COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/concept/ugraph.h @ 2126:2c8adbee9fa6

Last change on this file since 2126:2c8adbee9fa6 was 2126:2c8adbee9fa6, checked in by Balazs Dezso, 14 years ago

Renameing file: graph_component.h => graph_components.h

File size: 21.5 KB
Line 
1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19///\ingroup graph_concepts
20///\file
21///\brief The concept of the undirected graphs.
22
23
24#ifndef LEMON_CONCEPT_UGRAPH_H
25#define LEMON_CONCEPT_UGRAPH_H
26
27#include <lemon/concept/graph_components.h>
28#include <lemon/concept/graph.h>
29#include <lemon/bits/utility.h>
30
31namespace lemon {
32  namespace concept {
33
34    /// \addtogroup graph_concepts
35    /// @{
36
37
38    /// Class describing the concept of Undirected Graphs.
39
40    /// This class describes the common interface of all Undirected
41    /// Graphs.
42    ///
43    /// As all concept describing classes it provides only interface
44    /// without any sensible implementation. So any algorithm for
45    /// undirected graph should compile with this class, but it will not
46    /// run properly, of couse.
47    ///
48    /// In LEMON undirected graphs also fulfill the concept of directed
49    /// graphs (\ref lemon::concept::Graph "Graph Concept"). For
50    /// explanation of this and more see also the page \ref graphs,
51    /// a tutorial about graphs.
52    ///
53    /// You can assume that all undirected graph can be handled
54    /// as a directed graph. This way it is fully conform
55    /// to the Graph concept.
56
57    class UGraph {
58    public:
59      ///\e
60
61      ///\todo undocumented
62      ///
63      typedef True UndirectedTag;
64
65      /// \brief The base type of node iterators,
66      /// or in other words, the trivial node iterator.
67      ///
68      /// This is the base type of each node iterator,
69      /// thus each kind of node iterator converts to this.
70      /// More precisely each kind of node iterator should be inherited
71      /// from the trivial node iterator.
72      class Node {
73      public:
74        /// Default constructor
75
76        /// @warning The default constructor sets the iterator
77        /// to an undefined value.
78        Node() { }
79        /// Copy constructor.
80
81        /// Copy constructor.
82        ///
83        Node(const Node&) { }
84
85        /// Invalid constructor \& conversion.
86
87        /// This constructor initializes the iterator to be invalid.
88        /// \sa Invalid for more details.
89        Node(Invalid) { }
90        /// Equality operator
91
92        /// Two iterators are equal if and only if they point to the
93        /// same object or both are invalid.
94        bool operator==(Node) const { return true; }
95
96        /// Inequality operator
97       
98        /// \sa operator==(Node n)
99        ///
100        bool operator!=(Node) const { return true; }
101
102        /// Artificial ordering operator.
103       
104        /// To allow the use of graph descriptors as key type in std::map or
105        /// similar associative container we require this.
106        ///
107        /// \note This operator only have to define some strict ordering of
108        /// the items; this order has nothing to do with the iteration
109        /// ordering of the items.
110        bool operator<(Node) const { return false; }
111
112      };
113   
114      /// This iterator goes through each node.
115
116      /// This iterator goes through each node.
117      /// Its usage is quite simple, for example you can count the number
118      /// of nodes in graph \c g of type \c Graph like this:
119      ///\code
120      /// int count=0;
121      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
122      ///\endcode
123      class NodeIt : public Node {
124      public:
125        /// Default constructor
126
127        /// @warning The default constructor sets the iterator
128        /// to an undefined value.
129        NodeIt() { }
130        /// Copy constructor.
131       
132        /// Copy constructor.
133        ///
134        NodeIt(const NodeIt& n) : Node(n) { }
135        /// Invalid constructor \& conversion.
136
137        /// Initialize the iterator to be invalid.
138        /// \sa Invalid for more details.
139        NodeIt(Invalid) { }
140        /// Sets the iterator to the first node.
141
142        /// Sets the iterator to the first node of \c g.
143        ///
144        NodeIt(const UGraph&) { }
145        /// Node -> NodeIt conversion.
146
147        /// Sets the iterator to the node of \c the graph pointed by
148        /// the trivial iterator.
