COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/dijkstra.h @ 1666:30d7e673781f

Last change on this file since 1666:30d7e673781f was 1665:fdeb961110ac, checked in by Alpar Juttner, 19 years ago

Functions to query the next node/edge to be processed.

File size: 34.5 KB
RevLine 
[906]1/* -*- C++ -*-
[1435]2 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
[906]3 *
[1164]4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[921]17#ifndef LEMON_DIJKSTRA_H
18#define LEMON_DIJKSTRA_H
[255]19
[758]20///\ingroup flowalgs
[255]21///\file
22///\brief Dijkstra algorithm.
[1283]23///
24///\todo getPath() should be implemented! (also for BFS and DFS)
[255]25
[953]26#include <lemon/list_graph.h>
[921]27#include <lemon/bin_heap.h>
28#include <lemon/invalid.h>
[1119]29#include <lemon/error.h>
30#include <lemon/maps.h>
[255]31
[921]32namespace lemon {
[385]33
[1119]34
[1151]35 
[954]36  ///Default traits class of Dijkstra class.
37
38  ///Default traits class of Dijkstra class.
39  ///\param GR Graph type.
40  ///\param LM Type of length map.
[953]41  template<class GR, class LM>
42  struct DijkstraDefaultTraits
43  {
[954]44    ///The graph type the algorithm runs on.
[953]45    typedef GR Graph;
46    ///The type of the map that stores the edge lengths.
47
[1124]48    ///The type of the map that stores the edge lengths.
[967]49    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
[953]50    typedef LM LengthMap;
[954]51    //The type of the length of the edges.
[987]52    typedef typename LM::Value Value;
[954]53    ///The heap type used by Dijkstra algorithm.
[967]54
55    ///The heap type used by Dijkstra algorithm.
56    ///
57    ///\sa BinHeap
58    ///\sa Dijkstra
[953]59    typedef BinHeap<typename Graph::Node,
[987]60                    typename LM::Value,
[953]61                    typename GR::template NodeMap<int>,
[987]62                    std::less<Value> > Heap;
[953]63
64    ///\brief The type of the map that stores the last
65    ///edges of the shortest paths.
66    ///
[1124]67    ///The type of the map that stores the last
68    ///edges of the shortest paths.
[967]69    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]70    ///
[954]71    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
72    ///Instantiates a PredMap.
[953]73 
[1123]74    ///This function instantiates a \ref PredMap.
75    ///\param G is the graph, to which we would like to define the PredMap.
[1119]76    ///\todo The graph alone may be insufficient for the initialization
[954]77    static PredMap *createPredMap(const GR &G)
[953]78    {
79      return new PredMap(G);
80    }
[1218]81//     ///\brief The type of the map that stores the last but one
82//     ///nodes of the shortest paths.
83//     ///
84//     ///The type of the map that stores the last but one
85//     ///nodes of the shortest paths.
86//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
87//     ///
88//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
89//     ///Instantiates a PredNodeMap.
[1125]90   
[1218]91//     ///This function instantiates a \ref PredNodeMap.
92//     ///\param G is the graph, to which
93//     ///we would like to define the \ref PredNodeMap
94//     static PredNodeMap *createPredNodeMap(const GR &G)
95//     {
96//       return new PredNodeMap();
97//     }
[1119]98
[1218]99    ///The type of the map that stores whether a nodes is processed.
[1119]100 
[1218]101    ///The type of the map that stores whether a nodes is processed.
[1119]102    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
103    ///By default it is a NullMap.
[1218]104    ///\todo If it is set to a real map,
105    ///Dijkstra::processed() should read this.
[1119]106    ///\todo named parameter to set this type, function to read and write.
[1218]107    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
108    ///Instantiates a ProcessedMap.
[1119]109 
[1218]110    ///This function instantiates a \ref ProcessedMap.
[1536]111    ///\param g is the graph, to which
[1218]112    ///we would like to define the \ref ProcessedMap
[1536]113#ifdef DOXYGEN
114    static ProcessedMap *createProcessedMap(const GR &g)
115#else
[1366]116    static ProcessedMap *createProcessedMap(const GR &)
[1536]117#endif
[1119]118    {
[1218]119      return new ProcessedMap();
[1119]120    }
[953]121    ///The type of the map that stores the dists of the nodes.
122 
[1124]123    ///The type of the map that stores the dists of the nodes.
[967]124    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]125    ///
[987]126    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
[954]127    ///Instantiates a DistMap.
[953]128 
[1123]129    ///This function instantiates a \ref DistMap.
130    ///\param G is the graph, to which we would like to define the \ref DistMap
[954]131    static DistMap *createDistMap(const GR &G)
[953]132    {
133      return new DistMap(G);
134    }
135  };
136 
[255]137  ///%Dijkstra algorithm class.
[1125]138 
[1151]139  /// \ingroup flowalgs
[255]140  ///This class provides an efficient implementation of %Dijkstra algorithm.
