COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/dijkstra.h @ 1550:4dcbb4ab1d7a

Last change on this file since 1550:4dcbb4ab1d7a was 1536:308150155bb5, checked in by Alpar Juttner, 19 years ago

Kill several doxygen warnings

File size: 34.2 KB
RevLine 
[906]1/* -*- C++ -*-
[1435]2 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
[906]3 *
[1164]4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[921]17#ifndef LEMON_DIJKSTRA_H
18#define LEMON_DIJKSTRA_H
[255]19
[758]20///\ingroup flowalgs
[255]21///\file
22///\brief Dijkstra algorithm.
[1283]23///
24///\todo getPath() should be implemented! (also for BFS and DFS)
[255]25
[953]26#include <lemon/list_graph.h>
[921]27#include <lemon/bin_heap.h>
28#include <lemon/invalid.h>
[1119]29#include <lemon/error.h>
30#include <lemon/maps.h>
[255]31
[921]32namespace lemon {
[385]33
[1119]34
[1151]35 
[954]36  ///Default traits class of Dijkstra class.
37
38  ///Default traits class of Dijkstra class.
39  ///\param GR Graph type.
40  ///\param LM Type of length map.
[953]41  template<class GR, class LM>
42  struct DijkstraDefaultTraits
43  {
[954]44    ///The graph type the algorithm runs on.
[953]45    typedef GR Graph;
46    ///The type of the map that stores the edge lengths.
47
[1124]48    ///The type of the map that stores the edge lengths.
[967]49    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
[953]50    typedef LM LengthMap;
[954]51    //The type of the length of the edges.
[987]52    typedef typename LM::Value Value;
[954]53    ///The heap type used by Dijkstra algorithm.
[967]54
55    ///The heap type used by Dijkstra algorithm.
56    ///
57    ///\sa BinHeap
58    ///\sa Dijkstra
[953]59    typedef BinHeap<typename Graph::Node,
[987]60                    typename LM::Value,
[953]61                    typename GR::template NodeMap<int>,
[987]62                    std::less<Value> > Heap;
[953]63
64    ///\brief The type of the map that stores the last
65    ///edges of the shortest paths.
66    ///
[1124]67    ///The type of the map that stores the last
68    ///edges of the shortest paths.
[967]69    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]70    ///
[954]71    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
72    ///Instantiates a PredMap.
[953]73 
[1123]74    ///This function instantiates a \ref PredMap.
75    ///\param G is the graph, to which we would like to define the PredMap.
[1119]76    ///\todo The graph alone may be insufficient for the initialization
[954]77    static PredMap *createPredMap(const GR &G)
[953]78    {
79      return new PredMap(G);
80    }
[1218]81//     ///\brief The type of the map that stores the last but one
82//     ///nodes of the shortest paths.
83//     ///
84//     ///The type of the map that stores the last but one
85//     ///nodes of the shortest paths.
86//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
87//     ///
88//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
89//     ///Instantiates a PredNodeMap.
[1125]90   
[1218]91//     ///This function instantiates a \ref PredNodeMap.
92//     ///\param G is the graph, to which
93//     ///we would like to define the \ref PredNodeMap
94//     static PredNodeMap *createPredNodeMap(const GR &G)
95//     {
96//       return new PredNodeMap();
97//     }
[1119]98
[1218]99    ///The type of the map that stores whether a nodes is processed.
[1119]100 
[1218]101    ///The type of the map that stores whether a nodes is processed.
[1119]102    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
103    ///By default it is a NullMap.
[1218]104    ///\todo If it is set to a real map,
105    ///Dijkstra::processed() should read this.
[1119]106    ///\todo named parameter to set this type, function to read and write.
[1218]107    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
108    ///Instantiates a ProcessedMap.
[1119]109 
[1218]110    ///This function instantiates a \ref ProcessedMap.
[1536]111    ///\param g is the graph, to which
[1218]112    ///we would like to define the \ref ProcessedMap
[1536]113#ifdef DOXYGEN
114    static ProcessedMap *createProcessedMap(const GR &g)
115#else
[1366]116    static ProcessedMap *createProcessedMap(const GR &)
[1536]117#endif
[1119]118    {
[1218]119      return new ProcessedMap();
[1119]120    }
[953]121    ///The type of the map that stores the dists of the nodes.
122 
[1124]123    ///The type of the map that stores the dists of the nodes.
[967]124    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]125    ///
[987]126    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
[954]127    ///Instantiates a DistMap.
[953]128 
[1123]129    ///This function instantiates a \ref DistMap.
130    ///\param G is the graph, to which we would like to define the \ref DistMap
[954]131    static DistMap *createDistMap(const GR &G)
[953]132    {
133      return new DistMap(G);
134    }
135  };
136 
[255]137  ///%Dijkstra algorithm class.
[1125]138 
[1151]139  /// \ingroup flowalgs
[255]140  ///This class provides an efficient implementation of %Dijkstra algorithm.
