1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | ///\ingroup graph_concepts |
---|
20 | ///\file |
---|
21 | ///\brief The concept of Undirected Graphs. |
---|
22 | |
---|
23 | #ifndef LEMON_CONCEPT_UGRAPH_H |
---|
24 | #define LEMON_CONCEPT_UGRAPH_H |
---|
25 | |
---|
26 | #include <lemon/concepts/graph_components.h> |
---|
27 | #include <lemon/concepts/graph.h> |
---|
28 | #include <lemon/bits/utility.h> |
---|
29 | |
---|
30 | namespace lemon { |
---|
31 | namespace concepts { |
---|
32 | |
---|
33 | /// \ingroup graph_concepts |
---|
34 | /// |
---|
35 | /// \brief Class describing the concept of Undirected Graphs. |
---|
36 | /// |
---|
37 | /// This class describes the common interface of all Undirected |
---|
38 | /// Graphs. |
---|
39 | /// |
---|
40 | /// As all concept describing classes it provides only interface |
---|
41 | /// without any sensible implementation. So any algorithm for |
---|
42 | /// undirected graph should compile with this class, but it will not |
---|
43 | /// run properly, of course. |
---|
44 | /// |
---|
45 | /// The LEMON undirected graphs also fulfill the concept of |
---|
46 | /// directed graphs (\ref lemon::concepts::Graph "Graph |
---|
47 | /// Concept"). Each undirected edges can be seen as two opposite |
---|
48 | /// directed edge and consequently the undirected graph can be |
---|
49 | /// seen as the direceted graph of these directed edges. The |
---|
50 | /// UGraph has the UEdge inner class for the undirected edges and |
---|
51 | /// the Edge type for the directed edges. The Edge type is |
---|
52 | /// convertible to UEdge or inherited from it so from a directed |
---|
53 | /// edge we can get the represented undirected edge. |
---|
54 | /// |
---|
55 | /// In the sense of the LEMON each undirected edge has a default |
---|
56 | /// direction (it should be in every computer implementation, |
---|
57 | /// because the order of undirected edge's nodes defines an |
---|
58 | /// orientation). With the default orientation we can define that |
---|
59 | /// the directed edge is forward or backward directed. With the \c |
---|
60 | /// direction() and \c direct() function we can get the direction |
---|
61 | /// of the directed edge and we can direct an undirected edge. |
---|
62 | /// |
---|
63 | /// The UEdgeIt is an iterator for the undirected edges. We can use |
---|
64 | /// the UEdgeMap to map values for the undirected edges. The InEdgeIt and |
---|
65 | /// OutEdgeIt iterates on the same undirected edges but with opposite |
---|
66 | /// direction. The IncEdgeIt iterates also on the same undirected edges |
---|
67 | /// as the OutEdgeIt and InEdgeIt but it is not convertible to Edge just |
---|
68 | /// to UEdge. |
---|
69 | class UGraph { |
---|
70 | public: |
---|
71 | /// \brief The undirected graph should be tagged by the |
---|
72 | /// UndirectedTag. |
---|
73 | /// |
---|
74 | /// The undirected graph should be tagged by the UndirectedTag. This |
---|
75 | /// tag helps the enable_if technics to make compile time |
---|
76 | /// specializations for undirected graphs. |
---|
77 | typedef True UndirectedTag; |
---|
78 | |
---|
79 | /// \brief The base type of node iterators, |
---|
80 | /// or in other words, the trivial node iterator. |
---|
81 | /// |
---|
82 | /// This is the base type of each node iterator, |
---|
83 | /// thus each kind of node iterator converts to this. |
---|
84 | /// More precisely each kind of node iterator should be inherited |
---|
85 | /// from the trivial node iterator. |
---|
86 | class Node { |
---|
87 | public: |
---|
88 | /// Default constructor |
---|
89 | |
---|
90 | /// @warning The default constructor sets the iterator |
---|
91 | /// to an undefined value. |
---|
92 | Node() { } |
---|
93 | /// Copy constructor. |
---|
94 | |
---|
95 | /// Copy constructor. |
---|
96 | /// |
---|
97 | Node(const Node&) { } |
---|
98 | |
---|
99 | /// Invalid constructor \& conversion. |
