[2260] | 1 | /* -*- C++ -*- |
---|
| 2 | * |
---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
| 4 | * |
---|
[2553] | 5 | * Copyright (C) 2003-2008 |
---|
[2260] | 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
| 8 | * |
---|
| 9 | * Permission to use, modify and distribute this software is granted |
---|
| 10 | * provided that this copyright notice appears in all copies. For |
---|
| 11 | * precise terms see the accompanying LICENSE file. |
---|
| 12 | * |
---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
| 14 | * express or implied, and with no claim as to its suitability for any |
---|
| 15 | * purpose. |
---|
| 16 | * |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | ///\ingroup graph_concepts |
---|
| 20 | ///\file |
---|
[2474] | 21 | ///\brief The concept of Undirected Graphs. |
---|
[2260] | 22 | |
---|
| 23 | #ifndef LEMON_CONCEPT_UGRAPH_H |
---|
| 24 | #define LEMON_CONCEPT_UGRAPH_H |
---|
| 25 | |
---|
| 26 | #include <lemon/concepts/graph_components.h> |
---|
| 27 | #include <lemon/concepts/graph.h> |
---|
| 28 | #include <lemon/bits/utility.h> |
---|
| 29 | |
---|
| 30 | namespace lemon { |
---|
| 31 | namespace concepts { |
---|
| 32 | |
---|
[2485] | 33 | /// \ingroup graph_concepts |
---|
[2474] | 34 | /// |
---|
[2260] | 35 | /// \brief Class describing the concept of Undirected Graphs. |
---|
| 36 | /// |
---|
| 37 | /// This class describes the common interface of all Undirected |
---|
| 38 | /// Graphs. |
---|
| 39 | /// |
---|
| 40 | /// As all concept describing classes it provides only interface |
---|
| 41 | /// without any sensible implementation. So any algorithm for |
---|
| 42 | /// undirected graph should compile with this class, but it will not |
---|
| 43 | /// run properly, of course. |
---|
| 44 | /// |
---|
| 45 | /// The LEMON undirected graphs also fulfill the concept of |
---|
| 46 | /// directed graphs (\ref lemon::concepts::Graph "Graph |
---|
| 47 | /// Concept"). Each undirected edges can be seen as two opposite |
---|
| 48 | /// directed edge and consequently the undirected graph can be |
---|
| 49 | /// seen as the direceted graph of these directed edges. The |
---|
| 50 | /// UGraph has the UEdge inner class for the undirected edges and |
---|
| 51 | /// the Edge type for the directed edges. The Edge type is |
---|
| 52 | /// convertible to UEdge or inherited from it so from a directed |
---|
| 53 | /// edge we can get the represented undirected edge. |
---|
| 54 | /// |
---|
| 55 | /// In the sense of the LEMON each undirected edge has a default |
---|
| 56 | /// direction (it should be in every computer implementation, |
---|
| 57 | /// because the order of undirected edge's nodes defines an |
---|
| 58 | /// orientation). With the default orientation we can define that |
---|
| 59 | /// the directed edge is forward or backward directed. With the \c |
---|
| 60 | /// direction() and \c direct() function we can get the direction |
---|
| 61 | /// of the directed edge and we can direct an undirected edge. |
---|
| 62 | /// |
---|
| 63 | /// The UEdgeIt is an iterator for the undirected edges. We can use |
---|
| 64 | /// the UEdgeMap to map values for the undirected edges. The InEdgeIt and |
---|
| 65 | /// OutEdgeIt iterates on the same undirected edges but with opposite |
---|
| 66 | /// direction. The IncEdgeIt iterates also on the same undirected edges |
---|
| 67 | /// as the OutEdgeIt and InEdgeIt but it is not convertible to Edge just |
---|
| 68 | /// to UEdge. |
---|
| 69 | class UGraph { |
---|
| 70 | public: |
---|
| 71 | /// \brief The undirected graph should be tagged by the |
---|
| 72 | /// UndirectedTag. |
---|
| 73 | /// |
---|