141  ///The edge lengths are passed to the algorithm using a
[959]142  ///\ref concept::ReadMap "ReadMap",
[255]143  ///so it is easy to change it to any kind of length.
144  ///
[880]145  ///The type of the length is determined by the
[987]146  ///\ref concept::ReadMap::Value "Value" of the length map.
[255]147  ///
148  ///It is also possible to change the underlying priority heap.
149  ///
[1218]150  ///\param GR The graph type the algorithm runs on. The default value
151  ///is \ref ListGraph. The value of GR is not used directly by
152  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
153  ///\param LM This read-only EdgeMap determines the lengths of the
154  ///edges. It is read once for each edge, so the map may involve in
155  ///relatively time consuming process to compute the edge length if
156  ///it is necessary. The default map type is \ref
157  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
158  ///of LM is not used directly by Dijkstra, it is only passed to \ref
159  ///DijkstraDefaultTraits.  \param TR Traits class to set
160  ///various data types used by the algorithm.  The default traits
161  ///class is \ref DijkstraDefaultTraits
162  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
163  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
164  ///class.
[456]165  ///
[689]166  ///\author Jacint Szabo and Alpar Juttner
[1128]167  ///\todo A compare object would be nice.
[584]168
[255]169#ifdef DOXYGEN
[584]170  template <typename GR,
171            typename LM,
[953]172            typename TR>
[255]173#else
[953]174  template <typename GR=ListGraph,
[584]175            typename LM=typename GR::template EdgeMap<int>,
[953]176            typename TR=DijkstraDefaultTraits<GR,LM> >
[255]177#endif
[1116]178  class Dijkstra {
[255]179  public:
[1125]180    /**
181     * \brief \ref Exception for uninitialized parameters.
182     *
183     * This error represents problems in the initialization
184     * of the parameters of the algorithms.
185     */
186    class UninitializedParameter : public lemon::UninitializedParameter {
187    public:
188      virtual const char* exceptionName() const {
[1218]189        return "lemon::Dijkstra::UninitializedParameter";
[1125]190      }
191    };
[1119]192
[953]193    typedef TR Traits;
[584]194    ///The type of the underlying graph.
[954]195    typedef typename TR::Graph Graph;
[911]196    ///\e
[255]197    typedef typename Graph::Node Node;
[911]198    ///\e
[255]199    typedef typename Graph::NodeIt NodeIt;
[911]200    ///\e
[255]201    typedef typename Graph::Edge Edge;
[911]202    ///\e
[255]203    typedef typename Graph::OutEdgeIt OutEdgeIt;
204   
[584]205    ///The type of the length of the edges.
[987]206    typedef typename TR::LengthMap::Value Value;
[693]207    ///The type of the map that stores the edge lengths.
[954]208    typedef typename TR::LengthMap LengthMap;
[693]209    ///\brief The type of the map that stores the last
[584]210    ///edges of the shortest paths.
[953]211    typedef typename TR::PredMap PredMap;
[1218]212//     ///\brief The type of the map that stores the last but one
213//     ///nodes of the shortest paths.
214//     typedef typename TR::PredNodeMap PredNodeMap;
215    ///The type of the map indicating if a node is processed.
216    typedef typename TR::ProcessedMap ProcessedMap;
[693]217    ///The type of the map that stores the dists of the nodes.
[953]218    typedef typename TR::DistMap DistMap;
219    ///The heap type used by the dijkstra algorithm.
220    typedef typename TR::Heap Heap;
[255]221  private:
[802]222    /// Pointer to the underlying graph.
[688]223    const Graph *G;
[802]224    /// Pointer to the length map
[954]225    const LengthMap *length;
[802]226    ///Pointer to the map of predecessors edges.
[1119]227    PredMap *_pred;
228    ///Indicates if \ref _pred is locally allocated (\c true) or not.
229    bool local_pred;
[1218]230//     ///Pointer to the map of predecessors nodes.
231//     PredNodeMap *_predNode;
232//     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
233//     bool local_predNode;
[802]234    ///Pointer to the map of distances.
[1130]235    DistMap *_dist;
236    ///Indicates if \ref _dist is locally allocated (\c true) or not.
237    bool local_dist;
[1218]238    ///Pointer to the map of processed status of the nodes.
239    ProcessedMap *_processed;
240    ///Indicates if \ref _processed is locally allocated (\c true) or not.
241    bool local_processed;
[688]242
[1218]243//     ///The source node of the last execution.
244//     Node source;
[774]245
[1128]246    ///Creates the maps if necessary.
[688]247   
[694]248    ///\todo Error if \c G or are \c NULL. What about \c length?
[688]249    ///\todo Better memory allocation (instead of new).
