1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_CSP_H |
---|
20 | #define LEMON_CSP_H |
---|
21 | |
---|
22 | ///\ingroup approx |
---|
23 | ///\file |
---|
24 | ///\brief Algorithm for the Resource Constrained Shortest Path problem. |
---|
25 | /// |
---|
26 | /// |
---|
27 | ///\todo dijkstraZero() solution should be revised. |
---|
28 | |
---|
29 | #include <lemon/list_graph.h> |
---|
30 | #include <lemon/graph_utils.h> |
---|
31 | #include <lemon/error.h> |
---|
32 | #include <lemon/maps.h> |
---|
33 | #include <lemon/tolerance.h> |
---|
34 | #include <lemon/dijkstra.h> |
---|
35 | #include <lemon/path.h> |
---|
36 | #include <lemon/counter.h> |
---|
37 | namespace lemon { |
---|
38 | |
---|
39 | ///\ingroup approx |
---|
40 | |
---|
41 | ///Algorithms for the Resource Constrained Shortest Path Problem |
---|
42 | |
---|
43 | ///The Resource Constrained Shortest (Least Cost) Path problem is the |
---|
44 | ///following. We are given a directed graph with two additive weightings |
---|
45 | ///on the edges, referred as \e cost and \e delay. In addition, |
---|
46 | ///a source and a destination node \e s and \e t and a delay |
---|
47 | ///constraint \e D is given. A path \e p is called \e feasible |
---|
48 | ///if <em>delay(p)\<=D</em>. Then, the task is to find the least cost |
---|
49 | ///feasible path. |
---|
50 | /// |
---|
51 | template<class Graph, |
---|
52 | class CM=typename Graph:: template EdgeMap<double>, |
---|
53 | class DM=CM> |
---|
54 | class ConstrainedShortestPath |
---|
55 | { |
---|
56 | public: |
---|
57 | |
---|
58 | GRAPH_TYPEDEFS(typename Graph); |
---|
59 | |
---|
60 | typedef SimplePath<Graph> Path; |
---|
61 | |
---|
62 | Graph &_g; |
---|
63 | Tolerance<double> tol; |
---|
64 | |
---|
65 | CM &_cost; |
---|
66 | DM &_delay; |
---|
67 | |
---|
68 | class CoMap |
---|
69 | { |
---|
70 | CM &_cost; |
---|
71 | DM &_delay; |
---|
72 | double _lambda; |
---|
73 | public: |
---|
74 | typedef typename CM::Key Key; |
---|
75 | typedef double Value; |
---|
76 | CoMap(CM &c,DM &d) :_cost(c), _delay(d), _lambda(0) {} |
---|
77 | double lambda() const { return _lambda; } |
---|
78 | void lambda(double l) { _lambda=l; } |
---|
79 | Value operator[](Key &e) const |
---|
80 | { |
---|
81 | return _cost[e]+_lambda*_delay[e]; |
---|
82 | } |
---|
83 | } _co_map; |
---|
84 | |
---|
85 | |
---|
86 | Dijkstra<Graph, CoMap> _dij; |
---|
87 | ///\e |
---|
88 | |
---|
89 | ///\e |
---|
90 | /// |
---|
91 | ConstrainedShortestPath(Graph &g, CM &cost, DM &delay) |
---|
92 | : _g(g), _cost(cost), _delay(delay), |
---|
93 | _co_map(cost,delay), _dij(_g,_co_map) {} |
---|
94 | |
---|
95 | |
---|
96 | ///Compute the cost of a path |
---|
97 | double cost(const Path &p) |
---|
98 | { |
---|
99 | double s=0; |
---|
100 | // Path r; |
---|
101 | for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_cost[e]; |
---|
102 | return s; |
---|
103 | } |
---|
104 | |
---|
105 | ///Compute the delay of a path |
---|
106 | double delay(const Path &p) |
---|
107 | { |
---|
108 | double s=0; |
---|
109 | for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_delay[e]; |
---|
110 | return s; |
---|
111 | } |
---|
112 | |
---|
113 | ///Runs the LARAC algorithm |
---|
114 | |
---|
115 | ///This function runs a Lagrange relaxation based heuristic to find |
---|
116 | ///a delay constrained least cost path. |
---|
117 | ///\param s source node |
---|
118 | ///\param t target node |
---|
119 | ///\retval lo_bo a lower bound on the optimal solution |
---|
120 | ///\return the found path or an empty |
---|
121 | Path larac(Node s, Node t, double delta, double &lo_bo) |
---|
122 | { |
---|
123 | NoCounter cnt("LARAC iterations: "); |
---|
124 | double lambda=0; |
---|
125 | double cp,cq,dp,dq,cr,dr; |
---|
126 | Path p; |
---|
127 | Path q; |
---|
128 | Path r; |
---|
129 | { |
---|
130 | Dijkstra<Graph,CM> dij(_g,_cost); |
---|
131 | dij.run(s,t); |
---|
132 | cnt++; |
---|
133 | if(!dij.reached(t)) return Path(); |
---|
134 | p=dij.path(t); |
---|
135 | cp=cost(p); |
---|
136 | dp=delay(p); |
---|
137 | } |
---|
138 | if(delay(p)<=delta) return p; |
---|
139 | { |
---|
140 | Dijkstra<Graph,DM> dij(_g,_delay); |
---|
141 | dij.run(s,t); |
---|
142 | cnt++; |
---|
143 | q=dij.path(t); |
---|
144 | cq=cost(q); |
---|
145 | dq=delay(q); |
---|
146 | } |
---|
147 | if(delay(q)>delta) return Path(); |
---|
148 | while (true) { |
---|
149 | lambda=(cp-cq)/(dq-dp); |
---|
150 | _co_map.lambda(lambda); |
---|
151 | _dij.run(s,t); |
---|
152 | cnt++; |
---|
153 | r=_dij.path(t); |
---|
154 | cr=cost(r); |
---|
155 | dr=delay(r); |
---|
156 | if(!tol.less(cr+lambda*dr,cp+lambda*dp)) { |
---|
157 | lo_bo=cq+lambda*(dq-delta); |
---|
158 | return q; |
---|
159 | } |
---|
160 | else if(tol.less(dr,delta)) |
---|
161 | { |
---|
162 | q=r; |
---|
163 | cq=cr; |
---|
164 | dq=dr; |
---|
165 | } |
---|
166 | else if(tol.less(delta,dr)) |
---|
167 | { |
---|
168 | p=r; |
---|
169 | cp=cr; |
---|
170 | dp=dr; |
---|
171 | } |
---|
172 | else return r; |
---|
173 | } |
---|
174 | } |
---|
175 | }; |
---|
176 | |
---|
177 | |
---|
178 | } //END OF NAMESPACE LEMON |
---|
179 | |
---|
180 | #endif |
---|