141  ///The edge lengths are passed to the algorithm using a
[959]142  ///\ref concept::ReadMap "ReadMap",
[255]143  ///so it is easy to change it to any kind of length.
144  ///
[880]145  ///The type of the length is determined by the
[987]146  ///\ref concept::ReadMap::Value "Value" of the length map.
[255]147  ///
148  ///It is also possible to change the underlying priority heap.
149  ///
[1218]150  ///\param GR The graph type the algorithm runs on. The default value
151  ///is \ref ListGraph. The value of GR is not used directly by
152  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
153  ///\param LM This read-only EdgeMap determines the lengths of the
154  ///edges. It is read once for each edge, so the map may involve in
155  ///relatively time consuming process to compute the edge length if
156  ///it is necessary. The default map type is \ref
157  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
158  ///of LM is not used directly by Dijkstra, it is only passed to \ref
159  ///DijkstraDefaultTraits.  \param TR Traits class to set
160  ///various data types used by the algorithm.  The default traits
161  ///class is \ref DijkstraDefaultTraits
162  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
163  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
164  ///class.
[456]165  ///
[689]166  ///\author Jacint Szabo and Alpar Juttner
[1128]167  ///\todo A compare object would be nice.
[584]168
[255]169#ifdef DOXYGEN
[584]170  template <typename GR,
171            typename LM,
[953]172            typename TR>
[255]173#else
[953]174  template <typename GR=ListGraph,
[584]175            typename LM=typename GR::template EdgeMap<int>,
[953]176            typename TR=DijkstraDefaultTraits<GR,LM> >
[255]177#endif
[1116]178  class Dijkstra {
[255]179  public:
[1125]180    /**
181     * \brief \ref Exception for uninitialized parameters.
182     *
183     * This error represents problems in the initialization
184     * of the parameters of the algorithms.
185     */
186    class UninitializedParameter : public lemon::UninitializedParameter {
187    public:
188      virtual const char* exceptionName() const {
[1218]189        return "lemon::Dijkstra::UninitializedParameter";
[1125]190      }
191    };
[1119]192
[953]193    typedef TR Traits;
[584]194    ///The type of the underlying graph.
[954]195    typedef typename TR::Graph Graph;
[911]196    ///\e
[255]197    typedef typename Graph::Node Node;
[911]198    ///\e
[255]199    typedef typename Graph::NodeIt NodeIt;
[911]200    ///\e
[255]201    typedef typename Graph::Edge Edge;
[911]202    ///\e
[255]203    typedef typename Graph::OutEdgeIt OutEdgeIt;
204   
[584]205    ///The type of the length of the edges.
[987]206    typedef typename TR::LengthMap::Value Value;
[693]207    ///The type of the map that stores the edge lengths.
[954]208    typedef typename TR::LengthMap LengthMap;
[693]209    ///\brief The type of the map that stores the last
[584]210    ///edges of the shortest paths.
[953]211    typedef typename TR::PredMap PredMap;
[1218]212//     ///\brief The type of the map that stores the last but one
213//     ///nodes of the shortest paths.
214//     typedef typename TR::PredNodeMap PredNodeMap;
215    ///The type of the map indicating if a node is processed.
216    typedef typename TR::ProcessedMap ProcessedMap;
[693]217    ///The type of the map that stores the dists of the nodes.
[953]218    typedef typename TR::DistMap DistMap;
219    ///The heap type used by the dijkstra algorithm.
220    typedef typename TR::Heap Heap;
[255]221  private:
[802]222    /// Pointer to the underlying graph.
[688]223    const Graph *G;
[802]224    /// Pointer to the length map
[954]225    const LengthMap *length;
[802]226    ///Pointer to the map of predecessors edges.
[1119]227    PredMap *_pred;
228    ///Indicates if \ref _pred is locally allocated (\c true) or not.
229    bool local_pred;
[1218]230//     ///Pointer to the map of predecessors nodes.
231//     PredNodeMap *_predNode;
232//     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
233//     bool local_predNode;
[802]234    ///Pointer to the map of distances.
[1130]235    DistMap *_dist;
236    ///Indicates if \ref _dist is locally allocated (\c true) or not.
237    bool local_dist;
[1218]238    ///Pointer to the map of processed status of the nodes.
239    ProcessedMap *_processed;
240    ///Indicates if \ref _processed is locally allocated (\c true) or not.
241    bool local_processed;
[688]242
[1218]243//     ///The source node of the last execution.
244//     Node source;
[774]245
[1128]246    ///Creates the maps if necessary.
[688]247   
[694]248    ///\todo Error if \c G or are \c NULL. What about \c length?
[688]249    ///\todo Better memory allocation (instead of new).