[1128]250    void create_maps()
[688]251    {
[1119]252      if(!_pred) {
253        local_pred = true;
254        _pred = Traits::createPredMap(*G);
[688]255      }
[1218]256//       if(!_predNode) {
257//      local_predNode = true;
258//      _predNode = Traits::createPredNodeMap(*G);
259//       }
[1130]260      if(!_dist) {
261        local_dist = true;
262        _dist = Traits::createDistMap(*G);
[688]263      }
[1218]264      if(!_processed) {
265        local_processed = true;
266        _processed = Traits::createProcessedMap(*G);
[1119]267      }
[688]268    }
[255]269   
270  public :
[1116]271 
[1128]272    ///\name Named template parameters
273
274    ///@{
275
[953]276    template <class T>
[1116]277    struct DefPredMapTraits : public Traits {
[953]278      typedef T PredMap;
279      static PredMap *createPredMap(const Graph &G)
280      {
[1126]281        throw UninitializedParameter();
[953]282      }
283    };
[954]284    ///\ref named-templ-param "Named parameter" for setting PredMap type
285
286    ///\ref named-templ-param "Named parameter" for setting PredMap type
[1043]287    ///
[953]288    template <class T>
[1116]289    class DefPredMap : public Dijkstra< Graph,
[953]290                                        LengthMap,
[1116]291                                        DefPredMapTraits<T> > { };
[953]292   
[1218]293//     template <class T>
294//     struct DefPredNodeMapTraits : public Traits {
295//       typedef T PredNodeMap;
296//       static PredNodeMap *createPredNodeMap(const Graph &G)
297//       {
298//      throw UninitializedParameter();
299//       }
300//     };
301//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
[954]302
[1218]303//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
304//     ///
305//     template <class T>
306//     class DefPredNodeMap : public Dijkstra< Graph,
307//                                          LengthMap,
308//                                          DefPredNodeMapTraits<T> > { };
[953]309   
310    template <class T>
[1116]311    struct DefDistMapTraits : public Traits {
[953]312      typedef T DistMap;
313      static DistMap *createDistMap(const Graph &G)
314      {
[1126]315        throw UninitializedParameter();
[953]316      }
317    };
[954]318    ///\ref named-templ-param "Named parameter" for setting DistMap type
319
320    ///\ref named-templ-param "Named parameter" for setting DistMap type
[1043]321    ///
[953]322    template <class T>
[1116]323    class DefDistMap : public Dijkstra< Graph,
[953]324                                        LengthMap,
[1116]325                                        DefDistMapTraits<T> > { };
[953]326   
[1128]327    template <class T>
[1218]328    struct DefProcessedMapTraits : public Traits {
329      typedef T ProcessedMap;
330      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]331      {
332        throw UninitializedParameter();
333      }
334    };
[1218]335    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]336
[1218]337    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]338    ///
339    template <class T>
[1218]340    class DefProcessedMap : public Dijkstra< Graph,
[1128]341                                        LengthMap,
[1218]342                                        DefProcessedMapTraits<T> > { };
[1128]343   
[1218]344    struct DefGraphProcessedMapTraits : public Traits {
345      typedef typename Graph::template NodeMap<bool> ProcessedMap;
346      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]347      {
[1218]348        return new ProcessedMap(G);
[1128]349      }
350    };
351    ///\brief \ref named-templ-param "Named parameter"
[1218]352    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]353    ///
354    ///\ref named-templ-param "Named parameter"
[1218]355    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]356    ///If you don't set it explicitely, it will be automatically allocated.
357    template <class T>
[1218]358    class DefProcessedMapToBeDefaultMap :
[1128]359      public Dijkstra< Graph,
360                       LengthMap,
[1218]361                       DefGraphProcessedMapTraits> { };
[1128]362   
363    ///@}
364
365
366  private:
367    typename Graph::template NodeMap<int> _heap_map;
368    Heap _heap;
369  public:     
370   
[802]371    ///Constructor.
[255]372   
[802]373    ///\param _G the graph the algorithm will run on.
374    ///\param _length the length map used by the algorithm.
[954]375    Dijkstra(const Graph& _G, const LengthMap& _length) :
[688]376      G(&_G), length(&_length),
[1119]377      _pred(NULL), local_pred(false),
[1218]378//       _predNode(NULL), local_predNode(false),
[1130]379      _dist(NULL), local_dist(false),
[1218]380      _processed(NULL), local_processed(false),
[1128]381      _heap_map(*G,-1),_heap(_heap_map)
[688]382    { }
383   
[802]384    ///Destructor.
[688]385    ~Dijkstra()
386    {
[1119]387      if(local_pred) delete _pred;
[1218]388//       if(local_predNode) delete _predNode;
[1130]389      if(local_dist) delete _dist;
[1218]390      if(local_processed) delete _processed;
[688]391    }
392
393    ///Sets the length map.
394
395    ///Sets the length map.
396    ///\return <tt> (*this) </tt>
[1116]397    Dijkstra &lengthMap(const LengthMap &m)
[688]398    {
399      length = &m;
400      return *this;
401    }
402
403    ///Sets the map storing the predecessor edges.
