1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | ///\ingroup graph_concepts |
---|
20 | ///\file |
---|
21 | ///\brief Undirected graphs and components of. |
---|
22 | |
---|
23 | |
---|
24 | #ifndef LEMON_CONCEPT_UGRAPH_H |
---|
25 | #define LEMON_CONCEPT_UGRAPH_H |
---|
26 | |
---|
27 | #include <lemon/concept/graph_component.h> |
---|
28 | #include <lemon/concept/graph.h> |
---|
29 | #include <lemon/bits/utility.h> |
---|
30 | |
---|
31 | namespace lemon { |
---|
32 | namespace concept { |
---|
33 | |
---|
34 | // /// Skeleton class which describes an edge with direction in \ref |
---|
35 | // /// UGraph "undirected graph". |
---|
36 | template <typename UGraph> |
---|
37 | class UGraphEdge : public UGraph::UEdge { |
---|
38 | typedef typename UGraph::UEdge UEdge; |
---|
39 | typedef typename UGraph::Node Node; |
---|
40 | public: |
---|
41 | |
---|
42 | /// \e |
---|
43 | UGraphEdge() {} |
---|
44 | |
---|
45 | /// \e |
---|
46 | UGraphEdge(const UGraphEdge& e) : UGraph::UEdge(e) {} |
---|
47 | |
---|
48 | /// \e |
---|
49 | UGraphEdge(Invalid) {} |
---|
50 | |
---|
51 | /// \brief Directed edge from undirected edge and a source node. |
---|
52 | /// |
---|
53 | /// Constructs a directed edge from undirected edge and a source node. |
---|
54 | /// |
---|
55 | /// \note You have to specify the graph for this constructor. |
---|
56 | UGraphEdge(const UGraph &g, |
---|
57 | UEdge u_edge, Node n) { |
---|
58 | ignore_unused_variable_warning(u_edge); |
---|
59 | ignore_unused_variable_warning(g); |
---|
60 | ignore_unused_variable_warning(n); |
---|
61 | } |
---|
62 | |
---|
63 | /// \e |
---|
64 | UGraphEdge& operator=(UGraphEdge) { return *this; } |
---|
65 | |
---|
66 | /// \e |
---|
67 | bool operator==(UGraphEdge) const { return true; } |
---|
68 | /// \e |
---|
69 | bool operator!=(UGraphEdge) const { return false; } |
---|
70 | |
---|
71 | /// \e |
---|
72 | bool operator<(UGraphEdge) const { return false; } |
---|
73 | |
---|
74 | template <typename Edge> |
---|
75 | struct Constraints { |
---|
76 | void constraints() { |
---|
77 | const_constraints(); |
---|
78 | } |
---|
79 | void const_constraints() const { |
---|
80 | /// \bug This should be is_base_and_derived ... |
---|
81 | UEdge ue = e; |
---|
82 | ue = e; |
---|
83 | |
---|
84 | Edge e_with_source(graph,ue,n); |
---|
85 | ignore_unused_variable_warning(e_with_source); |
---|
86 | } |
---|
87 | Edge e; |
---|
88 | UEdge ue; |
---|
89 | UGraph graph; |
---|
90 | Node n; |
---|
91 | }; |
---|
92 | }; |
---|
93 | |
---|
94 | |
---|
95 | struct BaseIterableUGraphConcept { |
---|
96 | |
---|
97 | template <typename Graph> |
---|
98 | struct Constraints { |
---|
99 | |
---|
100 | typedef typename Graph::UEdge UEdge; |
---|
101 | typedef typename Graph::Edge Edge; |
---|
102 | typedef typename Graph::Node Node; |
---|
103 | |
---|
104 | void constraints() { |
---|
105 | checkConcept<BaseIterableGraphComponent, Graph>(); |
---|
106 | checkConcept<GraphItem<>, UEdge>(); |
---|
107 | //checkConcept<UGraphEdge<Graph>, Edge>(); |
---|
108 | |
---|
109 | graph.first(ue); |
---|
110 | graph.next(ue); |
---|
111 | |
---|
112 | const_constraints(); |
---|
113 | } |
---|
114 | void const_constraints() { |
---|
115 | Node n; |
---|
116 | n = graph.target(ue); |
---|
117 | n = graph.source(ue); |
---|
118 | n = graph.oppositeNode(n0, ue); |
---|
119 | |
---|
120 | bool b; |
---|
121 | b = graph.direction(e); |
---|
122 | Edge e = graph.direct(UEdge(), true); |
---|
123 | e = graph.direct(UEdge(), n); |
---|
124 | |
---|
125 | ignore_unused_variable_warning(b); |
---|
126 | } |
---|
127 | |
---|
128 | Graph graph; |
---|
129 | Edge e; |
---|
130 | Node n0; |
---|
131 | UEdge ue; |
---|
132 | }; |
---|
133 | |
---|
134 | }; |
---|
135 | |
---|
136 | |
---|
137 | struct IterableUGraphConcept { |
---|
138 | |
---|
139 | template <typename Graph> |
---|
140 | struct Constraints { |
---|
141 | void constraints() { |
---|
142 | /// \todo we don't need the iterable component to be base iterable |
---|
143 | /// Don't we really??? |
---|
144 | //checkConcept< BaseIterableUGraphConcept, Graph > (); |
---|
145 | |
---|
146 | checkConcept<IterableGraphComponent, Graph> (); |
---|
147 | |
---|
148 | typedef typename Graph::UEdge UEdge; |
---|
149 | typedef typename Graph::UEdgeIt UEdgeIt; |
---|
150 | typedef typename Graph::IncEdgeIt IncEdgeIt; |
---|
151 | |
---|
152 | checkConcept<GraphIterator<Graph, UEdge>, UEdgeIt>(); |
---|
153 | checkConcept<GraphIncIterator<Graph, UEdge>, IncEdgeIt>(); |
---|
154 | } |
---|
155 | }; |
---|
156 | |
---|
157 | }; |
---|
158 | |
---|
159 | struct MappableUGraphConcept { |
---|
160 | |
---|
161 | template <typename Graph> |