---|
100 | |
---|
101 | /// This constructor initializes the iterator to be invalid. |
---|
102 | /// \sa Invalid for more details. |
---|
103 | Node(Invalid) { } |
---|
104 | /// Equality operator |
---|
105 | |
---|
106 | /// Two iterators are equal if and only if they point to the |
---|
107 | /// same object or both are invalid. |
---|
108 | bool operator==(Node) const { return true; } |
---|
109 | |
---|
110 | /// Inequality operator |
---|
111 | |
---|
112 | /// \sa operator==(Node n) |
---|
113 | /// |
---|
114 | bool operator!=(Node) const { return true; } |
---|
115 | |
---|
116 | /// Artificial ordering operator. |
---|
117 | |
---|
118 | /// To allow the use of graph descriptors as key type in std::map or |
---|
119 | /// similar associative container we require this. |
---|
120 | /// |
---|
121 | /// \note This operator only have to define some strict ordering of |
---|
122 | /// the items; this order has nothing to do with the iteration |
---|
123 | /// ordering of the items. |
---|
124 | bool operator<(Node) const { return false; } |
---|
125 | |
---|
126 | }; |
---|
127 | |
---|
128 | /// This iterator goes through each node. |
---|
129 | |
---|
130 | /// This iterator goes through each node. |
---|
131 | /// Its usage is quite simple, for example you can count the number |
---|
132 | /// of nodes in graph \c g of type \c Graph like this: |
---|
133 | ///\code |
---|
134 | /// int count=0; |
---|
135 | /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
---|
136 | ///\endcode |
---|
137 | class NodeIt : public Node { |
---|
138 | public: |
---|
139 | /// Default constructor |
---|
140 | |
---|
141 | /// @warning The default constructor sets the iterator |
---|
142 | /// to an undefined value. |
---|
143 | NodeIt() { } |
---|
144 | /// Copy constructor. |
---|
145 | |
---|
146 | /// Copy constructor. |
---|
147 | /// |
---|
148 | NodeIt(const NodeIt& n) : Node(n) { } |
---|
149 | /// Invalid constructor \& conversion. |
---|
150 | |
---|
151 | /// Initialize the iterator to be invalid. |
---|
152 | /// \sa Invalid for more details. |
---|
153 | NodeIt(Invalid) { } |
---|
154 | /// Sets the iterator to the first node. |
---|
155 | |
---|
156 | /// Sets the iterator to the first node of \c g. |
---|
157 | /// |
---|
158 | NodeIt(const UGraph&) { } |
---|
159 | /// Node -> NodeIt conversion. |
---|
160 | |
---|
161 | /// Sets the iterator to the node of \c the graph pointed by |
---|
162 | /// the trivial iterator. |
---|
163 | /// This feature necessitates that each time we |
---|
164 | /// iterate the edge-set, the iteration order is the same. |
---|
165 | NodeIt(const UGraph&, const Node&) { } |
---|
166 | /// Next node. |
---|
167 | |
---|
168 | /// Assign the iterator to the next node. |
---|
169 | /// |
---|
170 | NodeIt& operator++() { return *this; } |
---|
171 | }; |
---|
172 | |
---|
173 | |
---|
174 | /// The base type of the undirected edge iterators. |
---|
175 | |
---|
176 | /// The base type of the undirected edge iterators. |
---|
177 | /// |
---|
178 | class UEdge { |
---|
179 | public: |
---|
180 | /// Default constructor |
---|
181 | |
---|
182 | /// @warning The default constructor sets the iterator |
---|
183 | /// to an undefined value. |
---|
184 | UEdge() { } |
---|
185 | /// Copy constructor. |
---|
186 | |
---|
187 | /// Copy constructor. |
---|
188 | /// |
---|
189 | UEdge(const UEdge&) { } |
---|
190 | /// Initialize the iterator to be invalid. |
---|
191 | |
---|
192 | /// Initialize the iterator to be invalid. |
---|
193 | /// |
---|
194 | UEdge(Invalid) { } |
---|
195 | /// Equality operator |
---|
196 | |
---|
197 | /// Two iterators are equal if and only if they point to the |
---|
198 | /// same object or both are invalid. |
---|
199 | bool operator==(UEdge) const { return true; } |
---|
200 | /// Inequality operator |
---|
201 | |
---|
202 | /// \sa operator==(UEdge n) |
---|
203 | /// |
---|