404
405    ///Sets the map storing the predecessor edges.
406    ///If you don't use this function before calling \ref run(),
407    ///it will allocate one. The destuctor deallocates this
408    ///automatically allocated map, of course.
409    ///\return <tt> (*this) </tt>
[1116]410    Dijkstra &predMap(PredMap &m)
[688]411    {
[1119]412      if(local_pred) {
413        delete _pred;
414        local_pred=false;
[688]415      }
[1119]416      _pred = &m;
[688]417      return *this;
418    }
419
[1218]420//     ///Sets the map storing the predecessor nodes.
[688]421
[1218]422//     ///Sets the map storing the predecessor nodes.
423//     ///If you don't use this function before calling \ref run(),
424//     ///it will allocate one. The destuctor deallocates this
425//     ///automatically allocated map, of course.
426//     ///\return <tt> (*this) </tt>
427//     Dijkstra &predNodeMap(PredNodeMap &m)
428//     {
429//       if(local_predNode) {
430//      delete _predNode;
431//      local_predNode=false;
432//       }
433//       _predNode = &m;
434//       return *this;
435//     }
[688]436
437    ///Sets the map storing the distances calculated by the algorithm.
438
439    ///Sets the map storing the distances calculated by the algorithm.
440    ///If you don't use this function before calling \ref run(),
441    ///it will allocate one. The destuctor deallocates this
442    ///automatically allocated map, of course.
443    ///\return <tt> (*this) </tt>
[1116]444    Dijkstra &distMap(DistMap &m)
[688]445    {
[1130]446      if(local_dist) {
447        delete _dist;
448        local_dist=false;
[688]449      }
[1130]450      _dist = &m;
[688]451      return *this;
452    }
[694]453
[1130]454  private:
455    void finalizeNodeData(Node v,Value dst)
456    {
[1218]457      _processed->set(v,true);
[1130]458      _dist->set(v, dst);
[1218]459//       if((*_pred)[v]!=INVALID)
460//       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
[1130]461    }
462
463  public:
[1218]464    ///\name Execution control
[1128]465    ///The simplest way to execute the algorithm is to use
[1156]466    ///one of the member functions called \c run(...).
[1128]467    ///\n
[1218]468    ///If you need more control on the execution,
[1128]469    ///first you must call \ref init(), then you can add several source nodes
[1218]470    ///with \ref addSource().
471    ///Finally \ref start() will perform the actual path
[1128]472    ///computation.
473
474    ///@{
475
476    ///Initializes the internal data structures.
477
478    ///Initializes the internal data structures.
479    ///
480    ///\todo _heap_map's type could also be in the traits class.
[1229]481    ///\todo The heaps should be able to make themselves empty directly.
[1128]482    void init()
483    {
484      create_maps();
[1229]485      while(!_heap.empty()) _heap.pop();
[774]486      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[1119]487        _pred->set(u,INVALID);
[1218]488//      _predNode->set(u,INVALID);
489        _processed->set(u,false);
[1128]490        _heap_map.set(u,Heap::PRE_HEAP);
[694]491      }
[1128]492    }
493   
494    ///Adds a new source node.
495
[1155]496    ///Adds a new source node to the priority heap.
[1128]497    ///
498    ///The optional second parameter is the initial distance of the node.
499    ///
[1155]500    ///It checks if the node has already been added to the heap and
501    ///It is pushed to the heap only if either it was not in the heap
502    ///or the shortest path found till then is longer then \c dst.
[1128]503    void addSource(Node s,Value dst=0)
504    {
[1218]505//       source = s;
[1128]506      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
[1155]507      else if(_heap[s]<dst) {
508        _heap.push(s,dst);
509        _pred->set(s,INVALID);
510      }
[1128]511    }
512   
[1155]513    ///Processes the next node in the priority heap
514
515    ///Processes the next node in the priority heap.
516    ///
[1516]517    ///\return The processed node.
518    ///
[1155]519    ///\warning The priority heap must not be empty!
[1516]520    Node processNextNode()
[1128]521    {
522      Node v=_heap.top();
523      Value oldvalue=_heap[v];
524      _heap.pop();
[1130]525      finalizeNodeData(v,oldvalue);
[694]526     
[1128]527      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
528        Node w=G->target(e);
529        switch(_heap.state(w)) {
530        case Heap::PRE_HEAP:
531          _heap.push(w,oldvalue+(*length)[e]);
532          _pred->set(w,e);
[1130]533//        _predNode->set(w,v);
[1128]534          break;
535        case Heap::IN_HEAP:
536          if ( oldvalue+(*length)[e] < _heap[w] ) {
537            _heap.decrease(w, oldvalue+(*length)[e]);
[1119]538            _pred->set(w,e);
[1130]539//          _predNode->set(w,v);
[694]540          }
[1128]541          break;
542        case Heap::POST_HEAP:
543          break;
[694]544        }
545      }
[1516]546      return v;
[694]547    }
[1128]548
[1218]549    ///\brief Returns \c false if there are nodes
550    ///to be processed in the priority heap
[1155]551    ///
[1218]552    ///Returns \c false if there are nodes
553    ///to be processed in the priority heap
554    bool emptyQueue() { return _heap.empty(); }
[1155]555    ///Returns the number of the nodes to be processed in the priority heap
556
557    ///Returns the number of the nodes to be processed in the priority heap
558    ///
[1218]559    int queueSize() { return _heap.size(); }
[1155]560   
[1130]561    ///Executes the algorithm.
