COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/dijkstra.h @ 1756:b1f441f24d08

Last change on this file since 1756:b1f441f24d08 was 1741:7a98fe2ed989, checked in by Balazs Dezso, 19 years ago

Some modifications on shortest path algoritms:

  • heap traits
  • checked execution
File size: 35.6 KB
RevLine 
[906]1/* -*- C++ -*-
[1435]2 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
[906]3 *
[1164]4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[921]17#ifndef LEMON_DIJKSTRA_H
18#define LEMON_DIJKSTRA_H
[255]19
[758]20///\ingroup flowalgs
[255]21///\file
22///\brief Dijkstra algorithm.
[1283]23///
24///\todo getPath() should be implemented! (also for BFS and DFS)
[1734]25///\todo dijkstraZero() solution should be revised.
[255]26
[953]27#include <lemon/list_graph.h>
[921]28#include <lemon/bin_heap.h>
29#include <lemon/invalid.h>
[1119]30#include <lemon/error.h>
31#include <lemon/maps.h>
[255]32
[921]33namespace lemon {
[385]34
[1734]35  template<class T> T dijkstraZero() {return 0;}
[1151]36 
[954]37  ///Default traits class of Dijkstra class.
38
39  ///Default traits class of Dijkstra class.
40  ///\param GR Graph type.
41  ///\param LM Type of length map.
[953]42  template<class GR, class LM>
43  struct DijkstraDefaultTraits
44  {
[954]45    ///The graph type the algorithm runs on.
[953]46    typedef GR Graph;
47    ///The type of the map that stores the edge lengths.
48
[1124]49    ///The type of the map that stores the edge lengths.
[967]50    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
[953]51    typedef LM LengthMap;
[954]52    //The type of the length of the edges.
[987]53    typedef typename LM::Value Value;
[1721]54    /// The cross reference type used by heap.
55
56    /// The cross reference type used by heap.
57    /// Usually it is \c Graph::NodeMap<int>.
58    typedef typename Graph::template NodeMap<int> HeapCrossRef;
59    ///Instantiates a HeapCrossRef.
60
61    ///This function instantiates a \ref HeapCrossRef.
62    /// \param G is the graph, to which we would like to define the
63    /// HeapCrossRef.
64    static HeapCrossRef *createHeapCrossRef(const GR &G)
65    {
66      return new HeapCrossRef(G);
67    }
68   
[954]69    ///The heap type used by Dijkstra algorithm.
[967]70
71    ///The heap type used by Dijkstra algorithm.
72    ///
73    ///\sa BinHeap
74    ///\sa Dijkstra
[1709]75    typedef BinHeap<typename Graph::Node, typename LM::Value,
[1741]76                    HeapCrossRef, std::less<Value> > Heap;
[953]77
[1721]78    static Heap *createHeap(HeapCrossRef& R)
79    {
80      return new Heap(R);
81    }
82
[953]83    ///\brief The type of the map that stores the last
84    ///edges of the shortest paths.
85    ///
[1124]86    ///The type of the map that stores the last
87    ///edges of the shortest paths.
[967]88    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]89    ///
[954]90    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
91    ///Instantiates a PredMap.
[953]92 
[1123]93    ///This function instantiates a \ref PredMap.
94    ///\param G is the graph, to which we would like to define the PredMap.
[1119]95    ///\todo The graph alone may be insufficient for the initialization
[954]96    static PredMap *createPredMap(const GR &G)
[953]97    {
98      return new PredMap(G);
99    }
[1119]100
[1218]101    ///The type of the map that stores whether a nodes is processed.
[1119]102 
[1218]103    ///The type of the map that stores whether a nodes is processed.
[1119]104    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
105    ///By default it is a NullMap.
[1218]106    ///\todo If it is set to a real map,
107    ///Dijkstra::processed() should read this.
[1119]108    ///\todo named parameter to set this type, function to read and write.
[1218]109    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
110    ///Instantiates a ProcessedMap.
[1119]111 
[1218]112    ///This function instantiates a \ref ProcessedMap.
[1536]113    ///\param g is the graph, to which
[1218]114    ///we would like to define the \ref ProcessedMap
[1536]115#ifdef DOXYGEN
116    static ProcessedMap *createProcessedMap(const GR &g)
117#else
[1366]118    static ProcessedMap *createProcessedMap(const GR &)
[1536]119#endif
[1119]120    {
[1218]121      return new ProcessedMap();
[1119]122    }
[953]123    ///The type of the map that stores the dists of the nodes.
124 
[1124]125    ///The type of the map that stores the dists of the nodes.
[967]126    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]127    ///
[987]128    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
[954]129    ///Instantiates a DistMap.
[953]130 
[1123]131    ///This function instantiates a \ref DistMap.
132    ///\param G is the graph, to which we would like to define the \ref DistMap
[954]133    static DistMap *createDistMap(const GR &G)
[953]134    {
135      return new DistMap(G);
136    }
137  };
138 
[255]139  ///%Dijkstra algorithm class.
[1125]140 
[1151]141  /// \ingroup flowalgs
[255]142  ///This class provides an efficient implementation of %Dijkstra algorithm.