149        /// This feature necessitates that each time we
150        /// iterate the edge-set, the iteration order is the same.
151        NodeIt(const UGraph&, const Node&) { }
152        /// Next node.
153
154        /// Assign the iterator to the next node.
155        ///
156        NodeIt& operator++() { return *this; }
157      };
158   
159   
160      /// The base type of the undirected edge iterators.
161
162      /// The base type of the undirected edge iterators.
163      ///
164      class UEdge {
165      public:
166        /// Default constructor
167
168        /// @warning The default constructor sets the iterator
169        /// to an undefined value.
170        UEdge() { }
171        /// Copy constructor.
172
173        /// Copy constructor.
174        ///
175        UEdge(const UEdge&) { }
176        /// Initialize the iterator to be invalid.
177
178        /// Initialize the iterator to be invalid.
179        ///
180        UEdge(Invalid) { }
181        /// Equality operator
182
183        /// Two iterators are equal if and only if they point to the
184        /// same object or both are invalid.
185        bool operator==(UEdge) const { return true; }
186        /// Inequality operator
187
188        /// \sa operator==(UEdge n)
189        ///
190        bool operator!=(UEdge) const { return true; }
191
192        /// Artificial ordering operator.
193       
194        /// To allow the use of graph descriptors as key type in std::map or
195        /// similar associative container we require this.
196        ///
197        /// \note This operator only have to define some strict ordering of
198        /// the items; this order has nothing to do with the iteration
199        /// ordering of the items.
200        bool operator<(UEdge) const { return false; }
201      };
202
203      /// This iterator goes through each undirected edge.
204
205      /// This iterator goes through each undirected edge of a graph.
206      /// Its usage is quite simple, for example you can count the number
207      /// of undirected edges in a graph \c g of type \c Graph as follows:
208      ///\code
209      /// int count=0;
210      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
211      ///\endcode
212      class UEdgeIt : public UEdge {
213      public:
214        /// Default constructor
215
216        /// @warning The default constructor sets the iterator
217        /// to an undefined value.
218        UEdgeIt() { }
219        /// Copy constructor.
220
221        /// Copy constructor.
222        ///
223        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
224        /// Initialize the iterator to be invalid.
225
226        /// Initialize the iterator to be invalid.
227        ///
228        UEdgeIt(Invalid) { }
229        /// This constructor sets the iterator to the first undirected edge.
230   
231        /// This constructor sets the iterator to the first undirected edge.
232        UEdgeIt(const UGraph&) { }
233        /// UEdge -> UEdgeIt conversion
234
235        /// Sets the iterator to the value of the trivial iterator.
236        /// This feature necessitates that each time we
237        /// iterate the undirected edge-set, the iteration order is the
238        /// same.
239        UEdgeIt(const UGraph&, const UEdge&) { }
240        /// Next undirected edge
241       
242        /// Assign the iterator to the next undirected edge.
243        UEdgeIt& operator++() { return *this; }
244      };
245
246      /// \brief This iterator goes trough the incident undirected
247      /// edges of a node.
248      ///
249      /// This iterator goes trough the incident undirected edges
250      /// of a certain node of a graph. You should assume that the
251      /// loop edges will be iterated twice.
252      ///
253      /// Its usage is quite simple, for example you can compute the
254      /// degree (i.e. count the number of incident edges of a node \c n
255      /// in graph \c g of type \c Graph as follows.
256      ///
257      ///\code
258      /// int count=0;
259      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
260      ///\endcode
261      class IncEdgeIt : public UEdge {
262      public:
263        /// Default constructor
264
265        /// @warning The default constructor sets the iterator
266        /// to an undefined value.
267        IncEdgeIt() { }
268        /// Copy constructor.
269
270        /// Copy constructor.
271        ///
272        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
273        /// Initialize the iterator to be invalid.
274
275        /// Initialize the iterator to be invalid.
276        ///
277        IncEdgeIt(Invalid) { }
278        /// This constructor sets the iterator to first incident edge.
279   
280        /// This constructor set the iterator to the first incident edge of
281        /// the node.
282        IncEdgeIt(const UGraph&, const Node&) { }
283        /// UEdge -> IncEdgeIt conversion
284
285        /// Sets the iterator to the value of the trivial iterator \c e.