[1128]250    void create_maps()
[688]251    {
[1119]252      if(!_pred) {
253        local_pred = true;
254        _pred = Traits::createPredMap(*G);
[688]255      }
[1218]256//       if(!_predNode) {
257//      local_predNode = true;
258//      _predNode = Traits::createPredNodeMap(*G);
259//       }
[1130]260      if(!_dist) {
261        local_dist = true;
262        _dist = Traits::createDistMap(*G);
[688]263      }
[1218]264      if(!_processed) {
265        local_processed = true;
266        _processed = Traits::createProcessedMap(*G);
[1119]267      }
[688]268    }
[255]269   
270  public :
[1116]271 
[1128]272    ///\name Named template parameters
273
274    ///@{
275
[953]276    template <class T>
[1116]277    struct DefPredMapTraits : public Traits {
[953]278      typedef T PredMap;
279      static PredMap *createPredMap(const Graph &G)
280      {
[1126]281        throw UninitializedParameter();
[953]282      }
283    };
[954]284    ///\ref named-templ-param "Named parameter" for setting PredMap type
285
286    ///\ref named-templ-param "Named parameter" for setting PredMap type
[1043]287    ///
[953]288    template <class T>
[1116]289    class DefPredMap : public Dijkstra< Graph,
[953]290                                        LengthMap,
[1116]291                                        DefPredMapTraits<T> > { };
[953]292   
[1218]293//     template <class T>
294//     struct DefPredNodeMapTraits : public Traits {
295//       typedef T PredNodeMap;
296//       static PredNodeMap *createPredNodeMap(const Graph &G)
297//       {
298//      throw UninitializedParameter();
299//       }
300//     };
301//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
[954]302
[1218]303//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
304//     ///
305//     template <class T>
306//     class DefPredNodeMap : public Dijkstra< Graph,
307//                                          LengthMap,
308//                                          DefPredNodeMapTraits<T> > { };
[953]309   
310    template <class T>
[1116]311    struct DefDistMapTraits : public Traits {
[953]312      typedef T DistMap;
313      static DistMap *createDistMap(const Graph &G)
314      {
[1126]315        throw UninitializedParameter();
[953]316      }
317    };
[954]318    ///\ref named-templ-param "Named parameter" for setting DistMap type
319
320    ///\ref named-templ-param "Named parameter" for setting DistMap type
[1043]321    ///
[953]322    template <class T>
[1116]323    class DefDistMap : public Dijkstra< Graph,
[953]324                                        LengthMap,
[1116]325                                        DefDistMapTraits<T> > { };
[953]326   
[1128]327    template <class T>
[1218]328    struct DefProcessedMapTraits : public Traits {
329      typedef T ProcessedMap;
330      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]331      {
332        throw UninitializedParameter();
333      }
334    };
[1218]335    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]336
[1218]337    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]338    ///
339    template <class T>
[1218]340    class DefProcessedMap : public Dijkstra< Graph,
[1128]341                                        LengthMap,
[1218]342                                        DefProcessedMapTraits<T> > { };
[1128]343   
[1218]344    struct DefGraphProcessedMapTraits : public Traits {
345      typedef typename Graph::template NodeMap<bool> ProcessedMap;
346      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]347      {
[1218]348        return new ProcessedMap(G);
[1128]349      }
350    };
351    ///\brief \ref named-templ-param "Named parameter"
[1218]352    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]353    ///
354    ///\ref named-templ-param "Named parameter"
[1218]355    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]356    ///If you don't set it explicitely, it will be automatically allocated.
357    template <class T>
[1218]358    class DefProcessedMapToBeDefaultMap :
[1128]359      public Dijkstra< Graph,
360                       LengthMap,
[1218]361                       DefGraphProcessedMapTraits> { };
[1128]362   
363    ///@}
364
365
366  private:
367    typename Graph::template NodeMap<int> _heap_map;
368    Heap _heap;
369  public:     
370   
[802]371    ///Constructor.
[255]372   
[802]373    ///\param _G the graph the algorithm will run on.
374    ///\param _length the length map used by the algorithm.
[954]375    Dijkstra(const Graph& _G, const LengthMap& _length) :
[688]376      G(&_G), length(&_length),
[1119]377      _pred(NULL), local_pred(false),
[1218]378//       _predNode(NULL), local_predNode(false),
[1130]379      _dist(NULL), local_dist(false),
[1218]380      _processed(NULL), local_processed(false),
[1128]381      _heap_map(*G,-1),_heap(_heap_map)
[688]382    { }
383   
[802]384    ///Destructor.
[688]385    ~Dijkstra()
386    {
[1119]387      if(local_pred) delete _pred;
[1218]388//       if(local_predNode) delete _predNode;
[1130]389      if(local_dist) delete _dist;
[1218]390      if(local_processed) delete _processed;
[688]391    }
392
393    ///Sets the length map.
394
395    ///Sets the length map.
396    ///\return <tt> (*this) </tt>
[1116]397    Dijkstra &lengthMap(const LengthMap &m)
[688]398    {
399      length = &m;
400      return *this;
401    }
402
403    ///Sets the map storing the predecessor edges.
404
405    ///Sets the map storing the predecessor edges.