| 74 | /// The undirected graph should be tagged by the UndirectedTag. This |
---|
| 75 | /// tag helps the enable_if technics to make compile time |
---|
| 76 | /// specializations for undirected graphs. |
---|
| 77 | typedef True UndirectedTag; |
---|
| 78 | |
---|
| 79 | /// \brief The base type of node iterators, |
---|
| 80 | /// or in other words, the trivial node iterator. |
---|
| 81 | /// |
---|
| 82 | /// This is the base type of each node iterator, |
---|
| 83 | /// thus each kind of node iterator converts to this. |
---|
| 84 | /// More precisely each kind of node iterator should be inherited |
---|
| 85 | /// from the trivial node iterator. |
---|
| 86 | class Node { |
---|
| 87 | public: |
---|
| 88 | /// Default constructor |
---|
| 89 | |
---|
| 90 | /// @warning The default constructor sets the iterator |
---|
| 91 | /// to an undefined value. |
---|
| 92 | Node() { } |
---|
| 93 | /// Copy constructor. |
---|
| 94 | |
---|
| 95 | /// Copy constructor. |
---|
| 96 | /// |
---|
| 97 | Node(const Node&) { } |
---|
| 98 | |
---|
| 99 | /// Invalid constructor \& conversion. |
---|
| 100 | |
---|
| 101 | /// This constructor initializes the iterator to be invalid. |
---|
| 102 | /// \sa Invalid for more details. |
---|
| 103 | Node(Invalid) { } |
---|
| 104 | /// Equality operator |
---|
| 105 | |
---|
| 106 | /// Two iterators are equal if and only if they point to the |
---|
| 107 | /// same object or both are invalid. |
---|
| 108 | bool operator==(Node) const { return true; } |
---|
| 109 | |
---|
| 110 | /// Inequality operator |
---|
| 111 | |
---|
| 112 | /// \sa operator==(Node n) |
---|
| 113 | /// |
---|
| 114 | bool operator!=(Node) const { return true; } |
---|
| 115 | |
---|
| 116 | /// Artificial ordering operator. |
---|
| 117 | |
---|
| 118 | /// To allow the use of graph descriptors as key type in std::map or |
---|
| 119 | /// similar associative container we require this. |
---|
| 120 | /// |
---|
| 121 | /// \note This operator only have to define some strict ordering of |
---|
| 122 | /// the items; this order has nothing to do with the iteration |
---|
| 123 | /// ordering of the items. |
---|
| 124 | bool operator<(Node) const { return false; } |
---|
| 125 | |
---|
| 126 | }; |
---|
| 127 | |
---|
| 128 | /// This iterator goes through each node. |
---|
| 129 | |
---|
| 130 | /// This iterator goes through each node. |
---|
| 131 | /// Its usage is quite simple, for example you can count the number |
---|
| 132 | /// of nodes in graph \c g of type \c Graph like this: |
---|
| 133 | ///\code |
---|
| 134 | /// int count=0; |
---|
| 135 | /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
---|
| 136 | ///\endcode |
---|
| 137 | class NodeIt : public Node { |
---|
| 138 | public: |
---|
| 139 | /// Default constructor |
---|
| 140 | |
---|
| 141 | /// @warning The default constructor sets the iterator |
---|
| 142 | /// to an undefined value. |
---|
| 143 | NodeIt() { } |
---|
| 144 | /// Copy constructor. |
---|
| 145 | |
---|
| 146 | /// Copy constructor. |
---|
| 147 | /// |
---|
| 148 | NodeIt(const NodeIt& n) : Node(n) { } |
---|
| 149 | /// Invalid constructor \& conversion. |
---|
| 150 | |
---|
| 151 | /// Initialize the iterator to be invalid. |
---|
| 152 | /// \sa Invalid for more details. |
---|
| 153 | NodeIt(Invalid) { } |
---|
| 154 | /// Sets the iterator to the first node. |
---|
| 155 | |
---|
| 156 | /// Sets the iterator to the first node of \c g. |
---|
| 157 | /// |
---|
| 158 | NodeIt(const UGraph&) { } |
---|
| 159 | /// Node -> NodeIt conversion. |
---|
| 160 | |
---|
| 161 | /// Sets the iterator to the node of \c the graph pointed by |
---|
| 162 | /// the trivial iterator. |
---|