[1128]562
[1130]563    ///Executes the algorithm.
[1128]564    ///
[1130]565    ///\pre init() must be called and at least one node should be added
566    ///with addSource() before using this function.
[1128]567    ///
568    ///This method runs the %Dijkstra algorithm from the root node(s)
569    ///in order to
570    ///compute the
571    ///shortest path to each node. The algorithm computes
572    ///- The shortest path tree.
573    ///- The distance of each node from the root(s).
574    ///
575    void start()
576    {
[1151]577      while ( !_heap.empty() ) processNextNode();
[1128]578    }
[255]579   
[1130]580    ///Executes the algorithm until \c dest is reached.
[1128]581
[1130]582    ///Executes the algorithm until \c dest is reached.
[1128]583    ///
[1130]584    ///\pre init() must be called and at least one node should be added
585    ///with addSource() before using this function.
[1128]586    ///
587    ///This method runs the %Dijkstra algorithm from the root node(s)
588    ///in order to
589    ///compute the
590    ///shortest path to \c dest. The algorithm computes
591    ///- The shortest path to \c  dest.
592    ///- The distance of \c dest from the root(s).
593    ///
594    void start(Node dest)
595    {
[1151]596      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
[1229]597      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
[1130]598    }
599   
600    ///Executes the algorithm until a condition is met.
601
602    ///Executes the algorithm until a condition is met.
603    ///
604    ///\pre init() must be called and at least one node should be added
605    ///with addSource() before using this function.
606    ///
607    ///\param nm must be a bool (or convertible) node map. The algorithm
608    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
[1345]609    template<class NodeBoolMap>
610    void start(const NodeBoolMap &nm)
[1130]611    {
[1193]612      while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
[1229]613      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
[1128]614    }
615   
616    ///Runs %Dijkstra algorithm from node \c s.
617   
618    ///This method runs the %Dijkstra algorithm from a root node \c s
619    ///in order to
620    ///compute the
621    ///shortest path to each node. The algorithm computes
622    ///- The shortest path tree.
623    ///- The distance of each node from the root.
624    ///
625    ///\note d.run(s) is just a shortcut of the following code.
626    ///\code
627    ///  d.init();
628    ///  d.addSource(s);
629    ///  d.start();
630    ///\endcode
631    void run(Node s) {
632      init();
633      addSource(s);
634      start();
635    }
636   
[1130]637    ///Finds the shortest path between \c s and \c t.
638   
639    ///Finds the shortest path between \c s and \c t.
640    ///
641    ///\return The length of the shortest s---t path if there exists one,
642    ///0 otherwise.
643    ///\note Apart from the return value, d.run(s) is
644    ///just a shortcut of the following code.
645    ///\code
646    ///  d.init();
647    ///  d.addSource(s);
648    ///  d.start(t);
649    ///\endcode
650    Value run(Node s,Node t) {
651      init();
652      addSource(s);
653      start(t);
654      return (*_pred)[t]==INVALID?0:(*_dist)[t];
655    }
656   
[1128]657    ///@}
658
659    ///\name Query Functions
660    ///The result of the %Dijkstra algorithm can be obtained using these
661    ///functions.\n
662    ///Before the use of these functions,
663    ///either run() or start() must be called.
664   
665    ///@{
666
[1283]667    ///Copies the shortest path to \c t into \c p
668   
669    ///This function copies the shortest path to \c t into \c p.
[1536]670    ///If it \c t is a source itself or unreachable, then it does not
[1283]671    ///alter \c p.
672    ///\todo Is it the right way to handle unreachable nodes?
673    ///\return Returns \c true if a path to \c t was actually copied to \c p,
674    ///\c false otherwise.
675    ///\sa DirPath
676    template<class P>
677    bool getPath(P &p,Node t)
678    {
679      if(reached(t)) {
680        p.clear();
681        typename P::Builder b(p);
682        for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
683          b.pushFront(pred(t));
684        b.commit();
685        return true;
686      }
687      return false;
688    }
689         
[385]690    ///The distance of a node from the root.
[255]691
[385]692    ///Returns the distance of a node from the root.
[255]693    ///\pre \ref run() must be called before using this function.
[385]694    ///\warning If node \c v in unreachable from the root the return value
[255]695    ///of this funcion is undefined.