143  ///The edge lengths are passed to the algorithm using a
[959]144  ///\ref concept::ReadMap "ReadMap",
[255]145  ///so it is easy to change it to any kind of length.
146  ///
[880]147  ///The type of the length is determined by the
[987]148  ///\ref concept::ReadMap::Value "Value" of the length map.
[255]149  ///
150  ///It is also possible to change the underlying priority heap.
151  ///
[1218]152  ///\param GR The graph type the algorithm runs on. The default value
153  ///is \ref ListGraph. The value of GR is not used directly by
154  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
155  ///\param LM This read-only EdgeMap determines the lengths of the
156  ///edges. It is read once for each edge, so the map may involve in
157  ///relatively time consuming process to compute the edge length if
158  ///it is necessary. The default map type is \ref
159  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
160  ///of LM is not used directly by Dijkstra, it is only passed to \ref
161  ///DijkstraDefaultTraits.  \param TR Traits class to set
162  ///various data types used by the algorithm.  The default traits
163  ///class is \ref DijkstraDefaultTraits
164  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
165  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
166  ///class.
[456]167  ///
[689]168  ///\author Jacint Szabo and Alpar Juttner
[1128]169  ///\todo A compare object would be nice.
[584]170
[255]171#ifdef DOXYGEN
[584]172  template <typename GR,
173            typename LM,
[953]174            typename TR>
[255]175#else
[953]176  template <typename GR=ListGraph,
[584]177            typename LM=typename GR::template EdgeMap<int>,
[953]178            typename TR=DijkstraDefaultTraits<GR,LM> >
[255]179#endif
[1116]180  class Dijkstra {
[255]181  public:
[1125]182    /**
183     * \brief \ref Exception for uninitialized parameters.
184     *
185     * This error represents problems in the initialization
186     * of the parameters of the algorithms.
187     */
188    class UninitializedParameter : public lemon::UninitializedParameter {
189    public:
190      virtual const char* exceptionName() const {
[1218]191        return "lemon::Dijkstra::UninitializedParameter";
[1125]192      }
193    };
[1119]194
[953]195    typedef TR Traits;
[584]196    ///The type of the underlying graph.
[954]197    typedef typename TR::Graph Graph;
[911]198    ///\e
[255]199    typedef typename Graph::Node Node;
[911]200    ///\e
[255]201    typedef typename Graph::NodeIt NodeIt;
[911]202    ///\e
[255]203    typedef typename Graph::Edge Edge;
[911]204    ///\e
[255]205    typedef typename Graph::OutEdgeIt OutEdgeIt;
206   
[584]207    ///The type of the length of the edges.
[987]208    typedef typename TR::LengthMap::Value Value;
[693]209    ///The type of the map that stores the edge lengths.
[954]210    typedef typename TR::LengthMap LengthMap;
[693]211    ///\brief The type of the map that stores the last
[584]212    ///edges of the shortest paths.
[953]213    typedef typename TR::PredMap PredMap;
[1218]214    ///The type of the map indicating if a node is processed.
215    typedef typename TR::ProcessedMap ProcessedMap;
[693]216    ///The type of the map that stores the dists of the nodes.
[953]217    typedef typename TR::DistMap DistMap;
[1721]218    ///The cross reference type used for the current heap.
219    typedef typename TR::HeapCrossRef HeapCrossRef;
[953]220    ///The heap type used by the dijkstra algorithm.
221    typedef typename TR::Heap Heap;
[255]222  private:
[802]223    /// Pointer to the underlying graph.
[688]224    const Graph *G;
[802]225    /// Pointer to the length map
[954]226    const LengthMap *length;
[802]227    ///Pointer to the map of predecessors edges.
[1119]228    PredMap *_pred;
229    ///Indicates if \ref _pred is locally allocated (\c true) or not.
230    bool local_pred;
[802]231    ///Pointer to the map of distances.
[1130]232    DistMap *_dist;
233    ///Indicates if \ref _dist is locally allocated (\c true) or not.
234    bool local_dist;
[1218]235    ///Pointer to the map of processed status of the nodes.
236    ProcessedMap *_processed;
237    ///Indicates if \ref _processed is locally allocated (\c true) or not.
238    bool local_processed;
[1721]239    ///Pointer to the heap cross references.
240    HeapCrossRef *_heap_cross_ref;
241    ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
242    bool local_heap_cross_ref;
243    ///Pointer to the heap.
244    Heap *_heap;
245    ///Indicates if \ref _heap is locally allocated (\c true) or not.
246    bool local_heap;
[688]247
[1128]248    ///Creates the maps if necessary.
[688]249   
[694]250    ///\todo Error if \c G or are \c NULL. What about \c length?
[688]251    ///\todo Better memory allocation (instead of new).