204 | bool operator!=(UEdge) const { return true; } |
---|
205 | |
---|
206 | /// Artificial ordering operator. |
---|
207 | |
---|
208 | /// To allow the use of graph descriptors as key type in std::map or |
---|
209 | /// similar associative container we require this. |
---|
210 | /// |
---|
211 | /// \note This operator only have to define some strict ordering of |
---|
212 | /// the items; this order has nothing to do with the iteration |
---|
213 | /// ordering of the items. |
---|
214 | bool operator<(UEdge) const { return false; } |
---|
215 | }; |
---|
216 | |
---|
217 | /// This iterator goes through each undirected edge. |
---|
218 | |
---|
219 | /// This iterator goes through each undirected edge of a graph. |
---|
220 | /// Its usage is quite simple, for example you can count the number |
---|
221 | /// of undirected edges in a graph \c g of type \c Graph as follows: |
---|
222 | ///\code |
---|
223 | /// int count=0; |
---|
224 | /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
225 | ///\endcode |
---|
226 | class UEdgeIt : public UEdge { |
---|
227 | public: |
---|
228 | /// Default constructor |
---|
229 | |
---|
230 | /// @warning The default constructor sets the iterator |
---|
231 | /// to an undefined value. |
---|
232 | UEdgeIt() { } |
---|
233 | /// Copy constructor. |
---|
234 | |
---|
235 | /// Copy constructor. |
---|
236 | /// |
---|
237 | UEdgeIt(const UEdgeIt& e) : UEdge(e) { } |
---|
238 | /// Initialize the iterator to be invalid. |
---|
239 | |
---|
240 | /// Initialize the iterator to be invalid. |
---|
241 | /// |
---|
242 | UEdgeIt(Invalid) { } |
---|
243 | /// This constructor sets the iterator to the first undirected edge. |
---|
244 | |
---|
245 | /// This constructor sets the iterator to the first undirected edge. |
---|
246 | UEdgeIt(const UGraph&) { } |
---|
247 | /// UEdge -> UEdgeIt conversion |
---|
248 | |
---|
249 | /// Sets the iterator to the value of the trivial iterator. |
---|
250 | /// This feature necessitates that each time we |
---|
251 | /// iterate the undirected edge-set, the iteration order is the |
---|
252 | /// same. |
---|
253 | UEdgeIt(const UGraph&, const UEdge&) { } |
---|
254 | /// Next undirected edge |
---|
255 | |
---|
256 | /// Assign the iterator to the next undirected edge. |
---|
257 | UEdgeIt& operator++() { return *this; } |
---|
258 | }; |
---|
259 | |
---|
260 | /// \brief This iterator goes trough the incident undirected |
---|
261 | /// edges of a node. |
---|
262 | /// |
---|
263 | /// This iterator goes trough the incident undirected edges |
---|
264 | /// of a certain node of a graph. You should assume that the |
---|
265 | /// loop edges will be iterated twice. |
---|
266 | /// |
---|
267 | /// Its usage is quite simple, for example you can compute the |
---|
268 | /// degree (i.e. count the number of incident edges of a node \c n |
---|
269 | /// in graph \c g of type \c Graph as follows. |
---|
270 | /// |
---|
271 | ///\code |
---|
272 | /// int count=0; |
---|
273 | /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
274 | ///\endcode |
---|
275 | class IncEdgeIt : public UEdge { |
---|
276 | public: |
---|
277 | /// Default constructor |
---|
278 | |
---|
279 | /// @warning The default constructor sets the iterator |
---|
280 | /// to an undefined value. |
---|
281 | IncEdgeIt() { } |
---|
282 | /// Copy constructor. |
---|
283 | |
---|
284 | /// Copy constructor. |
---|
285 | /// |
---|
286 | IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { } |
---|
287 | /// Initialize the iterator to be invalid. |
---|
288 | |
---|
289 | /// Initialize the iterator to be invalid. |
---|
290 | /// |
---|
291 | IncEdgeIt(Invalid) { } |
---|
292 | /// This constructor sets the iterator to first incident edge. |
---|
293 | |
---|
294 | /// This constructor set the iterator to the first incident edge of |
---|
295 | /// the node. |
---|
296 | IncEdgeIt(const UGraph&, const Node&) { } |