---|
162 | struct Constraints { |
---|
163 | |
---|
164 | struct Dummy { |
---|
165 | int value; |
---|
166 | Dummy() : value(0) {} |
---|
167 | Dummy(int _v) : value(_v) {} |
---|
168 | }; |
---|
169 | |
---|
170 | void constraints() { |
---|
171 | checkConcept<MappableGraphComponent, Graph>(); |
---|
172 | |
---|
173 | typedef typename Graph::template UEdgeMap<int> IntMap; |
---|
174 | checkConcept<GraphMap<Graph, typename Graph::UEdge, int>, |
---|
175 | IntMap >(); |
---|
176 | |
---|
177 | typedef typename Graph::template UEdgeMap<bool> BoolMap; |
---|
178 | checkConcept<GraphMap<Graph, typename Graph::UEdge, bool>, |
---|
179 | BoolMap >(); |
---|
180 | |
---|
181 | typedef typename Graph::template UEdgeMap<Dummy> DummyMap; |
---|
182 | checkConcept<GraphMap<Graph, typename Graph::UEdge, Dummy>, |
---|
183 | DummyMap >(); |
---|
184 | } |
---|
185 | }; |
---|
186 | |
---|
187 | }; |
---|
188 | |
---|
189 | struct ExtendableUGraphConcept { |
---|
190 | |
---|
191 | template <typename Graph> |
---|
192 | struct Constraints { |
---|
193 | void constraints() { |
---|
194 | node_a = graph.addNode(); |
---|
195 | uedge = graph.addEdge(node_a, node_b); |
---|
196 | } |
---|
197 | typename Graph::Node node_a, node_b; |
---|
198 | typename Graph::UEdge uedge; |
---|
199 | Graph graph; |
---|
200 | }; |
---|
201 | |
---|
202 | }; |
---|
203 | |
---|
204 | struct ErasableUGraphConcept { |
---|
205 | |
---|
206 | template <typename Graph> |
---|
207 | struct Constraints { |
---|
208 | void constraints() { |
---|
209 | graph.erase(n); |
---|
210 | graph.erase(e); |
---|
211 | } |
---|
212 | Graph graph; |
---|
213 | typename Graph::Node n; |
---|
214 | typename Graph::UEdge e; |
---|
215 | }; |
---|
216 | |
---|
217 | }; |
---|
218 | |
---|
219 | /// \addtogroup graph_concepts |
---|
220 | /// @{ |
---|
221 | |
---|
222 | |
---|
223 | /// Class describing the concept of Undirected Graphs. |
---|
224 | |
---|
225 | /// This class describes the common interface of all Undirected |
---|
226 | /// Graphs. |
---|
227 | /// |
---|
228 | /// As all concept describing classes it provides only interface |
---|
229 | /// without any sensible implementation. So any algorithm for |
---|
230 | /// undirected graph should compile with this class, but it will not |
---|
231 | /// run properly, of couse. |
---|
232 | /// |
---|
233 | /// In LEMON undirected graphs also fulfill the concept of directed |
---|
234 | /// graphs (\ref lemon::concept::StaticGraph "Graph Concept"). For |
---|
235 | /// explanation of this and more see also the page \ref ugraphs, |
---|
236 | /// a tutorial about undirected graphs. |
---|
237 | /// |
---|
238 | /// You can assume that all undirected graph can be handled |
---|
239 | /// as a static directed graph. This way it is fully conform |
---|
240 | /// to the StaticGraph concept. |
---|
241 | |
---|
242 | class UGraph { |
---|
243 | public: |
---|
244 | ///\e |
---|
245 | |
---|
246 | ///\todo undocumented |
---|
247 | /// |
---|
248 | typedef True UndirectedTag; |
---|
249 | |
---|
250 | /// \brief The base type of node iterators, |
---|
251 | /// or in other words, the trivial node iterator. |
---|
252 | /// |
---|
253 | /// This is the base type of each node iterator, |
---|
254 | /// thus each kind of node iterator converts to this. |
---|
255 | /// More precisely each kind of node iterator should be inherited |
---|
256 | /// from the trivial node iterator. |
---|
257 | class Node { |
---|
258 | public: |
---|
259 | /// Default constructor |
---|
260 | |
---|
261 | /// @warning The default constructor sets the iterator |
---|
262 | /// to an undefined value. |
---|
263 | Node() { } |
---|
264 | /// Copy constructor. |
---|
265 | |
---|
266 | /// Copy constructor. |
---|
267 | /// |
---|
268 | Node(const Node&) { } |
---|
269 | |
---|
270 | /// Invalid constructor \& conversion. |
---|
271 | |
---|
272 | /// This constructor initializes the iterator to be invalid. |
---|
273 | /// \sa Invalid for more details. |
---|
274 | Node(Invalid) { } |
---|
275 | /// Equality operator |
---|
276 | |
---|
277 | /// Two iterators are equal if and only if they point to the |
---|
278 | /// same object or both are invalid. |
---|
279 | bool operator==(Node) const { return true; } |
---|
280 | |
---|
281 | /// Inequality operator |
---|
282 | |
---|
283 | /// \sa operator==(Node n) |
---|
284 | /// |
---|
285 | bool operator!=(Node) const { return true; } |
---|
286 | |
---|
287 | /// Artificial ordering operator. |
---|
288 | |
---|
289 | /// To allow the use of graph descriptors as key type in std::map or |
---|
290 | /// similar associative container we require this. |
---|
291 | /// |
---|