406    ///If you don't use this function before calling \ref run(),
407    ///it will allocate one. The destuctor deallocates this
408    ///automatically allocated map, of course.
409    ///\return <tt> (*this) </tt>
[1116]410    Dijkstra &predMap(PredMap &m)
[688]411    {
[1119]412      if(local_pred) {
413        delete _pred;
414        local_pred=false;
[688]415      }
[1119]416      _pred = &m;
[688]417      return *this;
418    }
419
[1218]420//     ///Sets the map storing the predecessor nodes.
[688]421
[1218]422//     ///Sets the map storing the predecessor nodes.
423//     ///If you don't use this function before calling \ref run(),
424//     ///it will allocate one. The destuctor deallocates this
425//     ///automatically allocated map, of course.
426//     ///\return <tt> (*this) </tt>
427//     Dijkstra &predNodeMap(PredNodeMap &m)
428//     {
429//       if(local_predNode) {
430//      delete _predNode;
431//      local_predNode=false;
432//       }
433//       _predNode = &m;
434//       return *this;
435//     }
[688]436
437    ///Sets the map storing the distances calculated by the algorithm.
438
439    ///Sets the map storing the distances calculated by the algorithm.
440    ///If you don't use this function before calling \ref run(),
441    ///it will allocate one. The destuctor deallocates this
442    ///automatically allocated map, of course.
443    ///\return <tt> (*this) </tt>
[1116]444    Dijkstra &distMap(DistMap &m)
[688]445    {
[1130]446      if(local_dist) {
447        delete _dist;
448        local_dist=false;
[688]449      }
[1130]450      _dist = &m;
[688]451      return *this;
452    }
[694]453
[1130]454  private:
455    void finalizeNodeData(Node v,Value dst)
456    {
[1218]457      _processed->set(v,true);
[1130]458      _dist->set(v, dst);
[1218]459//       if((*_pred)[v]!=INVALID)
460//       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
[1130]461    }
462
463  public:
[1218]464    ///\name Execution control
[1128]465    ///The simplest way to execute the algorithm is to use
[1156]466    ///one of the member functions called \c run(...).
[1128]467    ///\n
[1218]468    ///If you need more control on the execution,
[1128]469    ///first you must call \ref init(), then you can add several source nodes
[1218]470    ///with \ref addSource().
471    ///Finally \ref start() will perform the actual path
[1128]472    ///computation.
473
474    ///@{
475
476    ///Initializes the internal data structures.
477
478    ///Initializes the internal data structures.
479    ///
480    ///\todo _heap_map's type could also be in the traits class.
[1229]481    ///\todo The heaps should be able to make themselves empty directly.
[1128]482    void init()
483    {
484      create_maps();
[1229]485      while(!_heap.empty()) _heap.pop();
[774]486      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[1119]487        _pred->set(u,INVALID);
[1218]488//      _predNode->set(u,INVALID);
489        _processed->set(u,false);
[1128]490        _heap_map.set(u,Heap::PRE_HEAP);
[694]491      }
[1128]492    }
493   
494    ///Adds a new source node.
495
[1155]496    ///Adds a new source node to the priority heap.
[1128]497    ///
498    ///The optional second parameter is the initial distance of the node.
499    ///
[1155]500    ///It checks if the node has already been added to the heap and
501    ///It is pushed to the heap only if either it was not in the heap
502    ///or the shortest path found till then is longer then \c dst.
[1128]503    void addSource(Node s,Value dst=0)
504    {
[1218]505//       source = s;
[1128]506      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
[1155]507      else if(_heap[s]<dst) {
508        _heap.push(s,dst);
509        _pred->set(s,INVALID);
510      }
[1128]511    }
512   
[1155]513    ///Processes the next node in the priority heap
514
515    ///Processes the next node in the priority heap.
516    ///
[1516]517    ///\return The processed node.
518    ///
[1155]519    ///\warning The priority heap must not be empty!
[1516]520    Node processNextNode()
[1128]521    {
522      Node v=_heap.top();
523      Value oldvalue=_heap[v];
524      _heap.pop();
[1130]525      finalizeNodeData(v,oldvalue);
[694]526     
[1128]527      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
528        Node w=G->target(e);
529        switch(_heap.state(w)) {
530        case Heap::PRE_HEAP:
531          _heap.push(w,oldvalue+(*length)[e]);
532          _pred->set(w,e);
[1130]533//        _predNode->set(w,v);
[1128]534          break;
535        case Heap::IN_HEAP:
536          if ( oldvalue+(*length)[e] < _heap[w] ) {
537            _heap.decrease(w, oldvalue+(*length)[e]);
[1119]538            _pred->set(w,e);
[1130]539//          _predNode->set(w,v);
[694]540          }
[1128]541          break;
542        case Heap::POST_HEAP:
543          break;
[694]544        }
545      }
[1516]546      return v;
[694]547    }
[1128]548
[1665]549    ///Next node to be processed.
550   
551    ///Next node to be processed.