| 163 | /// This feature necessitates that each time we |
---|
| 164 | /// iterate the edge-set, the iteration order is the same. |
---|
| 165 | NodeIt(const UGraph&, const Node&) { } |
---|
| 166 | /// Next node. |
---|
| 167 | |
---|
| 168 | /// Assign the iterator to the next node. |
---|
| 169 | /// |
---|
| 170 | NodeIt& operator++() { return *this; } |
---|
| 171 | }; |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | /// The base type of the undirected edge iterators. |
---|
| 175 | |
---|
| 176 | /// The base type of the undirected edge iterators. |
---|
| 177 | /// |
---|
| 178 | class UEdge { |
---|
| 179 | public: |
---|
| 180 | /// Default constructor |
---|
| 181 | |
---|
| 182 | /// @warning The default constructor sets the iterator |
---|
| 183 | /// to an undefined value. |
---|
| 184 | UEdge() { } |
---|
| 185 | /// Copy constructor. |
---|
| 186 | |
---|
| 187 | /// Copy constructor. |
---|
| 188 | /// |
---|
| 189 | UEdge(const UEdge&) { } |
---|
| 190 | /// Initialize the iterator to be invalid. |
---|
| 191 | |
---|
| 192 | /// Initialize the iterator to be invalid. |
---|
| 193 | /// |
---|
| 194 | UEdge(Invalid) { } |
---|
| 195 | /// Equality operator |
---|
| 196 | |
---|
| 197 | /// Two iterators are equal if and only if they point to the |
---|
| 198 | /// same object or both are invalid. |
---|
| 199 | bool operator==(UEdge) const { return true; } |
---|
| 200 | /// Inequality operator |
---|
| 201 | |
---|
| 202 | /// \sa operator==(UEdge n) |
---|
| 203 | /// |
---|
| 204 | bool operator!=(UEdge) const { return true; } |
---|
| 205 | |
---|
| 206 | /// Artificial ordering operator. |
---|
| 207 | |
---|
| 208 | /// To allow the use of graph descriptors as key type in std::map or |
---|
| 209 | /// similar associative container we require this. |
---|
| 210 | /// |
---|
| 211 | /// \note This operator only have to define some strict ordering of |
---|
| 212 | /// the items; this order has nothing to do with the iteration |
---|
| 213 | /// ordering of the items. |
---|
| 214 | bool operator<(UEdge) const { return false; } |
---|
| 215 | }; |
---|
| 216 | |
---|
| 217 | /// This iterator goes through each undirected edge. |
---|
| 218 | |
---|
| 219 | /// This iterator goes through each undirected edge of a graph. |
---|
| 220 | /// Its usage is quite simple, for example you can count the number |
---|
| 221 | /// of undirected edges in a graph \c g of type \c Graph as follows: |
---|
| 222 | ///\code |
---|
| 223 | /// int count=0; |
---|
| 224 | /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
| 225 | ///\endcode |
---|
| 226 | class UEdgeIt : public UEdge { |
---|
| 227 | public: |
---|
| 228 | /// Default constructor |
---|
| 229 | |
---|
| 230 | /// @warning The default constructor sets the iterator |
---|
| 231 | /// to an undefined value. |
---|
| 232 | UEdgeIt() { } |
---|
| 233 | /// Copy constructor. |
---|
| 234 | |
---|
| 235 | /// Copy constructor. |
---|
| 236 | /// |
---|
| 237 | UEdgeIt(const UEdgeIt& e) : UEdge(e) { } |
---|
| 238 | /// Initialize the iterator to be invalid. |
---|
| 239 | |
---|
| 240 | /// Initialize the iterator to be invalid. |
---|
| 241 | /// |
---|
| 242 | UEdgeIt(Invalid) { } |
---|
| 243 | /// This constructor sets the iterator to the first undirected edge. |
---|
| 244 | |
---|
| 245 | /// This constructor sets the iterator to the first undirected edge. |
---|
| 246 | UEdgeIt(const UGraph&) { } |
---|
| 247 | /// UEdge -> UEdgeIt conversion |
---|
| 248 | |
---|
| 249 | /// Sets the iterator to the value of the trivial iterator. |
---|
| 250 | /// This feature necessitates that each time we |
---|
| 251 | /// iterate the undirected edge-set, the iteration order is the |