[1130]696    Value dist(Node v) const { return (*_dist)[v]; }
[373]697
[584]698    ///Returns the 'previous edge' of the shortest path tree.
[255]699
[584]700    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
[785]701    ///i.e. it returns the last edge of a shortest path from the root to \c
[688]702    ///v. It is \ref INVALID
703    ///if \c v is unreachable from the root or if \c v=s. The
[385]704    ///shortest path tree used here is equal to the shortest path tree used in
705    ///\ref predNode(Node v).  \pre \ref run() must be called before using
706    ///this function.
[780]707    ///\todo predEdge could be a better name.
[1119]708    Edge pred(Node v) const { return (*_pred)[v]; }
[373]709
[584]710    ///Returns the 'previous node' of the shortest path tree.
[255]711
[584]712    ///For a node \c v it returns the 'previous node' of the shortest path tree,
[385]713    ///i.e. it returns the last but one node from a shortest path from the
714    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
715    ///\c v=s. The shortest path tree used here is equal to the shortest path
716    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
717    ///using this function.
[1130]718    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
719                                  G->source((*_pred)[v]); }
[255]720   
721    ///Returns a reference to the NodeMap of distances.
722
[385]723    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
724    ///be called before using this function.
[1130]725    const DistMap &distMap() const { return *_dist;}
[385]726 
[255]727    ///Returns a reference to the shortest path tree map.
728
729    ///Returns a reference to the NodeMap of the edges of the
730    ///shortest path tree.
731    ///\pre \ref run() must be called before using this function.
[1119]732    const PredMap &predMap() const { return *_pred;}
[385]733 
[1218]734//     ///Returns a reference to the map of nodes of shortest paths.
[255]735
[1218]736//     ///Returns a reference to the NodeMap of the last but one nodes of the
737//     ///shortest path tree.
738//     ///\pre \ref run() must be called before using this function.
739//     const PredNodeMap &predNodeMap() const { return *_predNode;}
[255]740
[385]741    ///Checks if a node is reachable from the root.
[255]742
[385]743    ///Returns \c true if \c v is reachable from the root.
[1218]744    ///\warning The source nodes are inditated as unreached.
[255]745    ///\pre \ref run() must be called before using this function.
[385]746    ///
[1218]747    bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
[255]748   
[1128]749    ///@}
[255]750  };
[953]751
[1218]752
753
754
755 
756  ///Default traits class of Dijkstra function.
757
758  ///Default traits class of Dijkstra function.
759  ///\param GR Graph type.
760  ///\param LM Type of length map.
761  template<class GR, class LM>
762  struct DijkstraWizardDefaultTraits
763  {
764    ///The graph type the algorithm runs on.
765    typedef GR Graph;
766    ///The type of the map that stores the edge lengths.
767
768    ///The type of the map that stores the edge lengths.
769    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
770    typedef LM LengthMap;
771    //The type of the length of the edges.
772    typedef typename LM::Value Value;
773    ///The heap type used by Dijkstra algorithm.
774
775    ///The heap type used by Dijkstra algorithm.
776    ///
777    ///\sa BinHeap
778    ///\sa Dijkstra
779    typedef BinHeap<typename Graph::Node,
780                    typename LM::Value,
781                    typename GR::template NodeMap<int>,
782                    std::less<Value> > Heap;
783
784    ///\brief The type of the map that stores the last
785    ///edges of the shortest paths.
786    ///
787    ///The type of the map that stores the last
788    ///edges of the shortest paths.
789    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
790    ///
791    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
792    ///Instantiates a PredMap.
793 
794    ///This function instantiates a \ref PredMap.
[1536]795    ///\param g is the graph, to which we would like to define the PredMap.
[1218]796    ///\todo The graph alone may be insufficient for the initialization
[1536]797#ifdef DOXYGEN
798    static PredMap *createPredMap(const GR &g)
799#else
[1367]800    static PredMap *createPredMap(const GR &)
[1536]801#endif
[1218]802    {
803      return new PredMap();
804    }
805    ///The type of the map that stores whether a nodes is processed.
806 
807    ///The type of the map that stores whether a nodes is processed.
808    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
809    ///By default it is a NullMap.
810    ///\todo If it is set to a real map,
811    ///Dijkstra::processed() should read this.
812    ///\todo named parameter to set this type, function to read and write.
813    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
814    ///Instantiates a ProcessedMap.
815 
816    ///This function instantiates a \ref ProcessedMap.
[1536]817    ///\param g is the graph, to which
[1218]818    ///we would like to define the \ref ProcessedMap
[1536]819#ifdef DOXYGEN
820    static ProcessedMap *createProcessedMap(const GR &g)
821#else
[1367]822    static ProcessedMap *createProcessedMap(const GR &)
[1536]823#endif
[1218]824    {
825      return new ProcessedMap();
826    }
827    ///The type of the map that stores the dists of the nodes.
828 
829    ///The type of the map that stores the dists of the nodes.
