1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_DINITZ_SLEATOR_TARJAN_H |
---|
20 | #define LEMON_DINITZ_SLEATOR_TARJAN_H |
---|
21 | |
---|
22 | /// \file |
---|
23 | /// \ingroup max_flow |
---|
24 | /// \brief Implementation the dynamic tree data structure of Sleator |
---|
25 | /// and Tarjan. |
---|
26 | |
---|
27 | #include <lemon/graph_utils.h> |
---|
28 | #include <lemon/tolerance.h> |
---|
29 | #include <lemon/dynamic_tree.h> |
---|
30 | |
---|
31 | #include <vector> |
---|
32 | #include <limits> |
---|
33 | #include <fstream> |
---|
34 | |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | /// \brief Default traits class of DinitzSleatorTarjan class. |
---|
39 | /// |
---|
40 | /// Default traits class of DinitzSleatorTarjan class. |
---|
41 | /// \param _Graph Graph type. |
---|
42 | /// \param _CapacityMap Type of capacity map. |
---|
43 | template <typename _Graph, typename _CapacityMap> |
---|
44 | struct DinitzSleatorTarjanDefaultTraits { |
---|
45 | |
---|
46 | /// \brief The graph type the algorithm runs on. |
---|
47 | typedef _Graph Graph; |
---|
48 | |
---|
49 | /// \brief The type of the map that stores the edge capacities. |
---|
50 | /// |
---|
51 | /// The type of the map that stores the edge capacities. |
---|
52 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
---|
53 | typedef _CapacityMap CapacityMap; |
---|
54 | |
---|
55 | /// \brief The type of the length of the edges. |
---|
56 | typedef typename CapacityMap::Value Value; |
---|
57 | |
---|
58 | /// \brief The map type that stores the flow values. |
---|
59 | /// |
---|
60 | /// The map type that stores the flow values. |
---|
61 | /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
62 | typedef typename Graph::template EdgeMap<Value> FlowMap; |
---|
63 | |
---|
64 | /// \brief Instantiates a FlowMap. |
---|
65 | /// |
---|
66 | /// This function instantiates a \ref FlowMap. |
---|
67 | /// \param graph The graph, to which we would like to define the flow map. |
---|
68 | static FlowMap* createFlowMap(const Graph& graph) { |
---|
69 | return new FlowMap(graph); |
---|
70 | } |
---|
71 | |
---|
72 | /// \brief The tolerance used by the algorithm |
---|
73 | /// |
---|
74 | /// The tolerance used by the algorithm to handle inexact computation. |
---|
75 | typedef Tolerance<Value> Tolerance; |
---|
76 | |
---|
77 | }; |
---|
78 | |
---|
79 | /// \ingroup max_flow |
---|
80 | /// |
---|
81 | /// \brief Dinitz-Sleator-Tarjan algorithms class. |
---|
82 | /// |
---|
83 | /// This class provides an implementation of the \e |
---|
84 | /// Dinitz-Sleator-Tarjan \e algorithm producing a flow of maximum |
---|
85 | /// value in a directed graph. The DinitzSleatorTarjan algorithm is |
---|
86 | /// the fastest known max flow algorithms wich using blocking |
---|
87 | /// flow. It is an improvement of the Dinitz algorithm by using the |
---|
88 | /// \ref DynamicTree "dynamic tree" data structure of Sleator and |
---|
89 | /// Tarjan. |
---|
90 | /// |
---|
91 | /// This blocking flow algorithms builds a layered graph according |
---|
92 | /// to \ref Bfs "breadth-first search" distance from the target node |
---|
93 | /// in the reversed residual graph. The layered graph contains each |
---|
94 | /// residual edge which steps one level down. After that the |
---|