---|
| 252 | /// same. |
---|
| 253 | UEdgeIt(const UGraph&, const UEdge&) { } |
---|
| 254 | /// Next undirected edge |
---|
| 255 | |
---|
| 256 | /// Assign the iterator to the next undirected edge. |
---|
| 257 | UEdgeIt& operator++() { return *this; } |
---|
| 258 | }; |
---|
| 259 | |
---|
| 260 | /// \brief This iterator goes trough the incident undirected |
---|
| 261 | /// edges of a node. |
---|
| 262 | /// |
---|
| 263 | /// This iterator goes trough the incident undirected edges |
---|
| 264 | /// of a certain node of a graph. You should assume that the |
---|
| 265 | /// loop edges will be iterated twice. |
---|
| 266 | /// |
---|
| 267 | /// Its usage is quite simple, for example you can compute the |
---|
| 268 | /// degree (i.e. count the number of incident edges of a node \c n |
---|
| 269 | /// in graph \c g of type \c Graph as follows. |
---|
| 270 | /// |
---|
| 271 | ///\code |
---|
| 272 | /// int count=0; |
---|
| 273 | /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
| 274 | ///\endcode |
---|
| 275 | class IncEdgeIt : public UEdge { |
---|
| 276 | public: |
---|
| 277 | /// Default constructor |
---|
| 278 | |
---|
| 279 | /// @warning The default constructor sets the iterator |
---|
| 280 | /// to an undefined value. |
---|
| 281 | IncEdgeIt() { } |
---|
| 282 | /// Copy constructor. |
---|
| 283 | |
---|
| 284 | /// Copy constructor. |
---|
| 285 | /// |
---|
| 286 | IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { } |
---|
| 287 | /// Initialize the iterator to be invalid. |
---|
| 288 | |
---|
| 289 | /// Initialize the iterator to be invalid. |
---|
| 290 | /// |
---|
| 291 | IncEdgeIt(Invalid) { } |
---|
| 292 | /// This constructor sets the iterator to first incident edge. |
---|
| 293 | |
---|
| 294 | /// This constructor set the iterator to the first incident edge of |
---|
| 295 | /// the node. |
---|
| 296 | IncEdgeIt(const UGraph&, const Node&) { } |
---|
| 297 | /// UEdge -> IncEdgeIt conversion |
---|
| 298 | |
---|
| 299 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
| 300 | /// This feature necessitates that each time we |
---|
| 301 | /// iterate the edge-set, the iteration order is the same. |
---|
| 302 | IncEdgeIt(const UGraph&, const UEdge&) { } |
---|
| 303 | /// Next incident edge |
---|
| 304 | |
---|
| 305 | /// Assign the iterator to the next incident edge |
---|
| 306 | /// of the corresponding node. |
---|
| 307 | IncEdgeIt& operator++() { return *this; } |
---|
| 308 | }; |
---|
| 309 | |
---|
| 310 | /// The directed edge type. |
---|
| 311 | |
---|
| 312 | /// The directed edge type. It can be converted to the |
---|
| 313 | /// undirected edge or it should be inherited from the undirected |
---|
| 314 | /// edge. |
---|
| 315 | class Edge : public UEdge { |
---|
| 316 | public: |
---|
| 317 | /// Default constructor |
---|
| 318 | |
---|
| 319 | /// @warning The default constructor sets the iterator |
---|
| 320 | /// to an undefined value. |
---|
| 321 | Edge() { } |
---|
| 322 | /// Copy constructor. |
---|
| 323 | |
---|
| 324 | /// Copy constructor. |
---|
| 325 | /// |
---|
| 326 | Edge(const Edge& e) : UEdge(e) { } |
---|
| 327 | /// Initialize the iterator to be invalid. |
---|
| 328 | |
---|
| 329 | /// Initialize the iterator to be invalid. |
---|
| 330 | /// |
---|
| 331 | Edge(Invalid) { } |
---|
| 332 | /// Equality operator |
---|
| 333 | |
---|
| 334 | /// Two iterators are equal if and only if they point to the |
---|
| 335 | /// same object or both are invalid. |
---|
| 336 | bool operator==(Edge) const { return true; } |
---|
| 337 | /// Inequality operator |
---|
| 338 | |
---|
| 339 | /// \sa operator==(Edge n) |
---|
| 340 | /// |