292 | /// \note This operator only have to define some strict ordering of |
---|
293 | /// the items; this order has nothing to do with the iteration |
---|
294 | /// ordering of the items. |
---|
295 | /// |
---|
296 | /// \bug This is a technical requirement. Do we really need this? |
---|
297 | bool operator<(Node) const { return false; } |
---|
298 | |
---|
299 | }; |
---|
300 | |
---|
301 | /// This iterator goes through each node. |
---|
302 | |
---|
303 | /// This iterator goes through each node. |
---|
304 | /// Its usage is quite simple, for example you can count the number |
---|
305 | /// of nodes in graph \c g of type \c Graph like this: |
---|
306 | ///\code |
---|
307 | /// int count=0; |
---|
308 | /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
---|
309 | ///\endcode |
---|
310 | class NodeIt : public Node { |
---|
311 | public: |
---|
312 | /// Default constructor |
---|
313 | |
---|
314 | /// @warning The default constructor sets the iterator |
---|
315 | /// to an undefined value. |
---|
316 | NodeIt() { } |
---|
317 | /// Copy constructor. |
---|
318 | |
---|
319 | /// Copy constructor. |
---|
320 | /// |
---|
321 | NodeIt(const NodeIt& n) : Node(n) { } |
---|
322 | /// Invalid constructor \& conversion. |
---|
323 | |
---|
324 | /// Initialize the iterator to be invalid. |
---|
325 | /// \sa Invalid for more details. |
---|
326 | NodeIt(Invalid) { } |
---|
327 | /// Sets the iterator to the first node. |
---|
328 | |
---|
329 | /// Sets the iterator to the first node of \c g. |
---|
330 | /// |
---|
331 | NodeIt(const UGraph&) { } |
---|
332 | /// Node -> NodeIt conversion. |
---|
333 | |
---|
334 | /// Sets the iterator to the node of \c the graph pointed by |
---|
335 | /// the trivial iterator. |
---|
336 | /// This feature necessitates that each time we |
---|
337 | /// iterate the edge-set, the iteration order is the same. |
---|
338 | NodeIt(const UGraph&, const Node&) { } |
---|
339 | /// Next node. |
---|
340 | |
---|
341 | /// Assign the iterator to the next node. |
---|
342 | /// |
---|
343 | NodeIt& operator++() { return *this; } |
---|
344 | }; |
---|
345 | |
---|
346 | |
---|
347 | /// The base type of the undirected edge iterators. |
---|
348 | |
---|
349 | /// The base type of the undirected edge iterators. |
---|
350 | /// |
---|
351 | class UEdge { |
---|
352 | public: |
---|
353 | /// Default constructor |
---|
354 | |
---|
355 | /// @warning The default constructor sets the iterator |
---|
356 | /// to an undefined value. |
---|
357 | UEdge() { } |
---|
358 | /// Copy constructor. |
---|
359 | |
---|
360 | /// Copy constructor. |
---|
361 | /// |
---|
362 | UEdge(const UEdge&) { } |
---|
363 | /// Initialize the iterator to be invalid. |
---|
364 | |
---|
365 | /// Initialize the iterator to be invalid. |
---|
366 | /// |
---|
367 | UEdge(Invalid) { } |
---|
368 | /// Equality operator |
---|
369 | |
---|
370 | /// Two iterators are equal if and only if they point to the |
---|
371 | /// same object or both are invalid. |
---|
372 | bool operator==(UEdge) const { return true; } |
---|
373 | /// Inequality operator |
---|
374 | |
---|
375 | /// \sa operator==(UEdge n) |
---|
376 | /// |
---|
377 | bool operator!=(UEdge) const { return true; } |
---|
378 | |
---|
379 | /// Artificial ordering operator. |
---|
380 | |
---|
381 | /// To allow the use of graph descriptors as key type in std::map or |
---|
382 | /// similar associative container we require this. |
---|
383 | /// |
---|
384 | /// \note This operator only have to define some strict ordering of |
---|
385 | /// the items; this order has nothing to do with the iteration |
---|
386 | /// ordering of the items. |
---|
387 | /// |
---|
388 | /// \bug This is a technical requirement. Do we really need this? |
---|
389 | bool operator<(UEdge) const { return false; } |
---|
390 | }; |
---|
391 | |
---|
392 | /// This iterator goes through each undirected edge. |
---|
393 | |
---|
394 | /// This iterator goes through each undirected edge of a graph. |
---|
395 | /// Its usage is quite simple, for example you can count the number |
---|
396 | /// of undirected edges in a graph \c g of type \c Graph as follows: |
---|
397 | ///\code |
---|
398 | /// int count=0; |
---|
399 | /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
400 | ///\endcode |
---|
401 | class UEdgeIt : public UEdge { |
---|
402 | public: |
---|
403 | /// Default constructor |
---|
404 | |
---|
405 | /// @warning The default constructor sets the iterator |
---|
406 | /// to an undefined value. |
---|
407 | UEdgeIt() { } |
---|
408 | /// Copy constructor. |
---|
409 | |
---|
410 | /// Copy constructor. |
---|
411 | /// |
---|
412 | UEdgeIt(const UEdgeIt& e) : UEdge(e) { } |