[1128]252    void create_maps()
[688]253    {
[1119]254      if(!_pred) {
255        local_pred = true;
256        _pred = Traits::createPredMap(*G);
[688]257      }
[1130]258      if(!_dist) {
259        local_dist = true;
260        _dist = Traits::createDistMap(*G);
[688]261      }
[1218]262      if(!_processed) {
263        local_processed = true;
264        _processed = Traits::createProcessedMap(*G);
[1119]265      }
[1721]266      if (!_heap_cross_ref) {
267        local_heap_cross_ref = true;
268        _heap_cross_ref = Traits::createHeapCrossRef(*G);
269      }
270      if (!_heap) {
271        local_heap = true;
272        _heap = Traits::createHeap(*_heap_cross_ref);
273      }
[688]274    }
[255]275   
276  public :
[1710]277
278    typedef Dijkstra Create;
[1116]279 
[1128]280    ///\name Named template parameters
281
282    ///@{
283
[953]284    template <class T>
[1116]285    struct DefPredMapTraits : public Traits {
[953]286      typedef T PredMap;
287      static PredMap *createPredMap(const Graph &G)
288      {
[1126]289        throw UninitializedParameter();
[953]290      }
291    };
[954]292    ///\ref named-templ-param "Named parameter" for setting PredMap type
293
294    ///\ref named-templ-param "Named parameter" for setting PredMap type
[1043]295    ///
[953]296    template <class T>
[1709]297    struct DefPredMap
298      : public Dijkstra< Graph, LengthMap, DefPredMapTraits<T> > {
299      typedef Dijkstra< Graph,  LengthMap, DefPredMapTraits<T> > Create;
300    };
[953]301   
302    template <class T>
[1116]303    struct DefDistMapTraits : public Traits {
[953]304      typedef T DistMap;
305      static DistMap *createDistMap(const Graph &G)
306      {
[1126]307        throw UninitializedParameter();
[953]308      }
309    };
[954]310    ///\ref named-templ-param "Named parameter" for setting DistMap type
311
312    ///\ref named-templ-param "Named parameter" for setting DistMap type
[1043]313    ///
[953]314    template <class T>
[1709]315    struct DefDistMap
316      : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > {
317      typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
318    };
[953]319   
[1128]320    template <class T>
[1218]321    struct DefProcessedMapTraits : public Traits {
322      typedef T ProcessedMap;
323      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]324      {
325        throw UninitializedParameter();
326      }
327    };
[1218]328    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]329
[1218]330    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]331    ///
332    template <class T>
[1709]333    struct DefProcessedMap
334      : public Dijkstra< Graph, LengthMap, DefProcessedMapTraits<T> > {
335      typedef Dijkstra< Graph,  LengthMap, DefProcessedMapTraits<T> > Create;
336    };
[1128]337   
[1218]338    struct DefGraphProcessedMapTraits : public Traits {
339      typedef typename Graph::template NodeMap<bool> ProcessedMap;
340      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]341      {
[1218]342        return new ProcessedMap(G);
[1128]343      }
344    };
345    ///\brief \ref named-templ-param "Named parameter"
[1218]346    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]347    ///
348    ///\ref named-templ-param "Named parameter"
[1218]349    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]350    ///If you don't set it explicitely, it will be automatically allocated.
351    template <class T>
[1709]352    struct DefProcessedMapToBeDefaultMap
353      : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
354      typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
355    };
[1721]356
357    template <class H, class CR>
358    struct DefHeapTraits : public Traits {
359      typedef CR HeapCrossRef;
360      typedef H Heap;
[1741]361      static HeapCrossRef *createHeapCrossRef(const Graph &) {
362        throw UninitializedParameter();
[1721]363      }
[1741]364      static Heap *createHeap(HeapCrossRef &)
[1721]365      {
[1741]366        throw UninitializedParameter();
[1721]367      }
368    };
369    ///\ref named-templ-param "Named parameter" for setting heap and cross
370    ///reference type
371
372    ///\ref named-templ-param "Named parameter" for setting heap and cross
373    ///reference type
374    ///
375    template <class H, class CR = typename Graph::template NodeMap<int> >
376    struct DefHeap
377      : public Dijkstra< Graph, LengthMap, DefHeapTraits<H, CR> > {
378      typedef Dijkstra< Graph,  LengthMap, DefHeapTraits<H, CR> > Create;
379    };
[1741]380
381    template <class H, class CR>
382    struct DefStandardHeapTraits : public Traits {
383      typedef CR HeapCrossRef;
384      typedef H Heap;
385      static HeapCrossRef *createHeapCrossRef(const Graph &G) {
386        return new HeapCrossRef(G);
387      }
388      static Heap *createHeap(HeapCrossRef &R)
389      {
390        return new Heap(R);
391      }
392    };
393    ///\ref named-templ-param "Named parameter" for setting heap and cross
394    ///reference type with automatic allocation
395
396    ///\ref named-templ-param "Named parameter" for setting heap and cross
397    ///reference type. It can allocate the heap and the cross reference
398    ///object if the cross reference's constructor waits for the graph as
399    ///parameter and the heap's constructor waits for the cross reference.
400    template <class H, class CR = typename Graph::template NodeMap<int> >
401    struct DefStandardHeap
402      : public Dijkstra< Graph, LengthMap, DefStandardHeapTraits<H, CR> > {
403      typedef Dijkstra< Graph,  LengthMap, DefStandardHeapTraits<H, CR> >
404      Create;
405    };
[1128]406   
407    ///@}
408
409
[1710]410  protected:
411
412    Dijkstra() {}
413
[1128]414  public:     
415   
[802]416    ///Constructor.