---|
| 341 | bool operator!=(Edge) const { return true; } |
---|
| 342 | |
---|
| 343 | /// Artificial ordering operator. |
---|
| 344 | |
---|
| 345 | /// To allow the use of graph descriptors as key type in std::map or |
---|
| 346 | /// similar associative container we require this. |
---|
| 347 | /// |
---|
| 348 | /// \note This operator only have to define some strict ordering of |
---|
| 349 | /// the items; this order has nothing to do with the iteration |
---|
| 350 | /// ordering of the items. |
---|
| 351 | bool operator<(Edge) const { return false; } |
---|
| 352 | |
---|
| 353 | }; |
---|
| 354 | /// This iterator goes through each directed edge. |
---|
| 355 | |
---|
| 356 | /// This iterator goes through each edge of a graph. |
---|
| 357 | /// Its usage is quite simple, for example you can count the number |
---|
| 358 | /// of edges in a graph \c g of type \c Graph as follows: |
---|
| 359 | ///\code |
---|
| 360 | /// int count=0; |
---|
| 361 | /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
| 362 | ///\endcode |
---|
| 363 | class EdgeIt : public Edge { |
---|
| 364 | public: |
---|
| 365 | /// Default constructor |
---|
| 366 | |
---|
| 367 | /// @warning The default constructor sets the iterator |
---|
| 368 | /// to an undefined value. |
---|
| 369 | EdgeIt() { } |
---|
| 370 | /// Copy constructor. |
---|
| 371 | |
---|
| 372 | /// Copy constructor. |
---|
| 373 | /// |
---|
| 374 | EdgeIt(const EdgeIt& e) : Edge(e) { } |
---|
| 375 | /// Initialize the iterator to be invalid. |
---|
| 376 | |
---|
| 377 | /// Initialize the iterator to be invalid. |
---|
| 378 | /// |
---|
| 379 | EdgeIt(Invalid) { } |
---|
| 380 | /// This constructor sets the iterator to the first edge. |
---|
| 381 | |
---|
| 382 | /// This constructor sets the iterator to the first edge of \c g. |
---|
| 383 | ///@param g the graph |
---|
| 384 | EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); } |
---|
| 385 | /// Edge -> EdgeIt conversion |
---|
| 386 | |
---|
| 387 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
| 388 | /// This feature necessitates that each time we |
---|
| 389 | /// iterate the edge-set, the iteration order is the same. |
---|
| 390 | EdgeIt(const UGraph&, const Edge&) { } |
---|
| 391 | ///Next edge |
---|
| 392 | |
---|
| 393 | /// Assign the iterator to the next edge. |
---|
| 394 | EdgeIt& operator++() { return *this; } |
---|
| 395 | }; |
---|
| 396 | |
---|
| 397 | /// This iterator goes trough the outgoing directed edges of a node. |
---|
| 398 | |
---|
| 399 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
| 400 | /// of a graph. |
---|
| 401 | /// Its usage is quite simple, for example you can count the number |
---|
| 402 | /// of outgoing edges of a node \c n |
---|
| 403 | /// in graph \c g of type \c Graph as follows. |
---|
| 404 | ///\code |
---|
| 405 | /// int count=0; |
---|
| 406 | /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
| 407 | ///\endcode |
---|
| 408 | |
---|
| 409 | class OutEdgeIt : public Edge { |
---|
| 410 | public: |
---|
| 411 | /// Default constructor |
---|
| 412 | |
---|
| 413 | /// @warning The default constructor sets the iterator |
---|
| 414 | /// to an undefined value. |
---|
| 415 | OutEdgeIt() { } |
---|
| 416 | /// Copy constructor. |
---|
| 417 | |
---|
| 418 | /// Copy constructor. |
---|
| 419 | /// |
---|
| 420 | OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } |
---|
| 421 | /// Initialize the iterator to be invalid. |
---|
| 422 | |
---|
| 423 | /// Initialize the iterator to be invalid. |
---|
| 424 | /// |
---|
| 425 | OutEdgeIt(Invalid) { } |
---|
| 426 | /// This constructor sets the iterator to the first outgoing edge. |
