/* -*- C++ -*- * lemon/concept/graph.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_CONCEPT_GRAPH_H #define LEMON_CONCEPT_GRAPH_H ///\ingroup graph_concepts ///\file ///\brief Declaration of Graph. #include #include #include #include namespace lemon { namespace concept { /// \addtogroup graph_concepts /// @{ /**************** The full-featured graph concepts ****************/ /// \brief Modular static graph class. /// /// It should be the same as the \c StaticGraph class. class _StaticGraph : virtual public BaseGraphComponent, public IterableGraphComponent, public MappableGraphComponent { public: typedef BaseGraphComponent::Node Node; typedef BaseGraphComponent::Edge Edge; template struct Constraints { void constraints() { checkConcept(); checkConcept(); } }; }; /// \brief Modular extendable graph class. /// /// It should be the same as the \c ExtendableGraph class. class _ExtendableGraph : virtual public BaseGraphComponent, public _StaticGraph, public ExtendableGraphComponent, public ClearableGraphComponent { public: typedef BaseGraphComponent::Node Node; typedef BaseGraphComponent::Edge Edge; template struct Constraints { void constraints() { checkConcept<_StaticGraph, _Graph >(); checkConcept(); checkConcept(); } }; }; /// \brief Modular erasable graph class. /// /// It should be the same as the \c ErasableGraph class. class _ErasableGraph : virtual public BaseGraphComponent, public _ExtendableGraph, public ErasableGraphComponent { public: typedef BaseGraphComponent::Node Node; typedef BaseGraphComponent::Edge Edge; template struct Constraints { void constraints() { checkConcept<_ExtendableGraph, _Graph >(); checkConcept(); } }; }; /// An empty static graph class. /// This class provides all the common features of a graph structure, /// however completely without implementations and real data structures /// behind the interface. /// All graph algorithms should compile with this class, but it will not /// run properly, of course. /// /// It can be used for checking the interface compatibility, /// or it can serve as a skeleton of a new graph structure. /// /// Also, you will find here the full documentation of a certain graph /// feature, the documentation of a real graph imlementation /// like @ref ListGraph or /// @ref SmartGraph will just refer to this structure. /// /// \todo A pages describing the concept of concept description would /// be nice. class StaticGraph { public: /// Defalult constructor. /// Defalult constructor. /// StaticGraph() { } ///Copy consructor. // ///\todo It is not clear, what we expect from a copy constructor. // ///E.g. How to assign the nodes/edges to each other? What about maps? // StaticGraph(const StaticGraph& g) { } /// The base type of node iterators, /// or in other words, the trivial node iterator. /// This is the base type of each node iterator, /// thus each kind of node iterator converts to this. /// More precisely each kind of node iterator should be inherited /// from the trivial node iterator. class Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// Invalid constructor \& conversion. /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Node) const { return true; } }; /// This iterator goes through each node. /// This iterator goes through each node. /// Its usage is quite simple, for example you can count the number /// of nodes in graph \c g of type \c Graph like this: /// \code /// int count=0; /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; /// \endcode class NodeIt : public Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt& n) : Node(n) { } /// Invalid constructor \& conversion. /// Initialize the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of \c g. /// NodeIt(const StaticGraph&) { } /// Node -> NodeIt conversion. /// Sets the iterator to the node of \c g pointed by the trivial /// iterator n. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. NodeIt(const StaticGraph& g, const Node& n) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The base type of the edge iterators. /// The base type of the edge iterators. /// class Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Edge() { } /// Copy constructor. /// Copy constructor. /// Edge(const Edge&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// Edge(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Edge) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Edge) const { return true; } }; /// This iterator goes trough the outgoing edges of a node. /// This iterator goes trough the \e outgoing edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; /// \endcode class OutEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() { } /// Copy constructor. /// Copy constructor. /// OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// OutEdgeIt(Invalid) { } /// This constructor sets the iterator to the first outgoing edge. /// This constructor sets the iterator to the first outgoing edge of /// the node. ///@param n the node ///@param g the graph OutEdgeIt(const StaticGraph&, const Node&) { } /// Edge -> OutEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. OutEdgeIt(const StaticGraph& g, const Edge& e) { } ///Next outgoing edge /// Assign the iterator to the next /// outgoing edge of the corresponding node. OutEdgeIt& operator++() { return *this; } }; /// This iterator goes trough the incoming edges of a node. /// This iterator goes trough the \e incoming edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. /// \code /// int count=0; /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; /// \endcode class InEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() { } /// Copy constructor. /// Copy constructor. /// InEdgeIt(const