---|
413 | /// Initialize the iterator to be invalid. |
---|
414 | |
---|
415 | /// Initialize the iterator to be invalid. |
---|
416 | /// |
---|
417 | UEdgeIt(Invalid) { } |
---|
418 | /// This constructor sets the iterator to the first undirected edge. |
---|
419 | |
---|
420 | /// This constructor sets the iterator to the first undirected edge. |
---|
421 | UEdgeIt(const UGraph&) { } |
---|
422 | /// UEdge -> UEdgeIt conversion |
---|
423 | |
---|
424 | /// Sets the iterator to the value of the trivial iterator. |
---|
425 | /// This feature necessitates that each time we |
---|
426 | /// iterate the undirected edge-set, the iteration order is the |
---|
427 | /// same. |
---|
428 | UEdgeIt(const UGraph&, const UEdge&) { } |
---|
429 | /// Next undirected edge |
---|
430 | |
---|
431 | /// Assign the iterator to the next undirected edge. |
---|
432 | UEdgeIt& operator++() { return *this; } |
---|
433 | }; |
---|
434 | |
---|
435 | /// \brief This iterator goes trough the incident undirected |
---|
436 | /// edges of a node. |
---|
437 | /// |
---|
438 | /// This iterator goes trough the incident undirected edges |
---|
439 | /// of a certain node |
---|
440 | /// of a graph. |
---|
441 | /// Its usage is quite simple, for example you can compute the |
---|
442 | /// degree (i.e. count the number |
---|
443 | /// of incident edges of a node \c n |
---|
444 | /// in graph \c g of type \c Graph as follows. |
---|
445 | ///\code |
---|
446 | /// int count=0; |
---|
447 | /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
448 | ///\endcode |
---|
449 | class IncEdgeIt : public UEdge { |
---|
450 | public: |
---|
451 | /// Default constructor |
---|
452 | |
---|
453 | /// @warning The default constructor sets the iterator |
---|
454 | /// to an undefined value. |
---|
455 | IncEdgeIt() { } |
---|
456 | /// Copy constructor. |
---|
457 | |
---|
458 | /// Copy constructor. |
---|
459 | /// |
---|
460 | IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { } |
---|
461 | /// Initialize the iterator to be invalid. |
---|
462 | |
---|
463 | /// Initialize the iterator to be invalid. |
---|
464 | /// |
---|
465 | IncEdgeIt(Invalid) { } |
---|
466 | /// This constructor sets the iterator to first incident edge. |
---|
467 | |
---|
468 | /// This constructor set the iterator to the first incident edge of |
---|
469 | /// the node. |
---|
470 | IncEdgeIt(const UGraph&, const Node&) { } |
---|
471 | /// UEdge -> IncEdgeIt conversion |
---|
472 | |
---|
473 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
474 | /// This feature necessitates that each time we |
---|
475 | /// iterate the edge-set, the iteration order is the same. |
---|
476 | IncEdgeIt(const UGraph&, const UEdge&) { } |
---|
477 | /// Next incident edge |
---|
478 | |
---|
479 | /// Assign the iterator to the next incident edge |
---|
480 | /// of the corresponding node. |
---|
481 | IncEdgeIt& operator++() { return *this; } |
---|
482 | }; |
---|
483 | |
---|
484 | /// The directed edge type. |
---|
485 | |
---|
486 | /// The directed edge type. It can be converted to the |
---|
487 | /// undirected edge. |
---|
488 | class Edge : public UEdge { |
---|
489 | public: |
---|
490 | /// Default constructor |
---|
491 | |
---|
492 | /// @warning The default constructor sets the iterator |
---|
493 | /// to an undefined value. |
---|
494 | Edge() { } |
---|
495 | /// Copy constructor. |
---|
496 | |
---|
497 | /// Copy constructor. |
---|
498 | /// |
---|
499 | Edge(const Edge& e) : UEdge(e) { } |
---|
500 | /// Initialize the iterator to be invalid. |
---|
501 | |
---|
502 | /// Initialize the iterator to be invalid. |
---|
503 | /// |
---|
504 | Edge(Invalid) { } |
---|
505 | /// Equality operator |
---|
506 | |
---|
507 | /// Two iterators are equal if and only if they point to the |
---|
508 | /// same object or both are invalid. |
---|
509 | bool operator==(Edge) const { return true; } |
---|
510 | /// Inequality operator |
---|
511 | |
---|
512 | /// \sa operator==(Edge n) |
---|
513 | /// |
---|
514 | bool operator!=(Edge) const { return true; } |
---|
515 | |
---|
516 | /// Artificial ordering operator. |
---|
517 | |
---|
518 | /// To allow the use of graph descriptors as key type in std::map or |
---|
519 | /// similar associative container we require this. |
---|
520 | /// |
---|
521 | /// \note This operator only have to define some strict ordering of |
---|
522 | /// the items; this order has nothing to do with the iteration |
---|
523 | /// ordering of the items. |
---|
524 | /// |
---|
525 | /// \bug This is a technical requirement. Do we really need this? |
---|
526 | bool operator<(Edge) const { return false; } |