[255]417   
[802]418    ///\param _G the graph the algorithm will run on.
419    ///\param _length the length map used by the algorithm.
[954]420    Dijkstra(const Graph& _G, const LengthMap& _length) :
[688]421      G(&_G), length(&_length),
[1119]422      _pred(NULL), local_pred(false),
[1130]423      _dist(NULL), local_dist(false),
[1218]424      _processed(NULL), local_processed(false),
[1721]425      _heap_cross_ref(NULL), local_heap_cross_ref(false),
426      _heap(NULL), local_heap(false)
[688]427    { }
428   
[802]429    ///Destructor.
[688]430    ~Dijkstra()
431    {
[1119]432      if(local_pred) delete _pred;
[1130]433      if(local_dist) delete _dist;
[1218]434      if(local_processed) delete _processed;
[1721]435      if(local_heap_cross_ref) delete _heap_cross_ref;
436      if(local_heap) delete _heap;
[688]437    }
438
439    ///Sets the length map.
440
441    ///Sets the length map.
442    ///\return <tt> (*this) </tt>
[1116]443    Dijkstra &lengthMap(const LengthMap &m)
[688]444    {
445      length = &m;
446      return *this;
447    }
448
449    ///Sets the map storing the predecessor edges.
450
451    ///Sets the map storing the predecessor edges.
452    ///If you don't use this function before calling \ref run(),
453    ///it will allocate one. The destuctor deallocates this
454    ///automatically allocated map, of course.
455    ///\return <tt> (*this) </tt>
[1116]456    Dijkstra &predMap(PredMap &m)
[688]457    {
[1119]458      if(local_pred) {
459        delete _pred;
460        local_pred=false;
[688]461      }
[1119]462      _pred = &m;
[688]463      return *this;
464    }
465
466    ///Sets the map storing the distances calculated by the algorithm.
467
468    ///Sets the map storing the distances calculated by the algorithm.
469    ///If you don't use this function before calling \ref run(),
470    ///it will allocate one. The destuctor deallocates this
471    ///automatically allocated map, of course.
472    ///\return <tt> (*this) </tt>
[1116]473    Dijkstra &distMap(DistMap &m)
[688]474    {
[1130]475      if(local_dist) {
476        delete _dist;
477        local_dist=false;
[688]478      }
[1130]479      _dist = &m;
[688]480      return *this;
481    }
[694]482
[1741]483    ///Sets the heap and the cross reference used by algorithm.
484
485    ///Sets the heap and the cross reference used by algorithm.
486    ///If you don't use this function before calling \ref run(),
487    ///it will allocate one. The destuctor deallocates this
488    ///automatically allocated map, of course.
489    ///\return <tt> (*this) </tt>
490    Dijkstra &heap(Heap& heap, HeapCrossRef &crossRef)
491    {
492      if(local_heap_cross_ref) {
493        delete _heap_cross_ref;
494        local_heap_cross_ref=false;
495      }
496      _heap_cross_ref = &crossRef;
497      if(local_heap) {
498        delete _heap;
499        local_heap=false;
500      }
501      _heap = &heap;
502      return *this;
503    }
504
[1130]505  private:
506    void finalizeNodeData(Node v,Value dst)
507    {
[1218]508      _processed->set(v,true);
[1130]509      _dist->set(v, dst);
510    }
511
512  public:
[1218]513    ///\name Execution control
[1128]514    ///The simplest way to execute the algorithm is to use
[1156]515    ///one of the member functions called \c run(...).
[1128]516    ///\n
[1218]517    ///If you need more control on the execution,
[1128]518    ///first you must call \ref init(), then you can add several source nodes
[1218]519    ///with \ref addSource().
520    ///Finally \ref start() will perform the actual path
[1128]521    ///computation.
522
523    ///@{
524
525    ///Initializes the internal data structures.
526
527    ///Initializes the internal data structures.
528    ///
529    void init()
530    {
531      create_maps();
[1721]532      _heap->clear();
[774]533      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[1119]534        _pred->set(u,INVALID);
[1218]535        _processed->set(u,false);
[1721]536        _heap_cross_ref->set(u,Heap::PRE_HEAP);
[694]537      }
[1128]538    }
539   
540    ///Adds a new source node.
541
[1155]542    ///Adds a new source node to the priority heap.
[1128]543    ///
544    ///The optional second parameter is the initial distance of the node.
545    ///
[1155]546    ///It checks if the node has already been added to the heap and
547    ///It is pushed to the heap only if either it was not in the heap
548    ///or the shortest path found till then is longer then \c dst.
[1734]549    void addSource(Node s,Value dst=dijkstraZero<Value>())
[1128]550    {
[1721]551      if(_heap->state(s) != Heap::IN_HEAP) {
552        _heap->push(s,dst);
553      } else if((*_heap)[s]<dst) {
554        _heap->push(s,dst);
[1155]555        _pred->set(s,INVALID);
556      }
[1128]557    }
558   
[1155]559    ///Processes the next node in the priority heap
560
561    ///Processes the next node in the priority heap.
562    ///
[1516]563    ///\return The processed node.
564    ///
[1155]565    ///\warning The priority heap must not be empty!