95 | /// algorithm constructs a blocking flow on the layered graph and |
---|
96 | /// augments the overall flow with it. The number of the levels in |
---|
97 | /// the layered graph is strictly increasing in each augmenting |
---|
98 | /// phase therefore the number of the augmentings is at most |
---|
99 | /// \f$n-1\f$. The length of each phase is at most |
---|
100 | /// \f$O(m\log(n))\f$, that the overall time complexity is |
---|
101 | /// \f$O(nm\log(n))\f$. |
---|
102 | /// |
---|
103 | /// \param _Graph The directed graph type the algorithm runs on. |
---|
104 | /// \param _CapacityMap The capacity map type. |
---|
105 | /// \param _Traits Traits class to set various data types used by |
---|
106 | /// the algorithm. The default traits class is \ref |
---|
107 | /// DinitzSleatorTarjanDefaultTraits. See \ref |
---|
108 | /// DinitzSleatorTarjanDefaultTraits for the documentation of a |
---|
109 | /// Dinitz-Sleator-Tarjan traits class. |
---|
110 | /// |
---|
111 | /// \author Tamas Hamori and Balazs Dezso |
---|
112 | #ifdef DOXYGEN |
---|
113 | template <typename _Graph, typename _CapacityMap, typename _Traits> |
---|
114 | #else |
---|
115 | template <typename _Graph, |
---|
116 | typename _CapacityMap = typename _Graph::template EdgeMap<int>, |
---|
117 | typename _Traits = |
---|
118 | DinitzSleatorTarjanDefaultTraits<_Graph, _CapacityMap> > |
---|
119 | #endif |
---|
120 | class DinitzSleatorTarjan { |
---|
121 | public: |
---|
122 | |
---|
123 | typedef _Traits Traits; |
---|
124 | typedef typename Traits::Graph Graph; |
---|
125 | typedef typename Traits::CapacityMap CapacityMap; |
---|
126 | typedef typename Traits::Value Value; |
---|
127 | |
---|
128 | typedef typename Traits::FlowMap FlowMap; |
---|
129 | typedef typename Traits::Tolerance Tolerance; |
---|
130 | |
---|
131 | |
---|
132 | private: |
---|
133 | |
---|
134 | GRAPH_TYPEDEFS(typename Graph); |
---|
135 | |
---|
136 | |
---|
137 | typedef typename Graph::template NodeMap<int> LevelMap; |
---|
138 | typedef typename Graph::template NodeMap<int> IntNodeMap; |
---|
139 | typedef typename Graph::template NodeMap<Edge> EdgeNodeMap; |
---|
140 | typedef DynamicTree<Value, IntNodeMap, Tolerance, false> DynTree; |
---|
141 | |
---|
142 | private: |
---|
143 | |
---|
144 | const Graph& _graph; |
---|
145 | const CapacityMap* _capacity; |
---|
146 | |
---|
147 | Node _source, _target; |
---|
148 | |
---|
149 | FlowMap* _flow; |
---|
150 | bool _local_flow; |
---|
151 | |
---|
152 | IntNodeMap* _level; |
---|
153 | EdgeNodeMap* _dt_edges; |
---|
154 | |
---|
155 | IntNodeMap* _dt_index; |
---|
156 | DynTree* _dt; |
---|
157 | |
---|
158 | std::vector<Node> _queue; |
---|
159 | |
---|
160 | Tolerance _tolerance; |
---|
161 | |
---|
162 | Value _flow_value; |
---|
163 | Value _max_value; |
---|
164 | |
---|
165 | |
---|
166 | public: |
---|
167 | |
---|
168 | typedef DinitzSleatorTarjan Create; |
---|
169 | |
---|
170 | ///\name Named template parameters |
---|
171 | |
---|
172 | ///@{ |
---|
173 | |
---|
174 | template <typename _FlowMap> |
---|
175 | struct DefFlowMapTraits : public Traits { |
---|
176 | typedef _FlowMap FlowMap; |
---|
177 | static FlowMap *createFlowMap(const Graph&) { |
---|
178 | throw UninitializedParameter(); |
---|
179 | } |
---|
180 | }; |
---|
181 | |
---|