830    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
831    ///
832    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
833    ///Instantiates a DistMap.
834 
835    ///This function instantiates a \ref DistMap.
[1536]836    ///\param g is the graph, to which we would like to define the \ref DistMap
837#ifdef DOXYGEN
838    static DistMap *createDistMap(const GR &g)
839#else
[1367]840    static DistMap *createDistMap(const GR &)
[1536]841#endif
[1218]842    {
843      return new DistMap();
844    }
845  };
846 
[1123]847  /// Default traits used by \ref DijkstraWizard
848
[1151]849  /// To make it easier to use Dijkstra algorithm
850  ///we have created a wizard class.
851  /// This \ref DijkstraWizard class needs default traits,
852  ///as well as the \ref Dijkstra class.
[1123]853  /// The \ref DijkstraWizardBase is a class to be the default traits of the
854  /// \ref DijkstraWizard class.
[1220]855  /// \todo More named parameters are required...
[1116]856  template<class GR,class LM>
[1218]857  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
[1116]858  {
859
[1218]860    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
[1116]861  protected:
[1201]862    /// Type of the nodes in the graph.
863    typedef typename Base::Graph::Node Node;
864
[1116]865    /// Pointer to the underlying graph.
866    void *_g;
867    /// Pointer to the length map
868    void *_length;
869    ///Pointer to the map of predecessors edges.
870    void *_pred;
[1218]871//     ///Pointer to the map of predecessors nodes.
872//     void *_predNode;
[1116]873    ///Pointer to the map of distances.
874    void *_dist;
875    ///Pointer to the source node.
[1201]876    Node _source;
[1116]877
878    public:
[1123]879    /// Constructor.
880   
881    /// This constructor does not require parameters, therefore it initiates
882    /// all of the attributes to default values (0, INVALID).
[1218]883    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
884//                         _predNode(0),
885                           _dist(0), _source(INVALID) {}
[1116]886
[1123]887    /// Constructor.
888   
[1156]889    /// This constructor requires some parameters,
890    /// listed in the parameters list.
[1123]891    /// Others are initiated to 0.
892    /// \param g is the initial value of  \ref _g
893    /// \param l is the initial value of  \ref _length
894    /// \param s is the initial value of  \ref _source
[1116]895    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
[1218]896      _g((void *)&g), _length((void *)&l), _pred(0),
897//       _predNode(0),
898      _dist(0), _source(s) {}
[1116]899
900  };
901 
[1229]902  /// A class to make the usage of Dijkstra algorithm easier
[953]903
[1123]904  /// This class is created to make it easier to use Dijkstra algorithm.
905  /// It uses the functions and features of the plain \ref Dijkstra,
[1151]906  /// but it is much simpler to use it.
[953]907  ///
[1123]908  /// Simplicity means that the way to change the types defined
909  /// in the traits class is based on functions that returns the new class
[1151]910  /// and not on templatable built-in classes.
911  /// When using the plain \ref Dijkstra
912  /// the new class with the modified type comes from
913  /// the original class by using the ::
914  /// operator. In the case of \ref DijkstraWizard only
915  /// a function have to be called and it will
[1123]916  /// return the needed class.
917  ///
918  /// It does not have own \ref run method. When its \ref run method is called
919  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
920  /// method of it.
[953]921  template<class TR>
[1116]922  class DijkstraWizard : public TR
[953]923  {
[1116]924    typedef TR Base;
[953]925
[1123]926    ///The type of the underlying graph.
[953]927    typedef typename TR::Graph Graph;
[1119]928    //\e
[953]929    typedef typename Graph::Node Node;
[1119]930    //\e
[953]931    typedef typename Graph::NodeIt NodeIt;
[1119]932    //\e
[953]933    typedef typename Graph::Edge Edge;
[1119]934    //\e
[953]935    typedef typename Graph::OutEdgeIt OutEdgeIt;
936   
[1123]937    ///The type of the map that stores the edge lengths.
[953]938    typedef typename TR::LengthMap LengthMap;
[1123]939    ///The type of the length of the edges.
[987]940    typedef typename LengthMap::Value Value;
[1123]941    ///\brief The type of the map that stores the last
942    ///edges of the shortest paths.
[953]943    typedef typename TR::PredMap PredMap;
[1218]944//     ///\brief The type of the map that stores the last but one
945//     ///nodes of the shortest paths.
946//     typedef typename TR::PredNodeMap PredNodeMap;
[1123]947    ///The type of the map that stores the dists of the nodes.
[953]948    typedef typename TR::DistMap DistMap;
949
[1123]950    ///The heap type used by the dijkstra algorithm.
[953]951    typedef typename TR::Heap Heap;
[1116]952public:
[1123]953    /// Constructor.
[1116]954    DijkstraWizard() : TR() {}
[953]955
[1123]956    /// Constructor that requires parameters.
[1124]957
958    /// Constructor that requires parameters.