[1516]566    Node processNextNode()
[1128]567    {
[1721]568      Node v=_heap->top();
569      Value oldvalue=_heap->prio();
570      _heap->pop();
[1130]571      finalizeNodeData(v,oldvalue);
[694]572     
[1128]573      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
574        Node w=G->target(e);
[1721]575        switch(_heap->state(w)) {
[1128]576        case Heap::PRE_HEAP:
[1721]577          _heap->push(w,oldvalue+(*length)[e]);
[1128]578          _pred->set(w,e);
579          break;
580        case Heap::IN_HEAP:
[1721]581          if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
582            _heap->decrease(w, oldvalue+(*length)[e]);
[1119]583            _pred->set(w,e);
[694]584          }
[1128]585          break;
586        case Heap::POST_HEAP:
587          break;
[694]588        }
589      }
[1516]590      return v;
[694]591    }
[1128]592
[1665]593    ///Next node to be processed.
594   
595    ///Next node to be processed.
596    ///
597    ///\return The next node to be processed or INVALID if the priority heap
598    /// is empty.
[1694]599    Node nextNode()
[1665]600    {
[1721]601      return _heap->empty()?_heap->top():INVALID;
[1665]602    }
603 
[1218]604    ///\brief Returns \c false if there are nodes
605    ///to be processed in the priority heap
[1155]606    ///
[1218]607    ///Returns \c false if there are nodes
608    ///to be processed in the priority heap
[1721]609    bool emptyQueue() { return _heap->empty(); }
[1155]610    ///Returns the number of the nodes to be processed in the priority heap
611
612    ///Returns the number of the nodes to be processed in the priority heap
613    ///
[1721]614    int queueSize() { return _heap->size(); }
[1155]615   
[1130]616    ///Executes the algorithm.
[1128]617
[1130]618    ///Executes the algorithm.
[1128]619    ///
[1130]620    ///\pre init() must be called and at least one node should be added
621    ///with addSource() before using this function.
[1128]622    ///
623    ///This method runs the %Dijkstra algorithm from the root node(s)
624    ///in order to
625    ///compute the
626    ///shortest path to each node. The algorithm computes
627    ///- The shortest path tree.
628    ///- The distance of each node from the root(s).
629    ///
630    void start()
631    {
[1721]632      while ( !_heap->empty() ) processNextNode();
[1128]633    }
[255]634   
[1130]635    ///Executes the algorithm until \c dest is reached.
[1128]636
[1130]637    ///Executes the algorithm until \c dest is reached.
[1128]638    ///
[1130]639    ///\pre init() must be called and at least one node should be added
640    ///with addSource() before using this function.
[1128]641    ///
642    ///This method runs the %Dijkstra algorithm from the root node(s)
643    ///in order to
644    ///compute the
645    ///shortest path to \c dest. The algorithm computes
646    ///- The shortest path to \c  dest.
647    ///- The distance of \c dest from the root(s).
648    ///
649    void start(Node dest)
650    {
[1721]651      while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
652      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
[1130]653    }
654   
655    ///Executes the algorithm until a condition is met.
656
657    ///Executes the algorithm until a condition is met.
658    ///
659    ///\pre init() must be called and at least one node should be added
660    ///with addSource() before using this function.
661    ///
662    ///\param nm must be a bool (or convertible) node map. The algorithm
663    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
[1345]664    template<class NodeBoolMap>
665    void start(const NodeBoolMap &nm)
[1130]666    {
[1721]667      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
668      if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
[1128]669    }
670   
671    ///Runs %Dijkstra algorithm from node \c s.
672   
673    ///This method runs the %Dijkstra algorithm from a root node \c s
674    ///in order to
675    ///compute the
676    ///shortest path to each node. The algorithm computes
677    ///- The shortest path tree.
678    ///- The distance of each node from the root.
679    ///
680    ///\note d.run(s) is just a shortcut of the following code.
681    ///\code
682    ///  d.init();
683    ///  d.addSource(s);
684    ///  d.start();
685    ///\endcode
686    void run(Node s) {
687      init();
688      addSource(s);
689      start();
690    }
691   
[1130]692    ///Finds the shortest path between \c s and \c t.
693   
694    ///Finds the shortest path between \c s and \c t.
695    ///
696    ///\return The length of the shortest s---t path if there exists one,
697    ///0 otherwise.
698    ///\note Apart from the return value, d.run(s) is
699    ///just a shortcut of the following code.
700    ///\code
701    ///  d.init();
702    ///  d.addSource(s);
703    ///  d.start(t);
704    ///\endcode
705    Value run(Node s,Node t) {
706      init();
707      addSource(s);
708      start(t);
[1734]709      return (*_pred)[t]==INVALID?dijkstraZero<Value>():(*_dist)[t];
[1130]710    }
711   
[1128]712    ///@}
713
714    ///\name Query Functions
715    ///The result of the %Dijkstra algorithm can be obtained using these
716    ///functions.\n
717    ///Before the use of these functions,
718    ///either run() or start() must be called.
719   
720    ///@{
721
[1283]722    ///Copies the shortest path to \c t into \c p
723   
724    ///This function copies the shortest path to \c t into \c p.