---|
297 | /// UEdge -> IncEdgeIt conversion |
---|
298 | |
---|
299 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
300 | /// This feature necessitates that each time we |
---|
301 | /// iterate the edge-set, the iteration order is the same. |
---|
302 | IncEdgeIt(const UGraph&, const UEdge&) { } |
---|
303 | /// Next incident edge |
---|
304 | |
---|
305 | /// Assign the iterator to the next incident edge |
---|
306 | /// of the corresponding node. |
---|
307 | IncEdgeIt& operator++() { return *this; } |
---|
308 | }; |
---|
309 | |
---|
310 | /// The directed edge type. |
---|
311 | |
---|
312 | /// The directed edge type. It can be converted to the |
---|
313 | /// undirected edge or it should be inherited from the undirected |
---|
314 | /// edge. |
---|
315 | class Edge : public UEdge { |
---|
316 | public: |
---|
317 | /// Default constructor |
---|
318 | |
---|
319 | /// @warning The default constructor sets the iterator |
---|
320 | /// to an undefined value. |
---|
321 | Edge() { } |
---|
322 | /// Copy constructor. |
---|
323 | |
---|
324 | /// Copy constructor. |
---|
325 | /// |
---|
326 | Edge(const Edge& e) : UEdge(e) { } |
---|
327 | /// Initialize the iterator to be invalid. |
---|
328 | |
---|
329 | /// Initialize the iterator to be invalid. |
---|
330 | /// |
---|
331 | Edge(Invalid) { } |
---|
332 | /// Equality operator |
---|
333 | |
---|
334 | /// Two iterators are equal if and only if they point to the |
---|
335 | /// same object or both are invalid. |
---|
336 | bool operator==(Edge) const { return true; } |
---|
337 | /// Inequality operator |
---|
338 | |
---|
339 | /// \sa operator==(Edge n) |
---|
340 | /// |
---|
341 | bool operator!=(Edge) const { return true; } |
---|
342 | |
---|
343 | /// Artificial ordering operator. |
---|
344 | |
---|
345 | /// To allow the use of graph descriptors as key type in std::map or |
---|
346 | /// similar associative container we require this. |
---|
347 | /// |
---|
348 | /// \note This operator only have to define some strict ordering of |
---|
349 | /// the items; this order has nothing to do with the iteration |
---|
350 | /// ordering of the items. |
---|
351 | bool operator<(Edge) const { return false; } |
---|
352 | |
---|
353 | }; |
---|
354 | /// This iterator goes through each directed edge. |
---|
355 | |
---|
356 | /// This iterator goes through each edge of a graph. |
---|
357 | /// Its usage is quite simple, for example you can count the number |
---|
358 | /// of edges in a graph \c g of type \c Graph as follows: |
---|
359 | ///\code |
---|
360 | /// int count=0; |
---|
361 | /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
362 | ///\endcode |
---|
363 | class EdgeIt : public Edge { |
---|
364 | public: |
---|
365 | /// Default constructor |
---|
366 | |
---|
367 | /// @warning The default constructor sets the iterator |
---|
368 | /// to an undefined value. |
---|
369 | EdgeIt() { } |
---|
370 | /// Copy constructor. |
---|
371 | |
---|
372 | /// Copy constructor. |
---|
373 | /// |
---|
374 | EdgeIt(const EdgeIt& e) : Edge(e) { } |
---|
375 | /// Initialize the iterator to be invalid. |
---|
376 | |
---|
377 | /// Initialize the iterator to be invalid. |
---|
378 | /// |
---|
379 | EdgeIt(Invalid) { } |
---|
380 | /// This constructor sets the iterator to the first edge. |
---|
381 | |
---|
382 | /// This constructor sets the iterator to the first edge of \c g. |
---|
383 | ///@param g the graph |
---|
384 | EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); } |
---|
385 | /// Edge -> EdgeIt conversion |
---|
386 | |
---|
387 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
388 | /// This feature necessitates that each time we |
---|
389 | /// iterate the edge-set, the iteration order is the same. |
---|
390 | EdgeIt(const UGraph&, const Edge&) { } |
---|
391 | ///Next edge |
---|
392 | |
---|
393 | /// Assign the iterator to the next edge. |
---|