552    ///
553    ///\return The next node to be processed or INVALID if the priority heap
554    /// is empty.
555    Node NextNode()
556    {
557      return _heap.empty()?_heap.top():INVALID;
558    }
559 
[1218]560    ///\brief Returns \c false if there are nodes
561    ///to be processed in the priority heap
[1155]562    ///
[1218]563    ///Returns \c false if there are nodes
564    ///to be processed in the priority heap
565    bool emptyQueue() { return _heap.empty(); }
[1155]566    ///Returns the number of the nodes to be processed in the priority heap
567
568    ///Returns the number of the nodes to be processed in the priority heap
569    ///
[1218]570    int queueSize() { return _heap.size(); }
[1155]571   
[1130]572    ///Executes the algorithm.
[1128]573
[1130]574    ///Executes the algorithm.
[1128]575    ///
[1130]576    ///\pre init() must be called and at least one node should be added
577    ///with addSource() before using this function.
[1128]578    ///
579    ///This method runs the %Dijkstra algorithm from the root node(s)
580    ///in order to
581    ///compute the
582    ///shortest path to each node. The algorithm computes
583    ///- The shortest path tree.
584    ///- The distance of each node from the root(s).
585    ///
586    void start()
587    {
[1151]588      while ( !_heap.empty() ) processNextNode();
[1128]589    }
[255]590   
[1130]591    ///Executes the algorithm until \c dest is reached.
[1128]592
[1130]593    ///Executes the algorithm until \c dest is reached.
[1128]594    ///
[1130]595    ///\pre init() must be called and at least one node should be added
596    ///with addSource() before using this function.
[1128]597    ///
598    ///This method runs the %Dijkstra algorithm from the root node(s)
599    ///in order to
600    ///compute the
601    ///shortest path to \c dest. The algorithm computes
602    ///- The shortest path to \c  dest.
603    ///- The distance of \c dest from the root(s).
604    ///
605    void start(Node dest)
606    {
[1151]607      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
[1229]608      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
[1130]609    }
610   
611    ///Executes the algorithm until a condition is met.
612
613    ///Executes the algorithm until a condition is met.
614    ///
615    ///\pre init() must be called and at least one node should be added
616    ///with addSource() before using this function.
617    ///
618    ///\param nm must be a bool (or convertible) node map. The algorithm
619    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
[1345]620    template<class NodeBoolMap>
621    void start(const NodeBoolMap &nm)
[1130]622    {
[1193]623      while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
[1229]624      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
[1128]625    }
626   
627    ///Runs %Dijkstra algorithm from node \c s.
628   
629    ///This method runs the %Dijkstra algorithm from a root node \c s
630    ///in order to
631    ///compute the
632    ///shortest path to each node. The algorithm computes
633    ///- The shortest path tree.
634    ///- The distance of each node from the root.
635    ///
636    ///\note d.run(s) is just a shortcut of the following code.
637    ///\code
638    ///  d.init();
639    ///  d.addSource(s);
640    ///  d.start();
641    ///\endcode
642    void run(Node s) {
643      init();
644      addSource(s);
645      start();
646    }
647   
[1130]648    ///Finds the shortest path between \c s and \c t.
649   
650    ///Finds the shortest path between \c s and \c t.
651    ///
652    ///\return The length of the shortest s---t path if there exists one,
653    ///0 otherwise.
654    ///\note Apart from the return value, d.run(s) is
655    ///just a shortcut of the following code.
656    ///\code
657    ///  d.init();
658    ///  d.addSource(s);
659    ///  d.start(t);
660    ///\endcode
661    Value run(Node s,Node t) {
662      init();
663      addSource(s);
664      start(t);
665      return (*_pred)[t]==INVALID?0:(*_dist)[t];
666    }
667   
[1128]668    ///@}
669
670    ///\name Query Functions
671    ///The result of the %Dijkstra algorithm can be obtained using these
672    ///functions.\n
673    ///Before the use of these functions,
674    ///either run() or start() must be called.
675   
676    ///@{
677
[1283]678    ///Copies the shortest path to \c t into \c p
679   
680    ///This function copies the shortest path to \c t into \c p.
[1536]681    ///If it \c t is a source itself or unreachable, then it does not
[1283]682    ///alter \c p.
683    ///\todo Is it the right way to handle unreachable nodes?
684    ///\return Returns \c true if a path to \c t was actually copied to \c p,
685    ///\c false otherwise.
686    ///\sa DirPath
687    template<class P>
688    bool getPath(P &p,Node t)
689    {
690      if(reached(t)) {
691        p.clear();
692        typename P::Builder b(p);
693        for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
694          b.pushFront(pred(t));
695        b.commit();
696        return true;
697      }
698      return false;
699    }
700         
[385]701    ///The distance of a node from the root.
[255]702
[385]703    ///Returns the distance of a node from the root.
[255]704    ///\pre \ref run() must be called before using this function.
[385]705    ///\warning If node \c v in unreachable from the root the return value
[255]706    ///of this funcion is undefined.