[1536]725    ///If it \c t is a source itself or unreachable, then it does not
[1283]726    ///alter \c p.
727    ///\todo Is it the right way to handle unreachable nodes?
728    ///\return Returns \c true if a path to \c t was actually copied to \c p,
729    ///\c false otherwise.
730    ///\sa DirPath
731    template<class P>
732    bool getPath(P &p,Node t)
733    {
734      if(reached(t)) {
735        p.clear();
736        typename P::Builder b(p);
737        for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
738          b.pushFront(pred(t));
739        b.commit();
740        return true;
741      }
742      return false;
743    }
744         
[385]745    ///The distance of a node from the root.
[255]746
[385]747    ///Returns the distance of a node from the root.
[255]748    ///\pre \ref run() must be called before using this function.
[385]749    ///\warning If node \c v in unreachable from the root the return value
[255]750    ///of this funcion is undefined.
[1130]751    Value dist(Node v) const { return (*_dist)[v]; }
[373]752
[584]753    ///Returns the 'previous edge' of the shortest path tree.
[255]754
[584]755    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
[785]756    ///i.e. it returns the last edge of a shortest path from the root to \c
[688]757    ///v. It is \ref INVALID
758    ///if \c v is unreachable from the root or if \c v=s. The
[385]759    ///shortest path tree used here is equal to the shortest path tree used in
[1631]760    ///\ref predNode().  \pre \ref run() must be called before using
[385]761    ///this function.
[780]762    ///\todo predEdge could be a better name.
[1119]763    Edge pred(Node v) const { return (*_pred)[v]; }
[373]764
[584]765    ///Returns the 'previous node' of the shortest path tree.
[255]766
[584]767    ///For a node \c v it returns the 'previous node' of the shortest path tree,
[385]768    ///i.e. it returns the last but one node from a shortest path from the
769    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
770    ///\c v=s. The shortest path tree used here is equal to the shortest path
[1631]771    ///tree used in \ref pred().  \pre \ref run() must be called before
[385]772    ///using this function.
[1130]773    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
774                                  G->source((*_pred)[v]); }
[255]775   
776    ///Returns a reference to the NodeMap of distances.
777
[385]778    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
779    ///be called before using this function.
[1130]780    const DistMap &distMap() const { return *_dist;}
[385]781 
[255]782    ///Returns a reference to the shortest path tree map.
783
784    ///Returns a reference to the NodeMap of the edges of the
785    ///shortest path tree.
786    ///\pre \ref run() must be called before using this function.
[1119]787    const PredMap &predMap() const { return *_pred;}
[385]788 
789    ///Checks if a node is reachable from the root.
[255]790
[385]791    ///Returns \c true if \c v is reachable from the root.
[1218]792    ///\warning The source nodes are inditated as unreached.
[255]793    ///\pre \ref run() must be called before using this function.
[385]794    ///
[1721]795    bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
[1734]796
797    ///Checks if a node is processed.
798
799    ///Returns \c true if \c v is processed, i.e. the shortest
800    ///path to \c v has already found.
801    ///\pre \ref run() must be called before using this function.
802    ///
803    bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
[255]804   
[1128]805    ///@}
[255]806  };
[953]807
[1218]808
809
810
811 
812  ///Default traits class of Dijkstra function.
813
814  ///Default traits class of Dijkstra function.
815  ///\param GR Graph type.
816  ///\param LM Type of length map.
817  template<class GR, class LM>
818  struct DijkstraWizardDefaultTraits
819  {
820    ///The graph type the algorithm runs on.
821    typedef GR Graph;
822    ///The type of the map that stores the edge lengths.
823
824    ///The type of the map that stores the edge lengths.
825    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
826    typedef LM LengthMap;
827    //The type of the length of the edges.
828    typedef typename LM::Value Value;
829    ///The heap type used by Dijkstra algorithm.
830
[1721]831    /// The cross reference type used by heap.
832
833    /// The cross reference type used by heap.
834    /// Usually it is \c Graph::NodeMap<int>.
835    typedef typename Graph::template NodeMap<int> HeapCrossRef;
836    ///Instantiates a HeapCrossRef.
837
838    ///This function instantiates a \ref HeapCrossRef.
839    /// \param G is the graph, to which we would like to define the
840    /// HeapCrossRef.
841    /// \todo The graph alone may be insufficient for the initialization
842    static HeapCrossRef *createHeapCrossRef(const GR &G)
843    {
844      return new HeapCrossRef(G);
845    }
846   
847    ///The heap type used by Dijkstra algorithm.
848
[1218]849    ///The heap type used by Dijkstra algorithm.
850    ///
851    ///\sa BinHeap
852    ///\sa Dijkstra
[1721]853    typedef BinHeap<typename Graph::Node, typename LM::Value,
[1218]854                    typename GR::template NodeMap<int>,
855                    std::less<Value> > Heap;
856
[1721]857    static Heap *createHeap(HeapCrossRef& R)
858    {
859      return new Heap(R);
860    }
861
[1218]862    ///\brief The type of the map that stores the last
863    ///edges of the shortest paths.
864    ///
865    ///The type of the map that stores the last
866    ///edges of the shortest paths.
867    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
868    ///
869    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
870    ///Instantiates a PredMap.