394 | EdgeIt& operator++() { return *this; } |
---|
395 | }; |
---|
396 | |
---|
397 | /// This iterator goes trough the outgoing directed edges of a node. |
---|
398 | |
---|
399 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
400 | /// of a graph. |
---|
401 | /// Its usage is quite simple, for example you can count the number |
---|
402 | /// of outgoing edges of a node \c n |
---|
403 | /// in graph \c g of type \c Graph as follows. |
---|
404 | ///\code |
---|
405 | /// int count=0; |
---|
406 | /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
407 | ///\endcode |
---|
408 | |
---|
409 | class OutEdgeIt : public Edge { |
---|
410 | public: |
---|
411 | /// Default constructor |
---|
412 | |
---|
413 | /// @warning The default constructor sets the iterator |
---|
414 | /// to an undefined value. |
---|
415 | OutEdgeIt() { } |
---|
416 | /// Copy constructor. |
---|
417 | |
---|
418 | /// Copy constructor. |
---|
419 | /// |
---|
420 | OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } |
---|
421 | /// Initialize the iterator to be invalid. |
---|
422 | |
---|
423 | /// Initialize the iterator to be invalid. |
---|
424 | /// |
---|
425 | OutEdgeIt(Invalid) { } |
---|
426 | /// This constructor sets the iterator to the first outgoing edge. |
---|
427 | |
---|
428 | /// This constructor sets the iterator to the first outgoing edge of |
---|
429 | /// the node. |
---|
430 | ///@param n the node |
---|
431 | ///@param g the graph |
---|
432 | OutEdgeIt(const UGraph& n, const Node& g) { |
---|
433 | ignore_unused_variable_warning(n); |
---|
434 | ignore_unused_variable_warning(g); |
---|
435 | } |
---|
436 | /// Edge -> OutEdgeIt conversion |
---|
437 | |
---|
438 | /// Sets the iterator to the value of the trivial iterator. |
---|
439 | /// This feature necessitates that each time we |
---|
440 | /// iterate the edge-set, the iteration order is the same. |
---|
441 | OutEdgeIt(const UGraph&, const Edge&) { } |
---|
442 | ///Next outgoing edge |
---|
443 | |
---|
444 | /// Assign the iterator to the next |
---|
445 | /// outgoing edge of the corresponding node. |
---|
446 | OutEdgeIt& operator++() { return *this; } |
---|
447 | }; |
---|
448 | |
---|
449 | /// This iterator goes trough the incoming directed edges of a node. |
---|
450 | |
---|
451 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
452 | /// of a graph. |
---|
453 | /// Its usage is quite simple, for example you can count the number |
---|
454 | /// of outgoing edges of a node \c n |
---|
455 | /// in graph \c g of type \c Graph as follows. |
---|
456 | ///\code |
---|
457 | /// int count=0; |
---|
458 | /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
459 | ///\endcode |
---|
460 | |
---|
461 | class InEdgeIt : public Edge { |
---|
462 | public: |
---|
463 | /// Default constructor |
---|
464 | |
---|
465 | /// @warning The default constructor sets the iterator |
---|
466 | /// to an undefined value. |
---|
467 | InEdgeIt() { } |
---|
468 | /// Copy constructor. |
---|
469 | |
---|
470 | /// Copy constructor. |
---|
471 | /// |
---|
472 | InEdgeIt(const InEdgeIt& e) : Edge(e) { } |
---|
473 | /// Initialize the iterator to be invalid. |
---|
474 | |
---|
475 | /// Initialize the iterator to be invalid. |
---|
476 | /// |
---|
477 | InEdgeIt(Invalid) { } |
---|
478 | /// This constructor sets the iterator to first incoming edge. |
---|
479 | |
---|
480 | /// This constructor set the iterator to the first incoming edge of |
---|
481 | /// the node. |
---|
482 | ///@param n the node |
---|
483 | ///@param g the graph |
---|
484 | InEdgeIt(const UGraph& g, const Node& n) { |
---|
485 | ignore_unused_variable_warning(n); |
---|
486 | ignore_unused_variable_warning(g); |
---|
487 | } |
---|
488 | /// Edge -> InEdgeIt conversion |
---|
489 | |
---|
490 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
491 | /// This feature necessitates that each time we |
---|