---|
| 427 | |
---|
| 428 | /// This constructor sets the iterator to the first outgoing edge of |
---|
| 429 | /// the node. |
---|
| 430 | ///@param n the node |
---|
| 431 | ///@param g the graph |
---|
| 432 | OutEdgeIt(const UGraph& n, const Node& g) { |
---|
| 433 | ignore_unused_variable_warning(n); |
---|
| 434 | ignore_unused_variable_warning(g); |
---|
| 435 | } |
---|
| 436 | /// Edge -> OutEdgeIt conversion |
---|
| 437 | |
---|
| 438 | /// Sets the iterator to the value of the trivial iterator. |
---|
| 439 | /// This feature necessitates that each time we |
---|
| 440 | /// iterate the edge-set, the iteration order is the same. |
---|
| 441 | OutEdgeIt(const UGraph&, const Edge&) { } |
---|
| 442 | ///Next outgoing edge |
---|
| 443 | |
---|
| 444 | /// Assign the iterator to the next |
---|
| 445 | /// outgoing edge of the corresponding node. |
---|
| 446 | OutEdgeIt& operator++() { return *this; } |
---|
| 447 | }; |
---|
| 448 | |
---|
| 449 | /// This iterator goes trough the incoming directed edges of a node. |
---|
| 450 | |
---|
| 451 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
| 452 | /// of a graph. |
---|
| 453 | /// Its usage is quite simple, for example you can count the number |
---|
| 454 | /// of outgoing edges of a node \c n |
---|
| 455 | /// in graph \c g of type \c Graph as follows. |
---|
| 456 | ///\code |
---|
| 457 | /// int count=0; |
---|
| 458 | /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
| 459 | ///\endcode |
---|
| 460 | |
---|
| 461 | class InEdgeIt : public Edge { |
---|
| 462 | public: |
---|
| 463 | /// Default constructor |
---|
| 464 | |
---|
| 465 | /// @warning The default constructor sets the iterator |
---|
| 466 | /// to an undefined value. |
---|
| 467 | InEdgeIt() { } |
---|
| 468 | /// Copy constructor. |
---|
| 469 | |
---|
| 470 | /// Copy constructor. |
---|
| 471 | /// |
---|
| 472 | InEdgeIt(const InEdgeIt& e) : Edge(e) { } |
---|
| 473 | /// Initialize the iterator to be invalid. |
---|
| 474 | |
---|
| 475 | /// Initialize the iterator to be invalid. |
---|
| 476 | /// |
---|
| 477 | InEdgeIt(Invalid) { } |
---|
| 478 | /// This constructor sets the iterator to first incoming edge. |
---|
| 479 | |
---|
| 480 | /// This constructor set the iterator to the first incoming edge of |
---|
| 481 | /// the node. |
---|
| 482 | ///@param n the node |
---|
| 483 | ///@param g the graph |
---|
| 484 | InEdgeIt(const UGraph& g, const Node& n) { |
---|
| 485 | ignore_unused_variable_warning(n); |
---|
| 486 | ignore_unused_variable_warning(g); |
---|
| 487 | } |
---|
| 488 | /// Edge -> InEdgeIt conversion |
---|
| 489 | |
---|
| 490 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
| 491 | /// This feature necessitates that each time we |
---|
| 492 | /// iterate the edge-set, the iteration order is the same. |
---|
| 493 | InEdgeIt(const UGraph&, const Edge&) { } |
---|
| 494 | /// Next incoming edge |
---|
| 495 | |
---|
| 496 | /// Assign the iterator to the next inedge of the corresponding node. |
---|
| 497 | /// |
---|
| 498 | InEdgeIt& operator++() { return *this; } |
---|
| 499 | }; |
---|
| 500 | |
---|
| 501 | /// \brief Read write map of the nodes to type \c T. |
---|
| 502 | /// |
---|
| 503 | /// ReadWrite map of the nodes to type \c T. |
---|
| 504 | /// \sa Reference |
---|
| 505 | template<class T> |
---|
| 506 | class NodeMap : public ReadWriteMap< Node, T > |
---|
| 507 | { |
---|
| 508 | public: |
---|
| 509 | |
---|
| 510 | ///\e |
---|
| 511 | NodeMap(const UGraph&) { } |
---|
| 512 | ///\e |
---|
| 513 | NodeMap(const UGraph&, T) { } |
---|
| 514 | |
---|
| 515 | ///Copy constructor |
---|
| 516 | NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