182 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
183 | /// FlowMap type |
---|
184 | /// |
---|
185 | /// \ref named-templ-param "Named parameter" for setting FlowMap |
---|
186 | /// type |
---|
187 | template <typename _FlowMap> |
---|
188 | struct DefFlowMap |
---|
189 | : public DinitzSleatorTarjan<Graph, CapacityMap, |
---|
190 | DefFlowMapTraits<_FlowMap> > { |
---|
191 | typedef DinitzSleatorTarjan<Graph, CapacityMap, |
---|
192 | DefFlowMapTraits<_FlowMap> > Create; |
---|
193 | }; |
---|
194 | |
---|
195 | template <typename _Elevator> |
---|
196 | struct DefElevatorTraits : public Traits { |
---|
197 | typedef _Elevator Elevator; |
---|
198 | static Elevator *createElevator(const Graph&, int) { |
---|
199 | throw UninitializedParameter(); |
---|
200 | } |
---|
201 | }; |
---|
202 | |
---|
203 | /// @} |
---|
204 | |
---|
205 | /// \brief \ref Exception for the case when the source equals the target. |
---|
206 | /// |
---|
207 | /// \ref Exception for the case when the source equals the target. |
---|
208 | /// |
---|
209 | class InvalidArgument : public lemon::LogicError { |
---|
210 | public: |
---|
211 | virtual const char* what() const throw() { |
---|
212 | return "lemon::DinitzSleatorTarjan::InvalidArgument"; |
---|
213 | } |
---|
214 | }; |
---|
215 | |
---|
216 | protected: |
---|
217 | |
---|
218 | DinitzSleatorTarjan() {} |
---|
219 | |
---|
220 | public: |
---|
221 | |
---|
222 | /// \brief The constructor of the class. |
---|
223 | /// |
---|
224 | /// The constructor of the class. |
---|
225 | /// \param graph The directed graph the algorithm runs on. |
---|
226 | /// \param capacity The capacity of the edges. |
---|
227 | /// \param source The source node. |
---|
228 | /// \param target The target node. |
---|
229 | DinitzSleatorTarjan(const Graph& graph, const CapacityMap& capacity, |
---|
230 | Node source, Node target) |
---|
231 | : _graph(graph), _capacity(&capacity), |
---|
232 | _source(source), _target(target), |
---|
233 | _flow(0), _local_flow(false), |
---|
234 | _level(0), _dt_edges(0), |
---|
235 | _dt_index(0), _dt(0), _queue(), |
---|
236 | _tolerance(), _flow_value(), _max_value() |
---|
237 | { |
---|
238 | if (_source == _target) { |
---|
239 | throw InvalidArgument(); |
---|
240 | } |
---|
241 | } |
---|
242 | |
---|
243 | /// \brief Destrcutor. |
---|
244 | /// |
---|
245 | /// Destructor. |
---|
246 | ~DinitzSleatorTarjan() { |
---|
247 | destroyStructures(); |
---|
248 | } |
---|
249 | |
---|
250 | /// \brief Sets the capacity map. |
---|
251 | /// |
---|
252 | /// Sets the capacity map. |
---|
253 | /// \return \c (*this) |
---|
254 | DinitzSleatorTarjan& capacityMap(const CapacityMap& map) { |
---|
255 | _capacity = ↦ |
---|
256 | return *this; |
---|
257 | } |
---|
258 | |
---|
259 | /// \brief Sets the flow map. |
---|
260 | /// |
---|
261 | /// Sets the flow map. |
---|
262 | /// \return \c (*this) |
---|
263 | DinitzSleatorTarjan& flowMap(FlowMap& map) { |
---|
264 | if (_local_flow) { |
---|
265 | delete _flow; |
---|
266 | _local_flow = false; |
---|
267 | } |
---|
268 | _flow = ↦ |
---|
269 | return *this; |
---|
270 | } |
---|
271 | |
---|
272 | /// \brief Returns the flow map. |
---|
273 | /// |
---|
274 | /// \return The flow map. |
---|
275 | const FlowMap& flowMap() { |
---|
276 | return *_flow; |
---|
277 | } |