---|
527 | |
---|
528 | }; |
---|
529 | /// This iterator goes through each directed edge. |
---|
530 | |
---|
531 | /// This iterator goes through each edge of a graph. |
---|
532 | /// Its usage is quite simple, for example you can count the number |
---|
533 | /// of edges in a graph \c g of type \c Graph as follows: |
---|
534 | ///\code |
---|
535 | /// int count=0; |
---|
536 | /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
537 | ///\endcode |
---|
538 | class EdgeIt : public Edge { |
---|
539 | public: |
---|
540 | /// Default constructor |
---|
541 | |
---|
542 | /// @warning The default constructor sets the iterator |
---|
543 | /// to an undefined value. |
---|
544 | EdgeIt() { } |
---|
545 | /// Copy constructor. |
---|
546 | |
---|
547 | /// Copy constructor. |
---|
548 | /// |
---|
549 | EdgeIt(const EdgeIt& e) : Edge(e) { } |
---|
550 | /// Initialize the iterator to be invalid. |
---|
551 | |
---|
552 | /// Initialize the iterator to be invalid. |
---|
553 | /// |
---|
554 | EdgeIt(Invalid) { } |
---|
555 | /// This constructor sets the iterator to the first edge. |
---|
556 | |
---|
557 | /// This constructor sets the iterator to the first edge of \c g. |
---|
558 | ///@param g the graph |
---|
559 | EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); } |
---|
560 | /// Edge -> EdgeIt conversion |
---|
561 | |
---|
562 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
563 | /// This feature necessitates that each time we |
---|
564 | /// iterate the edge-set, the iteration order is the same. |
---|
565 | EdgeIt(const UGraph&, const Edge&) { } |
---|
566 | ///Next edge |
---|
567 | |
---|
568 | /// Assign the iterator to the next edge. |
---|
569 | EdgeIt& operator++() { return *this; } |
---|
570 | }; |
---|
571 | |
---|
572 | /// This iterator goes trough the outgoing directed edges of a node. |
---|
573 | |
---|
574 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
575 | /// of a graph. |
---|
576 | /// Its usage is quite simple, for example you can count the number |
---|
577 | /// of outgoing edges of a node \c n |
---|
578 | /// in graph \c g of type \c Graph as follows. |
---|
579 | ///\code |
---|
580 | /// int count=0; |
---|
581 | /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
582 | ///\endcode |
---|
583 | |
---|
584 | class OutEdgeIt : public Edge { |
---|
585 | public: |
---|
586 | /// Default constructor |
---|
587 | |
---|
588 | /// @warning The default constructor sets the iterator |
---|
589 | /// to an undefined value. |
---|
590 | OutEdgeIt() { } |
---|
591 | /// Copy constructor. |
---|
592 | |
---|
593 | /// Copy constructor. |
---|
594 | /// |
---|
595 | OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } |
---|
596 | /// Initialize the iterator to be invalid. |
---|
597 | |
---|
598 | /// Initialize the iterator to be invalid. |
---|
599 | /// |
---|
600 | OutEdgeIt(Invalid) { } |
---|
601 | /// This constructor sets the iterator to the first outgoing edge. |
---|
602 | |
---|
603 | /// This constructor sets the iterator to the first outgoing edge of |
---|
604 | /// the node. |
---|
605 | ///@param n the node |
---|
606 | ///@param g the graph |
---|
607 | OutEdgeIt(const UGraph& n, const Node& g) { |
---|
608 | ignore_unused_variable_warning(n); |
---|
609 | ignore_unused_variable_warning(g); |
---|
610 | } |
---|
611 | /// Edge -> OutEdgeIt conversion |
---|
612 | |
---|
613 | /// Sets the iterator to the value of the trivial iterator. |
---|
614 | /// This feature necessitates that each time we |
---|
615 | /// iterate the edge-set, the iteration order is the same. |
---|
616 | OutEdgeIt(const UGraph&, const Edge&) { } |
---|
617 | ///Next outgoing edge |
---|
618 | |
---|
619 | /// Assign the iterator to the next |
---|
620 | /// outgoing edge of the corresponding node. |
---|
621 | OutEdgeIt& operator++() { return *this; } |
---|
622 | }; |
---|
623 | |
---|
624 | /// This iterator goes trough the incoming directed edges of a node. |
---|
625 | |
---|
626 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
627 | /// of a graph. |
---|
628 | /// Its usage is quite simple, for example you can count the number |
---|
629 | /// of outgoing edges of a node \c n |
---|
630 | /// in graph \c g of type \c Graph as follows. |
---|
631 | ///\code |
---|
632 | /// int count=0; |
---|
633 | /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
634 | ///\endcode |
---|
635 | |
---|
636 | class InEdgeIt : public Edge { |
---|
637 | public: |
---|
638 | /// Default constructor |
---|
639 | |
---|
640 | /// @warning The default constructor sets the iterator |
---|
641 | /// to an undefined value. |
---|
642 | InEdgeIt() { } |
---|