[1130]707    Value dist(Node v) const { return (*_dist)[v]; }
[373]708
[584]709    ///Returns the 'previous edge' of the shortest path tree.
[255]710
[584]711    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
[785]712    ///i.e. it returns the last edge of a shortest path from the root to \c
[688]713    ///v. It is \ref INVALID
714    ///if \c v is unreachable from the root or if \c v=s. The
[385]715    ///shortest path tree used here is equal to the shortest path tree used in
[1631]716    ///\ref predNode().  \pre \ref run() must be called before using
[385]717    ///this function.
[780]718    ///\todo predEdge could be a better name.
[1119]719    Edge pred(Node v) const { return (*_pred)[v]; }
[373]720
[584]721    ///Returns the 'previous node' of the shortest path tree.
[255]722
[584]723    ///For a node \c v it returns the 'previous node' of the shortest path tree,
[385]724    ///i.e. it returns the last but one node from a shortest path from the
725    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
726    ///\c v=s. The shortest path tree used here is equal to the shortest path
[1631]727    ///tree used in \ref pred().  \pre \ref run() must be called before
[385]728    ///using this function.
[1130]729    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
730                                  G->source((*_pred)[v]); }
[255]731   
732    ///Returns a reference to the NodeMap of distances.
733
[385]734    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
735    ///be called before using this function.
[1130]736    const DistMap &distMap() const { return *_dist;}
[385]737 
[255]738    ///Returns a reference to the shortest path tree map.
739
740    ///Returns a reference to the NodeMap of the edges of the
741    ///shortest path tree.
742    ///\pre \ref run() must be called before using this function.
[1119]743    const PredMap &predMap() const { return *_pred;}
[385]744 
[1218]745//     ///Returns a reference to the map of nodes of shortest paths.
[255]746
[1218]747//     ///Returns a reference to the NodeMap of the last but one nodes of the
748//     ///shortest path tree.
749//     ///\pre \ref run() must be called before using this function.
750//     const PredNodeMap &predNodeMap() const { return *_predNode;}
[255]751
[385]752    ///Checks if a node is reachable from the root.
[255]753
[385]754    ///Returns \c true if \c v is reachable from the root.
[1218]755    ///\warning The source nodes are inditated as unreached.
[255]756    ///\pre \ref run() must be called before using this function.
[385]757    ///
[1218]758    bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
[255]759   
[1128]760    ///@}
[255]761  };
[953]762
[1218]763
764
765
766 
767  ///Default traits class of Dijkstra function.
768
769  ///Default traits class of Dijkstra function.
770  ///\param GR Graph type.
771  ///\param LM Type of length map.
772  template<class GR, class LM>
773  struct DijkstraWizardDefaultTraits
774  {
775    ///The graph type the algorithm runs on.
776    typedef GR Graph;
777    ///The type of the map that stores the edge lengths.
778
779    ///The type of the map that stores the edge lengths.
780    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
781    typedef LM LengthMap;
782    //The type of the length of the edges.
783    typedef typename LM::Value Value;
784    ///The heap type used by Dijkstra algorithm.
785
786    ///The heap type used by Dijkstra algorithm.
787    ///
788    ///\sa BinHeap
789    ///\sa Dijkstra
790    typedef BinHeap<typename Graph::Node,
791                    typename LM::Value,
792                    typename GR::template NodeMap<int>,
793                    std::less<Value> > Heap;
794
795    ///\brief The type of the map that stores the last
796    ///edges of the shortest paths.
797    ///
798    ///The type of the map that stores the last
799    ///edges of the shortest paths.
800    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
801    ///
802    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
803    ///Instantiates a PredMap.
804 
805    ///This function instantiates a \ref PredMap.
[1536]806    ///\param g is the graph, to which we would like to define the PredMap.
[1218]807    ///\todo The graph alone may be insufficient for the initialization
[1536]808#ifdef DOXYGEN
809    static PredMap *createPredMap(const GR &g)
810#else
[1367]811    static PredMap *createPredMap(const GR &)
[1536]812#endif
[1218]813    {
814      return new PredMap();
815    }
816    ///The type of the map that stores whether a nodes is processed.
817 
818    ///The type of the map that stores whether a nodes is processed.
819    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
820    ///By default it is a NullMap.
821    ///\todo If it is set to a real map,
822    ///Dijkstra::processed() should read this.
823    ///\todo named parameter to set this type, function to read and write.
824    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
825    ///Instantiates a ProcessedMap.
826 
827    ///This function instantiates a \ref ProcessedMap.
[1536]828    ///\param g is the graph, to which
[1218]829    ///we would like to define the \ref ProcessedMap
[1536]830#ifdef DOXYGEN
831    static ProcessedMap *createProcessedMap(const GR &g)
832#else
[1367]833    static ProcessedMap *createProcessedMap(const GR &)
[1536]834#endif
[1218]835    {
836      return new ProcessedMap();
837    }
838    ///The type of the map that stores the dists of the nodes.