InEdgeIt& e) : Edge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// InEdgeIt(Invalid) { } /// This constructor sets the iterator to first incoming edge. /// This constructor set the iterator to the first incoming edge of /// the node. ///@param n the node ///@param g the graph InEdgeIt(const StaticGraph&, const Node&) { } /// Edge -> InEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. InEdgeIt(const StaticGraph&, const Edge&) { } /// Next incoming edge /// Assign the iterator to the next inedge of the corresponding node. /// InEdgeIt& operator++() { return *this; } }; /// This iterator goes through each edge. /// This iterator goes through each edge of a graph. /// Its usage is quite simple, for example you can count the number /// of edges in a graph \c g of type \c Graph as follows: /// \code /// int count=0; /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; /// \endcode class EdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() { } /// Copy constructor. /// Copy constructor. /// EdgeIt(const EdgeIt& e) : Edge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// EdgeIt(Invalid) { } /// This constructor sets the iterator to the first edge. /// This constructor sets the iterator to the first edge of \c g. ///@param g the graph EdgeIt(const StaticGraph&) { } /// Edge -> EdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. EdgeIt(const StaticGraph&, const Edge&) { } ///Next edge /// Assign the iterator to the next edge. EdgeIt& operator++() { return *this; } }; ///Gives back the target node of an edge. ///Gives back the target node of an edge. /// Node target(Edge) const { return INVALID; } ///Gives back the source node of an edge. ///Gives back the source node of an edge. /// Node source(Edge) const { return INVALID; } /// Read write map of the nodes to type \c T. /// \ingroup concept /// ReadWrite map of the nodes to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (NodeMap) /// needs some extra attention! template class NodeMap : public ReadWriteMap< Node, T > { public: ///\e NodeMap(const StaticGraph&) { } ///\e NodeMap(const StaticGraph&, T) { } ///Copy constructor NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } ///Assignment operator NodeMap& operator=(const NodeMap&) { return *this; } // \todo fix this concept }; /// Read write map of the edges to type \c T. /// \ingroup concept ///Reference map of the edges to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (EdgeMap) /// needs some extra attention! template class EdgeMap : public ReadWriteMap { public: ///\e EdgeMap(const StaticGraph&) { } ///\e EdgeMap(const StaticGraph&, T) { } ///Copy constructor EdgeMap(const EdgeMap& em) : ReadWriteMap(em) { } ///Assignment operator EdgeMap& operator=(const EdgeMap&) { return *this; } // \todo fix this concept }; template struct Constraints : public _StaticGraph::Constraints<_Graph> {}; }; /// An empty non-static graph class. /// This class provides everything that \ref StaticGraph does. /// Additionally it enables building graphs from scratch. class ExtendableGraph : public StaticGraph { public: /// Defalult constructor. /// Defalult constructor. /// ExtendableGraph() { } ///Add a new node to the graph. /// \return the new node. /// Node addNode() { return INVALID; } ///Add a new edge to the graph. ///Add a new edge to the graph with source node \c s ///and target node \c t. ///\return the new edge. Edge addEdge(Node, Node) { return INVALID; } /// Resets the graph. /// This function deletes all edges and nodes of the graph. /// It also frees the memory allocated to store them. /// \todo It might belong to \ref ErasableGraph. void clear() { } template struct Constraints : public _ExtendableGraph::Constraints<_Graph> {}; }; /// An empty erasable graph class. /// This class is an extension of \ref ExtendableGraph. It makes it /// possible to erase edges or nodes. class ErasableGraph : public ExtendableGraph { public: /// Defalult constructor. /// Defalult constructor. /// ErasableGraph() { } /// Deletes a node. /// Deletes node \c n node. /// void erase(Node) { } /// Deletes an edge. /// Deletes edge \c e edge. /// void erase(Edge) { } template struct Constraints : public _ErasableGraph::Constraints<_Graph> {}; }; /************* New GraphBase stuff **************/ // /// A minimal GraphBase concept // /// This class describes a minimal concept which can be extended to a // /// full-featured graph with \ref GraphFactory. // class GraphBase { // public: // GraphBase() {} // /// \bug Should we demand that Node and Edge be subclasses of the // /// Graph class??? // typedef GraphItem<'n'> Node; // typedef GraphItem<'e'> Edge; // // class Node : public BaseGraphItem<'n'> {}; // // class Edge : public BaseGraphItem<'e'> {}; // // Graph operation // void firstNode(Node &n) const { } // void firstEdge(Edge &e) const { } // void firstOutEdge(Edge &e, Node) const { } // void firstInEdge(Edge &e, Node) const { } // void nextNode(Node &n) const { } // void nextEdge(Edge &e) const { } // // Question: isn't it reasonable if this methods have a Node // // parameter? Like this: // // Edge& nextOut(Edge &e, Node) const { return e; } // void nextOutEdge(Edge &e) const { } // void nextInEdge(Edge &e) const { } // Node target(Edge) const { return Node(); } // Node source(Edge) const { return Node(); } // // Do we need id, nodeNum, edgeNum and co. in this basic graphbase // // concept? // // Maps. // // // // We need a special slimer concept which does not provide maps (it // // wouldn't be strictly slimer, cause for map-factory id() & friends // // a required...) // template // class NodeMap : public GraphMap {}; // template // class EdgeMap : public GraphMap {}; // }; // @} } //namespace concept } //namespace lemon #endif // LEMON_CONCEPT_GRAPH_H