643 | /// Copy constructor. |
---|
644 | |
---|
645 | /// Copy constructor. |
---|
646 | /// |
---|
647 | InEdgeIt(const InEdgeIt& e) : Edge(e) { } |
---|
648 | /// Initialize the iterator to be invalid. |
---|
649 | |
---|
650 | /// Initialize the iterator to be invalid. |
---|
651 | /// |
---|
652 | InEdgeIt(Invalid) { } |
---|
653 | /// This constructor sets the iterator to first incoming edge. |
---|
654 | |
---|
655 | /// This constructor set the iterator to the first incoming edge of |
---|
656 | /// the node. |
---|
657 | ///@param n the node |
---|
658 | ///@param g the graph |
---|
659 | InEdgeIt(const UGraph& g, const Node& n) { |
---|
660 | ignore_unused_variable_warning(n); |
---|
661 | ignore_unused_variable_warning(g); |
---|
662 | } |
---|
663 | /// Edge -> InEdgeIt conversion |
---|
664 | |
---|
665 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
666 | /// This feature necessitates that each time we |
---|
667 | /// iterate the edge-set, the iteration order is the same. |
---|
668 | InEdgeIt(const UGraph&, const Edge&) { } |
---|
669 | /// Next incoming edge |
---|
670 | |
---|
671 | /// Assign the iterator to the next inedge of the corresponding node. |
---|
672 | /// |
---|
673 | InEdgeIt& operator++() { return *this; } |
---|
674 | }; |
---|
675 | |
---|
676 | /// \brief Read write map of the nodes to type \c T. |
---|
677 | /// |
---|
678 | /// ReadWrite map of the nodes to type \c T. |
---|
679 | /// \sa Reference |
---|
680 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
681 | /// needs some extra attention! |
---|
682 | /// \todo Wrong documentation |
---|
683 | template<class T> |
---|
684 | class NodeMap : public ReadWriteMap< Node, T > |
---|
685 | { |
---|
686 | public: |
---|
687 | |
---|
688 | ///\e |
---|
689 | NodeMap(const UGraph&) { } |
---|
690 | ///\e |
---|
691 | NodeMap(const UGraph&, T) { } |
---|
692 | |
---|
693 | ///Copy constructor |
---|
694 | NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
---|
695 | ///Assignment operator |
---|
696 | NodeMap& operator=(const NodeMap&) { return *this; } |
---|
697 | // \todo fix this concept |
---|
698 | }; |
---|
699 | |
---|
700 | /// \brief Read write map of the directed edges to type \c T. |
---|
701 | /// |
---|
702 | /// Reference map of the directed edges to type \c T. |
---|
703 | /// \sa Reference |
---|
704 | /// \warning Making maps that can handle bool type (EdgeMap<bool>) |
---|
705 | /// needs some extra attention! |
---|
706 | /// \todo Wrong documentation |
---|
707 | template<class T> |
---|
708 | class EdgeMap : public ReadWriteMap<Edge,T> |
---|
709 | { |
---|
710 | public: |
---|
711 | |
---|
712 | ///\e |
---|
713 | EdgeMap(const UGraph&) { } |
---|
714 | ///\e |
---|
715 | EdgeMap(const UGraph&, T) { } |
---|
716 | ///Copy constructor |
---|
717 | EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { } |
---|
718 | ///Assignment operator |
---|
719 | EdgeMap& operator=(const EdgeMap&) { return *this; } |
---|
720 | // \todo fix this concept |
---|
721 | }; |
---|
722 | |
---|
723 | /// Read write map of the undirected edges to type \c T. |
---|
724 | |
---|
725 | /// Reference map of the edges to type \c T. |
---|
726 | /// \sa Reference |
---|
727 | /// \warning Making maps that can handle bool type (UEdgeMap<bool>) |
---|
728 | /// needs some extra attention! |
---|
729 | /// \todo Wrong documentation |
---|
730 | template<class T> |
---|
731 | class UEdgeMap : public ReadWriteMap<UEdge,T> |
---|
732 | { |
---|
733 | public: |
---|
734 | |
---|
735 | ///\e |
---|
736 | UEdgeMap(const UGraph&) { } |
---|
737 | ///\e |
---|
738 | UEdgeMap(const UGraph&, T) { } |
---|
739 | ///Copy constructor |
---|
740 | UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {} |
---|
741 | ///Assignment operator |
---|
742 | UEdgeMap &operator=(const UEdgeMap&) { return *this; } |
---|
743 | // \todo fix this concept |
---|
744 | }; |
---|
745 | |
---|
746 | /// \brief Direct the given undirected edge. |
---|
747 | /// |
---|
748 | /// Direct the given undirected edge. The returned edge source |
---|
749 | /// will be the given edge. |
---|
750 | Edge direct(const UEdge&, const Node&) const { |
---|
751 | return INVALID; |
---|
752 | } |
---|
753 | |
---|
754 | /// \brief Direct the given undirected edge. |
---|
755 | /// |
---|
756 | /// Direct the given undirected edge. The returned edge source |
---|
757 | /// will be the source of the undirected edge if the given bool |
---|
758 | /// is true. |
---|
759 | Edge direct(const UEdge&, bool) const { |
---|
760 | return INVALID; |
---|
761 | } |
---|
762 | |
---|
763 | /// \brief Returns true if the edge has default orientation. |
---|
764 | /// |
---|