---|
| 517 | ///Assignment operator |
---|
| 518 | template <typename CMap> |
---|
| 519 | NodeMap& operator=(const CMap&) { |
---|
| 520 | checkConcept<ReadMap<Node, T>, CMap>(); |
---|
| 521 | return *this; |
---|
| 522 | } |
---|
| 523 | }; |
---|
| 524 | |
---|
| 525 | /// \brief Read write map of the directed edges to type \c T. |
---|
| 526 | /// |
---|
| 527 | /// Reference map of the directed edges to type \c T. |
---|
| 528 | /// \sa Reference |
---|
| 529 | template<class T> |
---|
| 530 | class EdgeMap : public ReadWriteMap<Edge,T> |
---|
| 531 | { |
---|
| 532 | public: |
---|
| 533 | |
---|
| 534 | ///\e |
---|
| 535 | EdgeMap(const UGraph&) { } |
---|
| 536 | ///\e |
---|
| 537 | EdgeMap(const UGraph&, T) { } |
---|
| 538 | ///Copy constructor |
---|
| 539 | EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { } |
---|
| 540 | ///Assignment operator |
---|
| 541 | template <typename CMap> |
---|
| 542 | EdgeMap& operator=(const CMap&) { |
---|
| 543 | checkConcept<ReadMap<Edge, T>, CMap>(); |
---|
| 544 | return *this; |
---|
| 545 | } |
---|
| 546 | }; |
---|
| 547 | |
---|
| 548 | /// Read write map of the undirected edges to type \c T. |
---|
| 549 | |
---|
| 550 | /// Reference map of the edges to type \c T. |
---|
| 551 | /// \sa Reference |
---|
| 552 | template<class T> |
---|
| 553 | class UEdgeMap : public ReadWriteMap<UEdge,T> |
---|
| 554 | { |
---|
| 555 | public: |
---|
| 556 | |
---|
| 557 | ///\e |
---|
| 558 | UEdgeMap(const UGraph&) { } |
---|
| 559 | ///\e |
---|
| 560 | UEdgeMap(const UGraph&, T) { } |
---|
| 561 | ///Copy constructor |
---|
| 562 | UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {} |
---|
| 563 | ///Assignment operator |
---|
| 564 | template <typename CMap> |
---|
| 565 | UEdgeMap& operator=(const CMap&) { |
---|
| 566 | checkConcept<ReadMap<UEdge, T>, CMap>(); |
---|
| 567 | return *this; |
---|
| 568 | } |
---|
| 569 | }; |
---|
| 570 | |
---|
| 571 | /// \brief Direct the given undirected edge. |
---|
| 572 | /// |
---|
| 573 | /// Direct the given undirected edge. The returned edge source |
---|
| 574 | /// will be the given node. |
---|
| 575 | Edge direct(const UEdge&, const Node&) const { |
---|
| 576 | return INVALID; |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | /// \brief Direct the given undirected edge. |
---|
| 580 | /// |
---|
| 581 | /// Direct the given undirected edge. The returned edge |
---|
[2291] | 582 | /// represents the given undirected edge and the direction comes |
---|
[2260] | 583 | /// from the given bool. The source of the undirected edge and |
---|
| 584 | /// the directed edge is the same when the given bool is true. |
---|
| 585 | Edge direct(const UEdge&, bool) const { |
---|
| 586 | return INVALID; |
---|
| 587 | } |
---|
| 588 | |
---|
| 589 | /// \brief Returns true if the edge has default orientation. |
---|
| 590 | /// |
---|
| 591 | /// Returns whether the given directed edge is same orientation as |
---|
| 592 | /// the corresponding undirected edge's default orientation. |
---|
| 593 | bool direction(Edge) const { return true; } |
---|
| 594 | |
---|
| 595 | /// \brief Returns the opposite directed edge. |
---|
| 596 | /// |
---|
| 597 | /// Returns the opposite directed edge. |
---|
| 598 | Edge oppositeEdge(Edge) const { return INVALID; } |
---|
| 599 | |
---|
| 600 | /// \brief Opposite node on an edge |
---|
| 601 | /// |
---|
| 602 | /// \return the opposite of the given Node on the given UEdge |
---|
| 603 | Node oppositeNode(Node, UEdge) const { return INVALID; } |
---|
| 604 | |
---|
| 605 | /// \brief First node of the undirected edge. |
---|
| 606 | /// |
---|
