node which is in the BNode set.
744      Node bNode(UEdge) const { return INVALID;}
745
746      /// \brief Returns true if the edge has default orientation.
747      ///
748      /// Returns whether the given directed edge is same orientation as
749      /// the corresponding undirected edge.
750      bool direction(Edge) const { return true; }
751
752      /// \brief Returns the opposite directed edge.
753      ///
754      /// Returns the opposite directed edge.
755      Edge oppositeEdge(Edge) const { return INVALID; }
756
757      /// \brief Opposite node on an edge
758      ///
759      /// \return the opposite of the given Node on the given Edge
760      Node oppositeNode(Node, UEdge) const { return INVALID; }
761
762      /// \brief First node of the undirected edge.
763      ///
764      /// \return the first node of the given UEdge.
765      ///
766      /// Naturally uectected edges don't have direction and thus
767      /// don't have source and target node. But we use these two methods
768      /// to query the two endnodes of the edge. The direction of the edge
769      /// which arises this way is called the inherent direction of the
770      /// undirected edge, and is used to define the "default" direction
771      /// of the directed versions of the edges.
772      /// \sa direction
773      Node source(UEdge) const { return INVALID; }
774
775      /// \brief Second node of the undirected edge.
776      Node target(UEdge) const { return INVALID; }
777
778      /// \brief Source node of the directed edge.
779      Node source(Edge) const { return INVALID; }
780
781      /// \brief Target node of the directed edge.
782      Node target(Edge) const { return INVALID; }
783
784      /// \brief Base node of the iterator
785      ///
786      /// Returns the base node (the source in this case) of the iterator
787      Node baseNode(OutEdgeIt e) const {
788        return source(e);
789      }
790
791      /// \brief Running node of the iterator
792      ///
793      /// Returns the running node (the target in this case) of the
794      /// iterator
795      Node runningNode(OutEdgeIt e) const {
796        return target(e);
797      }
798
799      /// \brief Base node of the iterator
800      ///
801      /// Returns the base node (the target in this case) of the iterator
802      Node baseNode(InEdgeIt e) const {
803        return target(e);
804      }
805      /// \brief Running node of the iterator
806      ///
807      /// Returns the running node (the source in this case) of the
808      /// iterator
809      Node runningNode(InEdgeIt e) const {
810        return source(e);
811      }
812
813      /// \brief Base node of the iterator
814      ///
815      /// Returns the base node of the iterator
816      Node baseNode(IncEdgeIt) const {
817        return INVALID;
818      }
819     
820      /// \brief Running node of the iterator
821      ///
822      /// Returns the running node of the iterator
823      Node runningNode(IncEdgeIt) const {
824        return INVALID;
825      }
826
827      template <typename Graph>
828      struct Constraints {
829        void constraints() {
830        }
831      };
832
833    };
834
835    /// \brief An empty non-static undirected graph class.
836    ///   
837    /// This class provides everything that \ref BpUGraph does.
838    /// Additionally it enables building graphs from scratch.
839    class ExtendableBpUGraph : public BpUGraph {
840    public:
841     
842      /// \brief Add a new ANode to the graph.
843      ///
844      /// Add a new ANode to the graph.
845      /// \return the new node.
846      Node addANode();
847
848      /// \brief Add a new ANode to the graph.
849      ///
850      /// Add a new ANode to the graph.
851      /// \return the new node.
852      Node addBNode();
853
854      /// \brief Add a new undirected edge to the graph.
855      ///
856      /// Add a new undirected edge to the graph. One of the nodes
857      /// should be ANode and the other should be BNode.
858      /// \pre The nodes are not in the same nodeset.
859      /// \return the new edge.
860      UEdge addEdge(const Node& from, const Node& to);
861
862      /// \brief Resets the graph.
863      ///
864      /// This function deletes all undirected edges and nodes of the graph.
865      /// It also frees the memory allocated to store them.
866      void clear() { }
867
868      template <typename Graph>
869      struct Constraints {
870        void constraints() {}
871      };
872
873    };
874
875    /// \brief An empty erasable undirected graph class.
876    ///
877    /// This class is an extension of \ref ExtendableBpUGraph. It makes it
878    /// possible to erase undirected edges or nodes.
879    class ErasableBpUGraph : public ExtendableBpUGraph {
880    public:
881
882      /// \brief Deletes a node.
883      ///
884      /// Deletes a node.
885      ///
886      void erase(Node) { }
887      /// \brief Deletes an undirected edge.
888      ///
889      /// Deletes an undirected edge.
890      ///
891      void erase(UEdge) { }
892
893      template <typename Graph>
894      struct Constraints {
895        void constraints() {}
896      };
897
898    };
899
900    /// @}
901
902  }
903
904}
905
906#endif
Note: See TracBrowser for help on using the repository browser.