839 
840    ///The type of the map that stores the dists of the nodes.
841    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
842    ///
843    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
844    ///Instantiates a DistMap.
845 
846    ///This function instantiates a \ref DistMap.
[1536]847    ///\param g is the graph, to which we would like to define the \ref DistMap
848#ifdef DOXYGEN
849    static DistMap *createDistMap(const GR &g)
850#else
[1367]851    static DistMap *createDistMap(const GR &)
[1536]852#endif
[1218]853    {
854      return new DistMap();
855    }
856  };
857 
[1123]858  /// Default traits used by \ref DijkstraWizard
859
[1151]860  /// To make it easier to use Dijkstra algorithm
861  ///we have created a wizard class.
862  /// This \ref DijkstraWizard class needs default traits,
863  ///as well as the \ref Dijkstra class.
[1123]864  /// The \ref DijkstraWizardBase is a class to be the default traits of the
865  /// \ref DijkstraWizard class.
[1220]866  /// \todo More named parameters are required...
[1116]867  template<class GR,class LM>
[1218]868  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
[1116]869  {
870
[1218]871    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
[1116]872  protected:
[1201]873    /// Type of the nodes in the graph.
874    typedef typename Base::Graph::Node Node;
875
[1116]876    /// Pointer to the underlying graph.
877    void *_g;
878    /// Pointer to the length map
879    void *_length;
880    ///Pointer to the map of predecessors edges.
881    void *_pred;
[1218]882//     ///Pointer to the map of predecessors nodes.
883//     void *_predNode;
[1116]884    ///Pointer to the map of distances.
885    void *_dist;
886    ///Pointer to the source node.
[1201]887    Node _source;
[1116]888
889    public:
[1123]890    /// Constructor.
891   
892    /// This constructor does not require parameters, therefore it initiates
893    /// all of the attributes to default values (0, INVALID).
[1218]894    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
895//                         _predNode(0),
896                           _dist(0), _source(INVALID) {}
[1116]897
[1123]898    /// Constructor.
899   
[1156]900    /// This constructor requires some parameters,
901    /// listed in the parameters list.
[1123]902    /// Others are initiated to 0.
903    /// \param g is the initial value of  \ref _g
904    /// \param l is the initial value of  \ref _length
905    /// \param s is the initial value of  \ref _source
[1116]906    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
[1218]907      _g((void *)&g), _length((void *)&l), _pred(0),
908//       _predNode(0),
909      _dist(0), _source(s) {}
[1116]910
911  };
912 
[1229]913  /// A class to make the usage of Dijkstra algorithm easier
[953]914
[1123]915  /// This class is created to make it easier to use Dijkstra algorithm.
916  /// It uses the functions and features of the plain \ref Dijkstra,
[1151]917  /// but it is much simpler to use it.
[953]918  ///
[1123]919  /// Simplicity means that the way to change the types defined
920  /// in the traits class is based on functions that returns the new class
[1151]921  /// and not on templatable built-in classes.
922  /// When using the plain \ref Dijkstra
923  /// the new class with the modified type comes from
924  /// the original class by using the ::
925  /// operator. In the case of \ref DijkstraWizard only
926  /// a function have to be called and it will
[1123]927  /// return the needed class.
928  ///
929  /// It does not have own \ref run method. When its \ref run method is called
930  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
931  /// method of it.
[953]932  template<class TR>
[1116]933  class DijkstraWizard : public TR
[953]934  {
[1116]935    typedef TR Base;
[953]936
[1123]937    ///The type of the underlying graph.
[953]938    typedef typename TR::Graph Graph;
[1119]939    //\e
[953]940    typedef typename Graph::Node Node;
[1119]941    //\e
[953]942    typedef typename Graph::NodeIt NodeIt;
[1119]943    //\e
[953]944    typedef typename Graph::Edge Edge;
[1119]945    //\e
[953]946    typedef typename Graph::OutEdgeIt OutEdgeIt;
947   
[1123]948    ///The type of the map that stores the edge lengths.
[953]949    typedef typename TR::LengthMap LengthMap;
[1123]950    ///The type of the length of the edges.
[987]951    typedef typename LengthMap::Value Value;
[1123]952    ///\brief The type of the map that stores the last
953    ///edges of the shortest paths.
[953]954    typedef typename TR::PredMap PredMap;
[1218]955//     ///\brief The type of the map that stores the last but one
956//     ///nodes of the shortest paths.
957//     typedef typename TR::PredNodeMap PredNodeMap;
[1123]958    ///The type of the map that stores the dists of the nodes.
[953]959    typedef typename TR::DistMap DistMap;
960
[1123]961    ///The heap type used by the dijkstra algorithm.
[953]962    typedef typename TR::Heap Heap;
[1116]963public:
[1123]964    /// Constructor.
[1116]965    DijkstraWizard() : TR() {}
[953]966
[1123]967    /// Constructor that requires parameters.
[1124]968
969    /// Constructor that requires parameters.