[1123]959    /// These parameters will be the default values for the traits class.
[1116]960    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
961      TR(g,l,s) {}
[953]962
[1123]963    ///Copy constructor
[1116]964    DijkstraWizard(const TR &b) : TR(b) {}
[953]965
[1116]966    ~DijkstraWizard() {}
967
[1123]968    ///Runs Dijkstra algorithm from a given node.
969   
970    ///Runs Dijkstra algorithm from a given node.
971    ///The node can be given by the \ref source function.
[1116]972    void run()
[953]973    {
[1201]974      if(Base::_source==INVALID) throw UninitializedParameter();
[1193]975      Dijkstra<Graph,LengthMap,TR>
[1345]976        dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
977      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
[1218]978//       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
[1345]979      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
980      dij.run(Base::_source);
[1116]981    }
982
[1124]983    ///Runs Dijkstra algorithm from the given node.
[1123]984
[1124]985    ///Runs Dijkstra algorithm from the given node.
[1123]986    ///\param s is the given source.
[1116]987    void run(Node s)
988    {
[1201]989      Base::_source=s;
[1116]990      run();
[953]991    }
992
993    template<class T>
[1116]994    struct DefPredMapBase : public Base {
995      typedef T PredMap;
[1367]996      static PredMap *createPredMap(const Graph &) { return 0; };
[1236]997      DefPredMapBase(const TR &b) : TR(b) {}
[1116]998    };
[953]999   
[1156]1000    ///\brief \ref named-templ-param "Named parameter"
1001    ///function for setting PredMap type
1002    ///
1003    /// \ref named-templ-param "Named parameter"
1004    ///function for setting PredMap type
[1124]1005    ///
[953]1006    template<class T>
[1116]1007    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
[953]1008    {
[1193]1009      Base::_pred=(void *)&t;
[1116]1010      return DijkstraWizard<DefPredMapBase<T> >(*this);
[953]1011    }
1012   
[1116]1013
[1218]1014//     template<class T>
1015//     struct DefPredNodeMapBase : public Base {
1016//       typedef T PredNodeMap;
1017//       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
[1236]1018//       DefPredNodeMapBase(const TR &b) : TR(b) {}
[1218]1019//     };
[1116]1020   
[1218]1021//     ///\brief \ref named-templ-param "Named parameter"
1022//     ///function for setting PredNodeMap type
1023//     ///
1024//     /// \ref named-templ-param "Named parameter"
1025//     ///function for setting PredNodeMap type
1026//     ///
1027//     template<class T>
1028//     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t)
1029//     {
1030//       Base::_predNode=(void *)&t;
1031//       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
1032//     }
[1116]1033   
1034    template<class T>
1035    struct DefDistMapBase : public Base {
1036      typedef T DistMap;
[1367]1037      static DistMap *createDistMap(const Graph &) { return 0; };
[1236]1038      DefDistMapBase(const TR &b) : TR(b) {}
[1116]1039    };
[953]1040   
[1156]1041    ///\brief \ref named-templ-param "Named parameter"
1042    ///function for setting DistMap type
1043    ///
1044    /// \ref named-templ-param "Named parameter"
1045    ///function for setting DistMap type
[1124]1046    ///
[953]1047    template<class T>
[1116]1048    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
[953]1049    {
[1193]1050      Base::_dist=(void *)&t;
[1116]1051      return DijkstraWizard<DefDistMapBase<T> >(*this);
[953]1052    }
[1117]1053   
[1123]1054    /// Sets the source node, from which the Dijkstra algorithm runs.
1055
1056    /// Sets the source node, from which the Dijkstra algorithm runs.
1057    /// \param s is the source node.
[1117]1058    DijkstraWizard<TR> &source(Node s)
[953]1059    {
[1201]1060      Base::_source=s;
[953]1061      return *this;
1062    }
1063   
1064  };
[255]1065 
[1218]1066  ///Function type interface for Dijkstra algorithm.
[953]1067
[1151]1068  /// \ingroup flowalgs
[1218]1069  ///Function type interface for Dijkstra algorithm.
[953]1070  ///
[1218]1071  ///This function also has several
1072  ///\ref named-templ-func-param "named parameters",
1073  ///they are declared as the members of class \ref DijkstraWizard.
1074  ///The following
1075  ///example shows how to use these parameters.
1076  ///\code
1077  ///  dijkstra(g,length,source).predMap(preds).run();
1078  ///\endcode
1079  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1080  ///to the end of the parameter list.
1081  ///\sa DijkstraWizard
1082  ///\sa Dijkstra
[953]1083  template<class GR, class LM>
[1116]1084  DijkstraWizard<DijkstraWizardBase<GR,LM> >
1085  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
[953]1086  {
[1116]1087    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
[953]1088  }
1089
[921]1090} //END OF NAMESPACE LEMON
[255]1091
1092#endif
1093
Note: See TracBrowser for help on using the repository browser.