765 | /// Returns whether the given directed edge is same orientation as |
---|
766 | /// the corresponding undirected edge. |
---|
767 | bool direction(Edge) const { return true; } |
---|
768 | |
---|
769 | /// \brief Returns the opposite directed edge. |
---|
770 | /// |
---|
771 | /// Returns the opposite directed edge. |
---|
772 | Edge oppositeEdge(Edge) const { return INVALID; } |
---|
773 | |
---|
774 | /// \brief Opposite node on an edge |
---|
775 | /// |
---|
776 | /// \return the opposite of the given Node on the given Edge |
---|
777 | Node oppositeNode(Node, UEdge) const { return INVALID; } |
---|
778 | |
---|
779 | /// \brief First node of the undirected edge. |
---|
780 | /// |
---|
781 | /// \return the first node of the given UEdge. |
---|
782 | /// |
---|
783 | /// Naturally uectected edges don't have direction and thus |
---|
784 | /// don't have source and target node. But we use these two methods |
---|
785 | /// to query the two endnodes of the edge. The direction of the edge |
---|
786 | /// which arises this way is called the inherent direction of the |
---|
787 | /// undirected edge, and is used to define the "default" direction |
---|
788 | /// of the directed versions of the edges. |
---|
789 | /// \sa direction |
---|
790 | Node source(UEdge) const { return INVALID; } |
---|
791 | |
---|
792 | /// \brief Second node of the undirected edge. |
---|
793 | Node target(UEdge) const { return INVALID; } |
---|
794 | |
---|
795 | /// \brief Source node of the directed edge. |
---|
796 | Node source(Edge) const { return INVALID; } |
---|
797 | |
---|
798 | /// \brief Target node of the directed edge. |
---|
799 | Node target(Edge) const { return INVALID; } |
---|
800 | |
---|
801 | // /// \brief First node of the graph |
---|
802 | // /// |
---|
803 | // /// \note This method is part of so called \ref |
---|
804 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
805 | // /// be used in an end-user program. |
---|
806 | void first(Node&) const {} |
---|
807 | // /// \brief Next node of the graph |
---|
808 | // /// |
---|
809 | // /// \note This method is part of so called \ref |
---|
810 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
811 | // /// be used in an end-user program. |
---|
812 | void next(Node&) const {} |
---|
813 | |
---|
814 | // /// \brief First undirected edge of the graph |
---|
815 | // /// |
---|
816 | // /// \note This method is part of so called \ref |
---|
817 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
818 | // /// be used in an end-user program. |
---|
819 | void first(UEdge&) const {} |
---|
820 | // /// \brief Next undirected edge of the graph |
---|
821 | // /// |
---|
822 | // /// \note This method is part of so called \ref |
---|
823 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
824 | // /// be used in an end-user program. |
---|
825 | void next(UEdge&) const {} |
---|
826 | |
---|
827 | // /// \brief First directed edge of the graph |
---|
828 | // /// |
---|
829 | // /// \note This method is part of so called \ref |
---|
830 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
831 | // /// be used in an end-user program. |
---|
832 | void first(Edge&) const {} |
---|
833 | // /// \brief Next directed edge of the graph |
---|
834 | // /// |
---|
835 | // /// \note This method is part of so called \ref |
---|
836 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
837 | // /// be used in an end-user program. |
---|
838 | void next(Edge&) const {} |
---|
839 | |
---|
840 | // /// \brief First outgoing edge from a given node |
---|
841 | // /// |
---|
842 | // /// \note This method is part of so called \ref |
---|
843 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
844 | // /// be used in an end-user program. |
---|
845 | void firstOut(Edge&, Node) const {} |
---|
846 | // /// \brief Next outgoing edge to a node |
---|
847 | // /// |
---|
848 | // /// \note This method is part of so called \ref |
---|
849 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
850 | // /// be used in an end-user program. |
---|
851 | void nextOut(Edge&) const {} |
---|
852 | |
---|
853 | // /// \brief First incoming edge to a given node |
---|
854 | // /// |
---|
855 | // /// \note This method is part of so called \ref |
---|
856 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
857 | // /// be used in an end-user program. |
---|
858 | void firstIn(Edge&, Node) const {} |
---|
859 | // /// \brief Next incoming edge to a node |
---|
860 | // /// |
---|
861 | // /// \note This method is part of so called \ref |
---|
862 | // /// developpers_interface "Developpers' interface", so it shouldn't |
---|
863 | // /// be used in an end-user program. |