286        /// This feature necessitates that each time we
287        /// iterate the edge-set, the iteration order is the same.
288        IncEdgeIt(const UGraph&, const UEdge&) { }
289        /// Next incident edge
290
291        /// Assign the iterator to the next incident edge
292        /// of the corresponding node.
293        IncEdgeIt& operator++() { return *this; }
294      };
295
296      /// The directed edge type.
297
298      /// The directed edge type. It can be converted to the
299      /// undirected edge.
300      class Edge : public UEdge {
301      public:
302        /// Default constructor
303
304        /// @warning The default constructor sets the iterator
305        /// to an undefined value.
306        Edge() { }
307        /// Copy constructor.
308
309        /// Copy constructor.
310        ///
311        Edge(const Edge& e) : UEdge(e) { }
312        /// Initialize the iterator to be invalid.
313
314        /// Initialize the iterator to be invalid.
315        ///
316        Edge(Invalid) { }
317        /// Equality operator
318
319        /// Two iterators are equal if and only if they point to the
320        /// same object or both are invalid.
321        bool operator==(Edge) const { return true; }
322        /// Inequality operator
323
324        /// \sa operator==(Edge n)
325        ///
326        bool operator!=(Edge) const { return true; }
327
328        /// Artificial ordering operator.
329       
330        /// To allow the use of graph descriptors as key type in std::map or
331        /// similar associative container we require this.
332        ///
333        /// \note This operator only have to define some strict ordering of
334        /// the items; this order has nothing to do with the iteration
335        /// ordering of the items.
336        bool operator<(Edge) const { return false; }
337       
338      };
339      /// This iterator goes through each directed edge.
340
341      /// This iterator goes through each edge of a graph.
342      /// Its usage is quite simple, for example you can count the number
343      /// of edges in a graph \c g of type \c Graph as follows:
344      ///\code
345      /// int count=0;
346      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
347      ///\endcode
348      class EdgeIt : public Edge {
349      public:
350        /// Default constructor
351
352        /// @warning The default constructor sets the iterator
353        /// to an undefined value.
354        EdgeIt() { }
355        /// Copy constructor.
356
357        /// Copy constructor.
358        ///
359        EdgeIt(const EdgeIt& e) : Edge(e) { }
360        /// Initialize the iterator to be invalid.
361
362        /// Initialize the iterator to be invalid.
363        ///
364        EdgeIt(Invalid) { }
365        /// This constructor sets the iterator to the first edge.
366   
367        /// This constructor sets the iterator to the first edge of \c g.
368        ///@param g the graph
369        EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
370        /// Edge -> EdgeIt conversion
371
372        /// Sets the iterator to the value of the trivial iterator \c e.
373        /// This feature necessitates that each time we
374        /// iterate the edge-set, the iteration order is the same.
375        EdgeIt(const UGraph&, const Edge&) { }
376        ///Next edge
377       
378        /// Assign the iterator to the next edge.
379        EdgeIt& operator++() { return *this; }
380      };
381   
382      /// This iterator goes trough the outgoing directed edges of a node.
383
384      /// This iterator goes trough the \e outgoing edges of a certain node
385      /// of a graph.
386      /// Its usage is quite simple, for example you can count the number
387      /// of outgoing edges of a node \c n
388      /// in graph \c g of type \c Graph as follows.
389      ///\code
390      /// int count=0;
391      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
392      ///\endcode
393   
394      class OutEdgeIt : public Edge {
395      public:
396        /// Default constructor
397
398        /// @warning The default constructor sets the iterator
399        /// to an undefined value.
400        OutEdgeIt() { }
401        /// Copy constructor.
402
403        /// Copy constructor.
404        ///
405        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
406        /// Initialize the iterator to be invalid.
407
408        /// Initialize the iterator to be invalid.
409        ///
410        OutEdgeIt(Invalid) { }
411        /// This constructor sets the iterator to the first outgoing edge.
412   
413        /// This constructor sets the iterator to the first outgoing edge of
414        /// the node.
415        ///@param n the node
416        ///@param g the graph
417        OutEdgeIt(const UGraph& n, const Node& g) {
418          ignore_unused_variable_warning(n);
419          ignore_unused_variable_warning(g);
420        }
421        /// Edge -> OutEdgeIt conversion
422
423        /// Sets the iterator to the value of the trivial iterator.