---|
278 | |
---|
279 | /// \brief Sets the source node. |
---|
280 | /// |
---|
281 | /// Sets the source node. |
---|
282 | /// \return \c (*this) |
---|
283 | DinitzSleatorTarjan& source(const Node& node) { |
---|
284 | _source = node; |
---|
285 | return *this; |
---|
286 | } |
---|
287 | |
---|
288 | /// \brief Sets the target node. |
---|
289 | /// |
---|
290 | /// Sets the target node. |
---|
291 | /// \return \c (*this) |
---|
292 | DinitzSleatorTarjan& target(const Node& node) { |
---|
293 | _target = node; |
---|
294 | return *this; |
---|
295 | } |
---|
296 | |
---|
297 | /// \brief Sets the tolerance used by algorithm. |
---|
298 | /// |
---|
299 | /// Sets the tolerance used by algorithm. |
---|
300 | DinitzSleatorTarjan& tolerance(const Tolerance& tolerance) const { |
---|
301 | _tolerance = tolerance; |
---|
302 | if (_dt) { |
---|
303 | _dt.tolerance(_tolerance); |
---|
304 | } |
---|
305 | return *this; |
---|
306 | } |
---|
307 | |
---|
308 | /// \brief Returns the tolerance used by algorithm. |
---|
309 | /// |
---|
310 | /// Returns the tolerance used by algorithm. |
---|
311 | const Tolerance& tolerance() const { |
---|
312 | return tolerance; |
---|
313 | } |
---|
314 | |
---|
315 | private: |
---|
316 | |
---|
317 | void createStructures() { |
---|
318 | if (!_flow) { |
---|
319 | _flow = Traits::createFlowMap(_graph); |
---|
320 | _local_flow = true; |
---|
321 | } |
---|
322 | if (!_level) { |
---|
323 | _level = new LevelMap(_graph); |
---|
324 | } |
---|
325 | if (!_dt_index && !_dt) { |
---|
326 | _dt_index = new IntNodeMap(_graph); |
---|
327 | _dt = new DynTree(*_dt_index, _tolerance); |
---|
328 | } |
---|
329 | if (!_dt_edges) { |
---|
330 | _dt_edges = new EdgeNodeMap(_graph); |
---|
331 | } |
---|
332 | _queue.resize(countNodes(_graph)); |
---|
333 | _max_value = _dt->maxValue(); |
---|
334 | } |
---|
335 | |
---|
336 | void destroyStructures() { |
---|
337 | if (_local_flow) { |
---|
338 | delete _flow; |
---|
339 | } |
---|
340 | if (_level) { |
---|
341 | delete _level; |
---|
342 | } |
---|
343 | if (_dt) { |
---|
344 | delete _dt; |
---|
345 | } |
---|
346 | if (_dt_index) { |
---|
347 | delete _dt_index; |
---|
348 | } |
---|
349 | if (_dt_edges) { |
---|
350 | delete _dt_edges; |
---|
351 | } |
---|
352 | } |
---|
353 | |
---|
354 | bool createLayeredGraph() { |
---|
355 | |
---|
356 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
357 | _level->set(n, -2); |
---|
358 | } |
---|
359 | |
---|
360 | int level = 0; |
---|
361 | |
---|
362 | _queue[0] = _target; |
---|
363 | _level->set(_target, level); |
---|
364 | |
---|
365 | int first = 0, last = 1, limit = 0; |
---|
366 | |
---|
367 | while (first != last && (*_level)[_source] == -2) { |
---|
368 | if (first == limit) { |
---|
369 | limit = last; |
---|
370 | ++level; |
---|
371 | } |
---|
372 | |
---|
373 | Node n = _queue[first++]; |
---|
374 | |
---|
375 | for (OutEdgeIt e(_graph, n); e != INVALID; ++e) { |
---|
376 | Node v = _graph.target(e); |
---|
377 | if ((*_level)[v] != -2) continue; |
---|
378 | Value rem = (*_flow)[e]; |
---|
379 | if (!_tolerance.positive(rem)) continue; |
---|
380 | _level->set(v, level); |
---|
381 | _queue[last++] = v; |
---|
382 | } |
---|
383 | |
---|
384 | for (InEdgeIt e(_graph, n); e != INVALID; ++e) { |
---|
385 | Node v = _graph.source(e); |