871 
872    ///This function instantiates a \ref PredMap.
[1536]873    ///\param g is the graph, to which we would like to define the PredMap.
[1218]874    ///\todo The graph alone may be insufficient for the initialization
[1536]875#ifdef DOXYGEN
876    static PredMap *createPredMap(const GR &g)
877#else
[1367]878    static PredMap *createPredMap(const GR &)
[1536]879#endif
[1218]880    {
881      return new PredMap();
882    }
883    ///The type of the map that stores whether a nodes is processed.
884 
885    ///The type of the map that stores whether a nodes is processed.
886    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
887    ///By default it is a NullMap.
888    ///\todo If it is set to a real map,
889    ///Dijkstra::processed() should read this.
890    ///\todo named parameter to set this type, function to read and write.
891    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
892    ///Instantiates a ProcessedMap.
893 
894    ///This function instantiates a \ref ProcessedMap.
[1536]895    ///\param g is the graph, to which
[1218]896    ///we would like to define the \ref ProcessedMap
[1536]897#ifdef DOXYGEN
898    static ProcessedMap *createProcessedMap(const GR &g)
899#else
[1367]900    static ProcessedMap *createProcessedMap(const GR &)
[1536]901#endif
[1218]902    {
903      return new ProcessedMap();
904    }
905    ///The type of the map that stores the dists of the nodes.
906 
907    ///The type of the map that stores the dists of the nodes.
908    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
909    ///
910    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
911    ///Instantiates a DistMap.
912 
913    ///This function instantiates a \ref DistMap.
[1536]914    ///\param g is the graph, to which we would like to define the \ref DistMap
915#ifdef DOXYGEN
916    static DistMap *createDistMap(const GR &g)
917#else
[1367]918    static DistMap *createDistMap(const GR &)
[1536]919#endif
[1218]920    {
921      return new DistMap();
922    }
923  };
924 
[1123]925  /// Default traits used by \ref DijkstraWizard
926
[1151]927  /// To make it easier to use Dijkstra algorithm
928  ///we have created a wizard class.
929  /// This \ref DijkstraWizard class needs default traits,
930  ///as well as the \ref Dijkstra class.
[1123]931  /// The \ref DijkstraWizardBase is a class to be the default traits of the
932  /// \ref DijkstraWizard class.
[1220]933  /// \todo More named parameters are required...
[1116]934  template<class GR,class LM>
[1218]935  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
[1116]936  {
937
[1218]938    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
[1116]939  protected:
[1201]940    /// Type of the nodes in the graph.
941    typedef typename Base::Graph::Node Node;
942
[1116]943    /// Pointer to the underlying graph.
944    void *_g;
945    /// Pointer to the length map
946    void *_length;
947    ///Pointer to the map of predecessors edges.
948    void *_pred;
949    ///Pointer to the map of distances.
950    void *_dist;
951    ///Pointer to the source node.
[1201]952    Node _source;
[1116]953
954    public:
[1123]955    /// Constructor.
956   
957    /// This constructor does not require parameters, therefore it initiates
958    /// all of the attributes to default values (0, INVALID).
[1218]959    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
960                           _dist(0), _source(INVALID) {}
[1116]961
[1123]962    /// Constructor.
963   
[1156]964    /// This constructor requires some parameters,
965    /// listed in the parameters list.
[1123]966    /// Others are initiated to 0.
967    /// \param g is the initial value of  \ref _g
968    /// \param l is the initial value of  \ref _length
969    /// \param s is the initial value of  \ref _source
[1116]970    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
[1218]971      _g((void *)&g), _length((void *)&l), _pred(0),
972      _dist(0), _source(s) {}
[1116]973
974  };
975 
[1229]976  /// A class to make the usage of Dijkstra algorithm easier
[953]977
[1123]978  /// This class is created to make it easier to use Dijkstra algorithm.
979  /// It uses the functions and features of the plain \ref Dijkstra,
[1151]980  /// but it is much simpler to use it.
[953]981  ///
[1123]982  /// Simplicity means that the way to change the types defined
983  /// in the traits class is based on functions that returns the new class
[1151]984  /// and not on templatable built-in classes.
985  /// When using the plain \ref Dijkstra
986  /// the new class with the modified type comes from
987  /// the original class by using the ::
988  /// operator. In the case of \ref DijkstraWizard only
989  /// a function have to be called and it will
[1123]990  /// return the needed class.
991  ///
992  /// It does not have own \ref run method. When its \ref run method is called
[1721]993  /// it initiates a plain \ref Dijkstra class, and calls the \ref
994  /// Dijkstra::run method of it.
[953]995  template<class TR>
[1116]996  class DijkstraWizard : public TR
[953]997  {
[1116]998    typedef TR Base;
[953]999
[1123]1000    ///The type of the underlying graph.
[953]1001    typedef typename TR::Graph Graph;
[1119]1002    //\e
[953]1003    typedef typename Graph::Node Node;
[1119]1004    //\e
[953]1005    typedef typename Graph::NodeIt NodeIt;
[1119]1006    //\e
[953]1007    typedef typename Graph::Edge Edge;
[1119]1008    //\e
[953]1009    typedef typename Graph::OutEdgeIt OutEdgeIt;
1010   
[1123]1011    ///The type of the map that stores the edge lengths.