424        /// This feature necessitates that each time we
425        /// iterate the edge-set, the iteration order is the same.
426        OutEdgeIt(const UGraph&, const Edge&) { }
427        ///Next outgoing edge
428       
429        /// Assign the iterator to the next
430        /// outgoing edge of the corresponding node.
431        OutEdgeIt& operator++() { return *this; }
432      };
433
434      /// This iterator goes trough the incoming directed edges of a node.
435
436      /// This iterator goes trough the \e incoming edges of a certain node
437      /// of a graph.
438      /// Its usage is quite simple, for example you can count the number
439      /// of outgoing edges of a node \c n
440      /// in graph \c g of type \c Graph as follows.
441      ///\code
442      /// int count=0;
443      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
444      ///\endcode
445
446      class InEdgeIt : public Edge {
447      public:
448        /// Default constructor
449
450        /// @warning The default constructor sets the iterator
451        /// to an undefined value.
452        InEdgeIt() { }
453        /// Copy constructor.
454
455        /// Copy constructor.
456        ///
457        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
458        /// Initialize the iterator to be invalid.
459
460        /// Initialize the iterator to be invalid.
461        ///
462        InEdgeIt(Invalid) { }
463        /// This constructor sets the iterator to first incoming edge.
464   
465        /// This constructor set the iterator to the first incoming edge of
466        /// the node.
467        ///@param n the node
468        ///@param g the graph
469        InEdgeIt(const UGraph& g, const Node& n) {
470          ignore_unused_variable_warning(n);
471          ignore_unused_variable_warning(g);
472        }
473        /// Edge -> InEdgeIt conversion
474
475        /// Sets the iterator to the value of the trivial iterator \c e.
476        /// This feature necessitates that each time we
477        /// iterate the edge-set, the iteration order is the same.
478        InEdgeIt(const UGraph&, const Edge&) { }
479        /// Next incoming edge
480
481        /// Assign the iterator to the next inedge of the corresponding node.
482        ///
483        InEdgeIt& operator++() { return *this; }
484      };
485
486      /// \brief Read write map of the nodes to type \c T.
487      ///
488      /// ReadWrite map of the nodes to type \c T.
489      /// \sa Reference
490      /// \warning Making maps that can handle bool type (NodeMap<bool>)
491      /// needs some extra attention!
492      template<class T>
493      class NodeMap : public ReadWriteMap< Node, T >
494      {
495      public:
496
497        ///\e
498        NodeMap(const UGraph&) { }
499        ///\e
500        NodeMap(const UGraph&, T) { }
501
502        ///Copy constructor
503        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
504        ///Assignment operator
505        template <typename CMap>
506        NodeMap& operator=(const CMap&) {
507          checkConcept<ReadMap<Node, T>, CMap>();
508          return *this;
509        }
510      };
511
512      /// \brief Read write map of the directed edges to type \c T.
513      ///
514      /// Reference map of the directed edges to type \c T.
515      /// \sa Reference
516      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
517      /// needs some extra attention!
518      template<class T>
519      class EdgeMap : public ReadWriteMap<Edge,T>
520      {
521      public:
522
523        ///\e
524        EdgeMap(const UGraph&) { }
525        ///\e
526        EdgeMap(const UGraph&, T) { }
527        ///Copy constructor
528        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
529        ///Assignment operator
530        template <typename CMap>
531        EdgeMap& operator=(const CMap&) {
532          checkConcept<ReadMap<Edge, T>, CMap>();
533          return *this;
534        }
535      };
536
537      /// Read write map of the undirected edges to type \c T.
538
539      /// Reference map of the edges to type \c T.
540      /// \sa Reference
541      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
542      /// needs some extra attention!
543      template<class T>
544      class UEdgeMap : public ReadWriteMap<UEdge,T>
545      {
546      public:
547
548        ///\e
549        UEdgeMap(const UGraph&) { }
550        ///\e
551        UEdgeMap(const UGraph&, T) { }
552        ///Copy constructor
553        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
554        ///Assignment operator
555        template <typename CMap>
556        UEdgeMap& operator=(const CMap&) {
557          checkConcept<ReadMap<UEdge, T>, CMap>();
558          return *this;
559        }
560      };
561
562      /// \brief Direct the given undirected edge.