492 | /// iterate the edge-set, the iteration order is the same. |
---|
493 | InEdgeIt(const UGraph&, const Edge&) { } |
---|
494 | /// Next incoming edge |
---|
495 | |
---|
496 | /// Assign the iterator to the next inedge of the corresponding node. |
---|
497 | /// |
---|
498 | InEdgeIt& operator++() { return *this; } |
---|
499 | }; |
---|
500 | |
---|
501 | /// \brief Read write map of the nodes to type \c T. |
---|
502 | /// |
---|
503 | /// ReadWrite map of the nodes to type \c T. |
---|
504 | /// \sa Reference |
---|
505 | template<class T> |
---|
506 | class NodeMap : public ReadWriteMap< Node, T > |
---|
507 | { |
---|
508 | public: |
---|
509 | |
---|
510 | ///\e |
---|
511 | NodeMap(const UGraph&) { } |
---|
512 | ///\e |
---|
513 | NodeMap(const UGraph&, T) { } |
---|
514 | |
---|
515 | ///Copy constructor |
---|
516 | NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
---|
517 | ///Assignment operator |
---|
518 | template <typename CMap> |
---|
519 | NodeMap& operator=(const CMap&) { |
---|
520 | checkConcept<ReadMap<Node, T>, CMap>(); |
---|
521 | return *this; |
---|
522 | } |
---|
523 | }; |
---|
524 | |
---|
525 | /// \brief Read write map of the directed edges to type \c T. |
---|
526 | /// |
---|
527 | /// Reference map of the directed edges to type \c T. |
---|
528 | /// \sa Reference |
---|
529 | template<class T> |
---|
530 | class EdgeMap : public ReadWriteMap<Edge,T> |
---|
531 | { |
---|
532 | public: |
---|
533 | |
---|
534 | ///\e |
---|
535 | EdgeMap(const UGraph&) { } |
---|
536 | ///\e |
---|
537 | EdgeMap(const UGraph&, T) { } |
---|
538 | ///Copy constructor |
---|
539 | EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { } |
---|
540 | ///Assignment operator |
---|
541 | template <typename CMap> |
---|
542 | EdgeMap& operator=(const CMap&) { |
---|
543 | checkConcept<ReadMap<Edge, T>, CMap>(); |
---|
544 | return *this; |
---|
545 | } |
---|
546 | }; |
---|
547 | |
---|
548 | /// Read write map of the undirected edges to type \c T. |
---|
549 | |
---|
550 | /// Reference map of the edges to type \c T. |
---|
551 | /// \sa Reference |
---|
552 | template<class T> |
---|
553 | class UEdgeMap : public ReadWriteMap<UEdge,T> |
---|
554 | { |
---|
555 | public: |
---|
556 | |
---|
557 | ///\e |
---|
558 | UEdgeMap(const UGraph&) { } |
---|
559 | ///\e |
---|
560 | UEdgeMap(const UGraph&, T) { } |
---|
561 | ///Copy constructor |
---|
562 | UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {} |
---|
563 | ///Assignment operator |
---|
564 | template <typename CMap> |
---|
565 | UEdgeMap& operator=(const CMap&) { |
---|
566 | checkConcept<ReadMap<UEdge, T>, CMap>(); |
---|
567 | return *this; |
---|
568 | } |
---|
569 | }; |
---|
570 | |
---|
571 | /// \brief Direct the given undirected edge. |
---|
572 | /// |
---|
573 | /// Direct the given undirected edge. The returned edge source |
---|
574 | /// will be the given node. |
---|
575 | Edge direct(const UEdge&, const Node&) const { |
---|
576 | return INVALID; |
---|
577 | } |
---|
578 | |
---|
579 | /// \brief Direct the given undirected edge. |
---|
580 | /// |
---|
581 | /// Direct the given undirected edge. The returned edge |
---|
582 | /// represents the given undirected edge and the direction comes |
---|
583 | /// from the given bool. The source of the undirected edge and |
---|
584 | /// the directed edge is the same when the given bool is true. |
---|
585 | Edge direct(const UEdge&, bool) const { |
---|
586 | return INVALID; |
---|
587 | } |
---|
588 | |
---|
589 | /// \brief Returns true if the edge has default orientation. |
---|
590 | /// |
---|
591 | /// Returns whether the given directed edge is same orientation as |
---|
592 | /// the corresponding undirected edge's default orientation. |
---|
593 | bool direction(Edge) const { return true; } |
---|
594 | |
---|
595 | /// \brief Returns the opposite directed edge. |
---|
596 | /// |
---|
597 | /// Returns the opposite directed edge. |