[1123]970    /// These parameters will be the default values for the traits class.
[1116]971    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
972      TR(g,l,s) {}
[953]973
[1123]974    ///Copy constructor
[1116]975    DijkstraWizard(const TR &b) : TR(b) {}
[953]976
[1116]977    ~DijkstraWizard() {}
978
[1123]979    ///Runs Dijkstra algorithm from a given node.
980   
981    ///Runs Dijkstra algorithm from a given node.
982    ///The node can be given by the \ref source function.
[1116]983    void run()
[953]984    {
[1201]985      if(Base::_source==INVALID) throw UninitializedParameter();
[1193]986      Dijkstra<Graph,LengthMap,TR>
[1345]987        dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
988      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
[1218]989//       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
[1345]990      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
991      dij.run(Base::_source);
[1116]992    }
993
[1124]994    ///Runs Dijkstra algorithm from the given node.
[1123]995
[1124]996    ///Runs Dijkstra algorithm from the given node.
[1123]997    ///\param s is the given source.
[1116]998    void run(Node s)
999    {
[1201]1000      Base::_source=s;
[1116]1001      run();
[953]1002    }
1003
1004    template<class T>
[1116]1005    struct DefPredMapBase : public Base {
1006      typedef T PredMap;
[1367]1007      static PredMap *createPredMap(const Graph &) { return 0; };
[1236]1008      DefPredMapBase(const TR &b) : TR(b) {}
[1116]1009    };
[953]1010   
[1156]1011    ///\brief \ref named-templ-param "Named parameter"
1012    ///function for setting PredMap type
1013    ///
1014    /// \ref named-templ-param "Named parameter"
1015    ///function for setting PredMap type
[1124]1016    ///
[953]1017    template<class T>
[1116]1018    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
[953]1019    {
[1193]1020      Base::_pred=(void *)&t;
[1116]1021      return DijkstraWizard<DefPredMapBase<T> >(*this);
[953]1022    }
1023   
[1116]1024
[1218]1025//     template<class T>
1026//     struct DefPredNodeMapBase : public Base {
1027//       typedef T PredNodeMap;
1028//       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
[1236]1029//       DefPredNodeMapBase(const TR &b) : TR(b) {}
[1218]1030//     };
[1116]1031   
[1218]1032//     ///\brief \ref named-templ-param "Named parameter"
1033//     ///function for setting PredNodeMap type
1034//     ///
1035//     /// \ref named-templ-param "Named parameter"
1036//     ///function for setting PredNodeMap type
1037//     ///
1038//     template<class T>
1039//     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t)
1040//     {
1041//       Base::_predNode=(void *)&t;
1042//       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
1043//     }
[1116]1044   
1045    template<class T>
1046    struct DefDistMapBase : public Base {
1047      typedef T DistMap;
[1367]1048      static DistMap *createDistMap(const Graph &) { return 0; };
[1236]1049      DefDistMapBase(const TR &b) : TR(b) {}
[1116]1050    };
[953]1051   
[1156]1052    ///\brief \ref named-templ-param "Named parameter"
1053    ///function for setting DistMap type
1054    ///
1055    /// \ref named-templ-param "Named parameter"
1056    ///function for setting DistMap type
[1124]1057    ///
[953]1058    template<class T>
[1116]1059    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
[953]1060    {
[1193]1061      Base::_dist=(void *)&t;
[1116]1062      return DijkstraWizard<DefDistMapBase<T> >(*this);
[953]1063    }
[1117]1064   
[1123]1065    /// Sets the source node, from which the Dijkstra algorithm runs.
1066
1067    /// Sets the source node, from which the Dijkstra algorithm runs.
1068    /// \param s is the source node.
[1117]1069    DijkstraWizard<TR> &source(Node s)
[953]1070    {
[1201]1071      Base::_source=s;
[953]1072      return *this;
1073    }
1074   
1075  };
[255]1076 
[1218]1077  ///Function type interface for Dijkstra algorithm.
[953]1078
[1151]1079  /// \ingroup flowalgs
[1218]1080  ///Function type interface for Dijkstra algorithm.
[953]1081  ///
[1218]1082  ///This function also has several
1083  ///\ref named-templ-func-param "named parameters",
1084  ///they are declared as the members of class \ref DijkstraWizard.
1085  ///The following
1086  ///example shows how to use these parameters.
1087  ///\code
1088  ///  dijkstra(g,length,source).predMap(preds).run();
1089  ///\endcode
1090  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1091  ///to the end of the parameter list.
1092  ///\sa DijkstraWizard
1093  ///\sa Dijkstra
[953]1094  template<class GR, class LM>
[1116]1095  DijkstraWizard<DijkstraWizardBase<GR,LM> >
1096  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
[953]1097  {
[1116]1098    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
[953]1099  }
1100
[921]1101} //END OF NAMESPACE LEMON
[255]1102
1103#endif
1104
Note: See TracBrowser for help on using the repository browser.