| 607 | /// \return the first node of the given UEdge. |
---|
| 608 | /// |
---|
| 609 | /// Naturally undirected edges don't have direction and thus |
---|
| 610 | /// don't have source and target node. But we use these two methods |
---|
| 611 | /// to query the two nodes of the edge. The direction of the edge |
---|
| 612 | /// which arises this way is called the inherent direction of the |
---|
| 613 | /// undirected edge, and is used to define the "default" direction |
---|
| 614 | /// of the directed versions of the edges. |
---|
| 615 | /// \sa direction |
---|
| 616 | Node source(UEdge) const { return INVALID; } |
---|
| 617 | |
---|
| 618 | /// \brief Second node of the undirected edge. |
---|
| 619 | Node target(UEdge) const { return INVALID; } |
---|
| 620 | |
---|
| 621 | /// \brief Source node of the directed edge. |
---|
| 622 | Node source(Edge) const { return INVALID; } |
---|
| 623 | |
---|
| 624 | /// \brief Target node of the directed edge. |
---|
| 625 | Node target(Edge) const { return INVALID; } |
---|
| 626 | |
---|
| 627 | void first(Node&) const {} |
---|
| 628 | void next(Node&) const {} |
---|
| 629 | |
---|
| 630 | void first(UEdge&) const {} |
---|
| 631 | void next(UEdge&) const {} |
---|
| 632 | |
---|
| 633 | void first(Edge&) const {} |
---|
| 634 | void next(Edge&) const {} |
---|
| 635 | |
---|
| 636 | void firstOut(Edge&, Node) const {} |
---|
| 637 | void nextOut(Edge&) const {} |
---|
| 638 | |
---|
| 639 | void firstIn(Edge&, Node) const {} |
---|
| 640 | void nextIn(Edge&) const {} |
---|
| 641 | |
---|
| 642 | |
---|
| 643 | void firstInc(UEdge &, bool &, const Node &) const {} |
---|
| 644 | void nextInc(UEdge &, bool &) const {} |
---|
| 645 | |
---|
| 646 | /// \brief Base node of the iterator |
---|
| 647 | /// |
---|
| 648 | /// Returns the base node (the source in this case) of the iterator |
---|
| 649 | Node baseNode(OutEdgeIt e) const { |
---|
| 650 | return source(e); |
---|
| 651 | } |
---|
| 652 | /// \brief Running node of the iterator |
---|
| 653 | /// |
---|
| 654 | /// Returns the running node (the target in this case) of the |
---|
| 655 | /// iterator |
---|
| 656 | Node runningNode(OutEdgeIt e) const { |
---|
| 657 | return target(e); |
---|
| 658 | } |
---|
| 659 | |
---|
| 660 | /// \brief Base node of the iterator |
---|
| 661 | /// |
---|
| 662 | /// Returns the base node (the target in this case) of the iterator |
---|
| 663 | Node baseNode(InEdgeIt e) const { |
---|
| 664 | return target(e); |
---|
| 665 | } |
---|
| 666 | /// \brief Running node of the iterator |
---|
| 667 | /// |
---|
| 668 | /// Returns the running node (the source in this case) of the |
---|
| 669 | /// iterator |
---|
| 670 | Node runningNode(InEdgeIt e) const { |
---|
| 671 | return source(e); |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | /// \brief Base node of the iterator |
---|
| 675 | /// |
---|
| 676 | /// Returns the base node of the iterator |
---|
| 677 | Node baseNode(IncEdgeIt) const { |
---|
| 678 | return INVALID; |
---|
| 679 | } |
---|
| 680 | |
---|
| 681 | /// \brief Running node of the iterator |
---|
| 682 | /// |
---|
| 683 | /// Returns the running node of the iterator |
---|
| 684 | Node runningNode(IncEdgeIt) const { |
---|
| 685 | return INVALID; |
---|
| 686 | } |
---|
| 687 | |
---|
| 688 | template <typename Graph> |
---|
| 689 | struct Constraints { |
---|
| 690 | void constraints() { |
---|
| 691 | checkConcept<IterableUGraphComponent<>, Graph>(); |
---|
| 692 | checkConcept<MappableUGraphComponent<>, Graph>(); |
---|
| 693 | } |
---|
| 694 | }; |
---|
| 695 | |
---|
| 696 | }; |
---|
| 697 | |
---|
| 698 | } |
---|
| 699 | |
---|
| 700 | } |
---|
| 701 | |
---|
| 702 | #endif |
---|