563      ///
564      /// Direct the given undirected edge. The returned edge source
565      /// will be the given edge.
566      Edge direct(const UEdge&, const Node&) const {
567        return INVALID;
568      }
569
570      /// \brief Direct the given undirected edge.
571      ///
572      /// Direct the given undirected edge. The returned edge source
573      /// will be the source of the undirected edge if the given bool
574      /// is true.
575      Edge direct(const UEdge&, bool) const {
576        return INVALID;
577      }
578
579      /// \brief Returns true if the edge has default orientation.
580      ///
581      /// Returns whether the given directed edge is same orientation as
582      /// the corresponding undirected edge.
583      bool direction(Edge) const { return true; }
584
585      /// \brief Returns the opposite directed edge.
586      ///
587      /// Returns the opposite directed edge.
588      Edge oppositeEdge(Edge) const { return INVALID; }
589
590      /// \brief Opposite node on an edge
591      ///
592      /// \return the opposite of the given Node on the given Edge
593      Node oppositeNode(Node, UEdge) const { return INVALID; }
594
595      /// \brief First node of the undirected edge.
596      ///
597      /// \return the first node of the given UEdge.
598      ///
599      /// Naturally uectected edges don't have direction and thus
600      /// don't have source and target node. But we use these two methods
601      /// to query the two endnodes of the edge. The direction of the edge
602      /// which arises this way is called the inherent direction of the
603      /// undirected edge, and is used to define the "default" direction
604      /// of the directed versions of the edges.
605      /// \sa direction
606      Node source(UEdge) const { return INVALID; }
607
608      /// \brief Second node of the undirected edge.
609      Node target(UEdge) const { return INVALID; }
610
611      /// \brief Source node of the directed edge.
612      Node source(Edge) const { return INVALID; }
613
614      /// \brief Target node of the directed edge.
615      Node target(Edge) const { return INVALID; }
616
617      void first(Node&) const {}
618      void next(Node&) const {}
619
620      void first(UEdge&) const {}
621      void next(UEdge&) const {}
622
623      void first(Edge&) const {}
624      void next(Edge&) const {}
625
626      void firstOut(Edge&, Node) const {}
627      void nextOut(Edge&) const {}
628
629      void firstIn(Edge&, Node) const {}
630      void nextIn(Edge&) const {}
631
632
633      void firstInc(UEdge &, bool &, const Node &) const {}
634      void nextInc(UEdge &, bool &) const {}
635
636      /// \brief Base node of the iterator
637      ///
638      /// Returns the base node (the source in this case) of the iterator
639      Node baseNode(OutEdgeIt e) const {
640        return source(e);
641      }
642      /// \brief Running node of the iterator
643      ///
644      /// Returns the running node (the target in this case) of the
645      /// iterator
646      Node runningNode(OutEdgeIt e) const {
647        return target(e);
648      }
649
650      /// \brief Base node of the iterator
651      ///
652      /// Returns the base node (the target in this case) of the iterator
653      Node baseNode(InEdgeIt e) const {
654        return target(e);
655      }
656      /// \brief Running node of the iterator
657      ///
658      /// Returns the running node (the source in this case) of the
659      /// iterator
660      Node runningNode(InEdgeIt e) const {
661        return source(e);
662      }
663
664      /// \brief Base node of the iterator
665      ///
666      /// Returns the base node of the iterator
667      Node baseNode(IncEdgeIt) const {
668        return INVALID;
669      }
670     
671      /// \brief Running node of the iterator
672      ///
673      /// Returns the running node of the iterator
674      Node runningNode(IncEdgeIt) const {
675        return INVALID;
676      }
677
678      template <typename Graph>
679      struct Constraints {
680        void constraints() {
681          checkConcept<BaseIterableUGraphComponent<>, Graph>();
682          checkConcept<IterableUGraphComponent<>, Graph>();
683          checkConcept<MappableUGraphComponent<>, Graph>();
684        }
685      };
686
687    };
688
689    /// @}
690
691  }
692
693}
694
695#endif
Note: See TracBrowser for help on using the repository browser.