---|
598 | Edge oppositeEdge(Edge) const { return INVALID; } |
---|
599 | |
---|
600 | /// \brief Opposite node on an edge |
---|
601 | /// |
---|
602 | /// \return the opposite of the given Node on the given UEdge |
---|
603 | Node oppositeNode(Node, UEdge) const { return INVALID; } |
---|
604 | |
---|
605 | /// \brief First node of the undirected edge. |
---|
606 | /// |
---|
607 | /// \return the first node of the given UEdge. |
---|
608 | /// |
---|
609 | /// Naturally undirected edges don't have direction and thus |
---|
610 | /// don't have source and target node. But we use these two methods |
---|
611 | /// to query the two nodes of the edge. The direction of the edge |
---|
612 | /// which arises this way is called the inherent direction of the |
---|
613 | /// undirected edge, and is used to define the "default" direction |
---|
614 | /// of the directed versions of the edges. |
---|
615 | /// \sa direction |
---|
616 | Node source(UEdge) const { return INVALID; } |
---|
617 | |
---|
618 | /// \brief Second node of the undirected edge. |
---|
619 | Node target(UEdge) const { return INVALID; } |
---|
620 | |
---|
621 | /// \brief Source node of the directed edge. |
---|
622 | Node source(Edge) const { return INVALID; } |
---|
623 | |
---|
624 | /// \brief Target node of the directed edge. |
---|
625 | Node target(Edge) const { return INVALID; } |
---|
626 | |
---|
627 | void first(Node&) const {} |
---|
628 | void next(Node&) const {} |
---|
629 | |
---|
630 | void first(UEdge&) const {} |
---|
631 | void next(UEdge&) const {} |
---|
632 | |
---|
633 | void first(Edge&) const {} |
---|
634 | void next(Edge&) const {} |
---|
635 | |
---|
636 | void firstOut(Edge&, Node) const {} |
---|
637 | void nextOut(Edge&) const {} |
---|
638 | |
---|
639 | void firstIn(Edge&, Node) const {} |
---|
640 | void nextIn(Edge&) const {} |
---|
641 | |
---|
642 | |
---|
643 | void firstInc(UEdge &, bool &, const Node &) const {} |
---|
644 | void nextInc(UEdge &, bool &) const {} |
---|
645 | |
---|
646 | /// \brief Base node of the iterator |
---|
647 | /// |
---|
648 | /// Returns the base node (the source in this case) of the iterator |
---|
649 | Node baseNode(OutEdgeIt e) const { |
---|
650 | return source(e); |
---|
651 | } |
---|
652 | /// \brief Running node of the iterator |
---|
653 | /// |
---|
654 | /// Returns the running node (the target in this case) of the |
---|
655 | /// iterator |
---|
656 | Node runningNode(OutEdgeIt e) const { |
---|
657 | return target(e); |
---|
658 | } |
---|
659 | |
---|
660 | /// \brief Base node of the iterator |
---|
661 | /// |
---|
662 | /// Returns the base node (the target in this case) of the iterator |
---|
663 | Node baseNode(InEdgeIt e) const { |
---|
664 | return target(e); |
---|
665 | } |
---|
666 | /// \brief Running node of the iterator |
---|
667 | /// |
---|
668 | /// Returns the running node (the source in this case) of the |
---|
669 | /// iterator |
---|
670 | Node runningNode(InEdgeIt e) const { |
---|
671 | return source(e); |
---|
672 | } |
---|
673 | |
---|
674 | /// \brief Base node of the iterator |
---|
675 | /// |
---|
676 | /// Returns the base node of the iterator |
---|
677 | Node baseNode(IncEdgeIt) const { |
---|
678 | return INVALID; |
---|
679 | } |
---|
680 | |
---|
681 | /// \brief Running node of the iterator |
---|
682 | /// |
---|
683 | /// Returns the running node of the iterator |
---|
684 | Node runningNode(IncEdgeIt) const { |
---|
685 | return INVALID; |
---|
686 | } |
---|
687 | |
---|
688 | template <typename Graph> |
---|
689 | struct Constraints { |
---|
690 | void constraints() { |
---|
691 | checkConcept<IterableUGraphComponent<>, Graph>(); |
---|
692 | checkConcept<MappableUGraphComponent<>, Graph>(); |
---|
693 | } |
---|
694 | }; |
---|
695 | |
---|
696 | }; |
---|
697 | |
---|
698 | } |
---|
699 | |
---|
700 | } |
---|
701 | |
---|
702 | #endif |
---|