---|
864 | void nextIn(Edge&) const {} |
---|
865 | |
---|
866 | |
---|
867 | void firstInc(UEdge &, bool &, const Node &) const {} |
---|
868 | |
---|
869 | void nextInc(UEdge &, bool &) const {} |
---|
870 | |
---|
871 | /// \brief Base node of the iterator |
---|
872 | /// |
---|
873 | /// Returns the base node (the source in this case) of the iterator |
---|
874 | Node baseNode(OutEdgeIt e) const { |
---|
875 | return source(e); |
---|
876 | } |
---|
877 | /// \brief Running node of the iterator |
---|
878 | /// |
---|
879 | /// Returns the running node (the target in this case) of the |
---|
880 | /// iterator |
---|
881 | Node runningNode(OutEdgeIt e) const { |
---|
882 | return target(e); |
---|
883 | } |
---|
884 | |
---|
885 | /// \brief Base node of the iterator |
---|
886 | /// |
---|
887 | /// Returns the base node (the target in this case) of the iterator |
---|
888 | Node baseNode(InEdgeIt e) const { |
---|
889 | return target(e); |
---|
890 | } |
---|
891 | /// \brief Running node of the iterator |
---|
892 | /// |
---|
893 | /// Returns the running node (the source in this case) of the |
---|
894 | /// iterator |
---|
895 | Node runningNode(InEdgeIt e) const { |
---|
896 | return source(e); |
---|
897 | } |
---|
898 | |
---|
899 | /// \brief Base node of the iterator |
---|
900 | /// |
---|
901 | /// Returns the base node of the iterator |
---|
902 | Node baseNode(IncEdgeIt) const { |
---|
903 | return INVALID; |
---|
904 | } |
---|
905 | |
---|
906 | /// \brief Running node of the iterator |
---|
907 | /// |
---|
908 | /// Returns the running node of the iterator |
---|
909 | Node runningNode(IncEdgeIt) const { |
---|
910 | return INVALID; |
---|
911 | } |
---|
912 | |
---|
913 | template <typename Graph> |
---|
914 | struct Constraints { |
---|
915 | void constraints() { |
---|
916 | checkConcept<BaseIterableUGraphConcept, Graph>(); |
---|
917 | checkConcept<IterableUGraphConcept, Graph>(); |
---|
918 | checkConcept<MappableUGraphConcept, Graph>(); |
---|
919 | } |
---|
920 | }; |
---|
921 | |
---|
922 | }; |
---|
923 | |
---|
924 | /// \brief An empty non-static undirected graph class. |
---|
925 | /// |
---|
926 | /// This class provides everything that \ref UGraph does. |
---|
927 | /// Additionally it enables building graphs from scratch. |
---|
928 | class ExtendableUGraph : public UGraph { |
---|
929 | public: |
---|
930 | |
---|
931 | /// \brief Add a new node to the graph. |
---|
932 | /// |
---|
933 | /// Add a new node to the graph. |
---|
934 | /// \return the new node. |
---|
935 | Node addNode(); |
---|
936 | |
---|
937 | /// \brief Add a new undirected edge to the graph. |
---|
938 | /// |
---|
939 | /// Add a new undirected edge to the graph. |
---|
940 | /// \return the new edge. |
---|
941 | UEdge addEdge(const Node& from, const Node& to); |
---|
942 | |
---|
943 | /// \brief Resets the graph. |
---|
944 | /// |
---|
945 | /// This function deletes all undirected edges and nodes of the graph. |
---|
946 | /// It also frees the memory allocated to store them. |
---|
947 | void clear() { } |
---|
948 | |
---|
949 | template <typename Graph> |
---|
950 | struct Constraints { |
---|
951 | void constraints() { |
---|
952 | checkConcept<BaseIterableUGraphConcept, Graph>(); |
---|
953 | checkConcept<IterableUGraphConcept, Graph>(); |
---|
954 | checkConcept<MappableUGraphConcept, Graph>(); |
---|
955 | |
---|
956 | checkConcept<UGraph, Graph>(); |
---|
957 | checkConcept<ExtendableUGraphConcept, Graph>(); |
---|
958 | checkConcept<ClearableGraphComponent, Graph>(); |
---|
959 | } |
---|
960 | }; |
---|
961 | |
---|
962 | }; |
---|
963 | |
---|
964 | /// \brief An empty erasable undirected graph class. |
---|
965 | /// |
---|
966 | /// This class is an extension of \ref ExtendableUGraph. It makes it |
---|
967 | /// possible to erase undirected edges or nodes. |
---|
968 | class ErasableUGraph : public ExtendableUGraph { |
---|
969 | public: |
---|
970 | |
---|
971 | /// \brief Deletes a node. |
---|
972 | /// |
---|
973 | /// Deletes a node. |
---|
974 | /// |
---|
975 | void erase(Node) { } |
---|
976 | /// \brief Deletes an undirected edge. |
---|
977 | /// |
---|
978 | /// Deletes an undirected edge. |
---|
979 | /// |
---|
980 | void erase(UEdge) { } |
---|
981 | |
---|
982 | template <typename Graph> |
---|
983 | struct Constraints { |
---|
984 | void constraints() { |
---|
985 | checkConcept<ExtendableUGraph, Graph>(); |
---|
986 | checkConcept<ErasableUGraphConcept, Graph>(); |
---|
987 | } |
---|
988 | }; |
---|
989 | |
---|
990 | }; |
---|
991 | |
---|
992 | /// @} |
---|
993 | |
---|
994 | } |
---|
995 | |
---|
996 | } |
---|
997 | |
---|
998 | #endif |
---|