[953]1012    typedef typename TR::LengthMap LengthMap;
[1123]1013    ///The type of the length of the edges.
[987]1014    typedef typename LengthMap::Value Value;
[1123]1015    ///\brief The type of the map that stores the last
1016    ///edges of the shortest paths.
[953]1017    typedef typename TR::PredMap PredMap;
[1123]1018    ///The type of the map that stores the dists of the nodes.
[953]1019    typedef typename TR::DistMap DistMap;
[1123]1020    ///The heap type used by the dijkstra algorithm.
[953]1021    typedef typename TR::Heap Heap;
[1116]1022public:
[1123]1023    /// Constructor.
[1116]1024    DijkstraWizard() : TR() {}
[953]1025
[1123]1026    /// Constructor that requires parameters.
[1124]1027
1028    /// Constructor that requires parameters.
[1123]1029    /// These parameters will be the default values for the traits class.
[1116]1030    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
1031      TR(g,l,s) {}
[953]1032
[1123]1033    ///Copy constructor
[1116]1034    DijkstraWizard(const TR &b) : TR(b) {}
[953]1035
[1116]1036    ~DijkstraWizard() {}
1037
[1123]1038    ///Runs Dijkstra algorithm from a given node.
1039   
1040    ///Runs Dijkstra algorithm from a given node.
1041    ///The node can be given by the \ref source function.
[1116]1042    void run()
[953]1043    {
[1201]1044      if(Base::_source==INVALID) throw UninitializedParameter();
[1193]1045      Dijkstra<Graph,LengthMap,TR>
[1345]1046        dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
1047      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
1048      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
1049      dij.run(Base::_source);
[1116]1050    }
1051
[1124]1052    ///Runs Dijkstra algorithm from the given node.
[1123]1053
[1124]1054    ///Runs Dijkstra algorithm from the given node.
[1123]1055    ///\param s is the given source.
[1116]1056    void run(Node s)
1057    {
[1201]1058      Base::_source=s;
[1116]1059      run();
[953]1060    }
1061
1062    template<class T>
[1116]1063    struct DefPredMapBase : public Base {
1064      typedef T PredMap;
[1367]1065      static PredMap *createPredMap(const Graph &) { return 0; };
[1236]1066      DefPredMapBase(const TR &b) : TR(b) {}
[1116]1067    };
[953]1068   
[1156]1069    ///\brief \ref named-templ-param "Named parameter"
1070    ///function for setting PredMap type
1071    ///
1072    /// \ref named-templ-param "Named parameter"
1073    ///function for setting PredMap type
[1124]1074    ///
[953]1075    template<class T>
[1116]1076    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
[953]1077    {
[1193]1078      Base::_pred=(void *)&t;
[1116]1079      return DijkstraWizard<DefPredMapBase<T> >(*this);
[953]1080    }
1081   
[1116]1082    template<class T>
1083    struct DefDistMapBase : public Base {
1084      typedef T DistMap;
[1367]1085      static DistMap *createDistMap(const Graph &) { return 0; };
[1236]1086      DefDistMapBase(const TR &b) : TR(b) {}
[1116]1087    };
[953]1088   
[1156]1089    ///\brief \ref named-templ-param "Named parameter"
1090    ///function for setting DistMap type
1091    ///
1092    /// \ref named-templ-param "Named parameter"
1093    ///function for setting DistMap type
[1124]1094    ///
[953]1095    template<class T>
[1116]1096    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
[953]1097    {
[1193]1098      Base::_dist=(void *)&t;
[1116]1099      return DijkstraWizard<DefDistMapBase<T> >(*this);
[953]1100    }
[1117]1101   
[1123]1102    /// Sets the source node, from which the Dijkstra algorithm runs.
1103
1104    /// Sets the source node, from which the Dijkstra algorithm runs.
1105    /// \param s is the source node.
[1117]1106    DijkstraWizard<TR> &source(Node s)
[953]1107    {
[1201]1108      Base::_source=s;
[953]1109      return *this;
1110    }
1111   
1112  };
[255]1113 
[1218]1114  ///Function type interface for Dijkstra algorithm.
[953]1115
[1151]1116  /// \ingroup flowalgs
[1218]1117  ///Function type interface for Dijkstra algorithm.
[953]1118  ///
[1218]1119  ///This function also has several
1120  ///\ref named-templ-func-param "named parameters",
1121  ///they are declared as the members of class \ref DijkstraWizard.
1122  ///The following
1123  ///example shows how to use these parameters.
1124  ///\code
1125  ///  dijkstra(g,length,source).predMap(preds).run();
1126  ///\endcode
1127  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1128  ///to the end of the parameter list.
1129  ///\sa DijkstraWizard
1130  ///\sa Dijkstra
[953]1131  template<class GR, class LM>
[1116]1132  DijkstraWizard<DijkstraWizardBase<GR,LM> >
1133  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
[953]1134  {
[1116]1135    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
[953]1136  }
1137
[921]1138} //END OF NAMESPACE LEMON
[255]1139
1140#endif
Note: See TracBrowser for help on using the repository browser.