---|
386 | if ((*_level)[v] != -2) continue; |
---|
387 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
---|
388 | if (!_tolerance.positive(rem)) continue; |
---|
389 | _level->set(v, level); |
---|
390 | _queue[last++] = v; |
---|
391 | } |
---|
392 | } |
---|
393 | return (*_level)[_source] != -2; |
---|
394 | } |
---|
395 | |
---|
396 | void initEdges() { |
---|
397 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
398 | _graph.firstOut((*_dt_edges)[n], n); |
---|
399 | } |
---|
400 | } |
---|
401 | |
---|
402 | |
---|
403 | void augmentPath() { |
---|
404 | Value rem; |
---|
405 | Node n = _dt->findCost(_source, rem); |
---|
406 | _flow_value += rem; |
---|
407 | _dt->addCost(_source, - rem); |
---|
408 | |
---|
409 | _dt->cut(n); |
---|
410 | _dt->addCost(n, _max_value); |
---|
411 | |
---|
412 | Edge e = (*_dt_edges)[n]; |
---|
413 | if (_graph.source(e) == n) { |
---|
414 | _flow->set(e, (*_capacity)[e]); |
---|
415 | |
---|
416 | _graph.nextOut(e); |
---|
417 | if (e == INVALID) { |
---|
418 | _graph.firstIn(e, n); |
---|
419 | } |
---|
420 | } else { |
---|
421 | _flow->set(e, 0); |
---|
422 | _graph.nextIn(e); |
---|
423 | } |
---|
424 | _dt_edges->set(n, e); |
---|
425 | |
---|
426 | } |
---|
427 | |
---|
428 | bool advance(Node n) { |
---|
429 | Edge e = (*_dt_edges)[n]; |
---|
430 | if (e == INVALID) return false; |
---|
431 | |
---|
432 | Node u; |
---|
433 | Value rem; |
---|
434 | if (_graph.source(e) == n) { |
---|
435 | u = _graph.target(e); |
---|
436 | while ((*_level)[n] != (*_level)[u] + 1 || |
---|
437 | !_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
---|
438 | _graph.nextOut(e); |
---|
439 | if (e == INVALID) break; |
---|
440 | u = _graph.target(e); |
---|
441 | } |
---|
442 | if (e != INVALID) { |
---|
443 | rem = (*_capacity)[e] - (*_flow)[e]; |
---|
444 | } else { |
---|
445 | _graph.firstIn(e, n); |
---|
446 | if (e == INVALID) { |
---|
447 | _dt_edges->set(n, INVALID); |
---|
448 | return false; |
---|
449 | } |
---|
450 | u = _graph.source(e); |
---|
451 | while ((*_level)[n] != (*_level)[u] + 1 || |
---|
452 | !_tolerance.positive((*_flow)[e])) { |
---|
453 | _graph.nextIn(e); |
---|
454 | if (e == INVALID) { |
---|
455 | _dt_edges->set(n, INVALID); |
---|
456 | return false; |
---|
457 | } |
---|
458 | u = _graph.source(e); |
---|
459 | } |
---|
460 | rem = (*_flow)[e]; |
---|
461 | } |
---|
462 | } else { |
---|
463 | u = _graph.source(e); |
---|
464 | while ((*_level)[n] != (*_level)[u] + 1 || |
---|
465 | !_tolerance.positive((*_flow)[e])) { |
---|
466 | _graph.nextIn(e); |
---|
467 | if (e == INVALID) { |
---|
468 | _dt_edges->set(n, INVALID); |
---|
469 | return false; |
---|
470 | } |
---|
471 | u = _graph.source(e); |
---|
472 | } |
---|
473 | rem = (*_flow)[e]; |
---|
474 | } |
---|
475 | |
---|
476 | _dt->addCost(n, - std::numeric_limits<Value>::max()); |
---|
477 | _dt->addCost(n, rem); |
---|
478 | _dt->link(n, u); |
---|
479 | _dt_edges->set(n, e); |
---|
480 | return true; |
---|
481 | } |
---|
482 | |
---|
483 | void retreat(Node n) { |
---|
484 | _level->set(n, -1); |
---|
485 | |
---|
486 | for (OutEdgeIt e(_graph, n); e != INVALID; ++e) { |
---|
487 | Node u = _graph.target(e); |
---|
488 | if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) { |
---|
489 | Value rem; |
---|
490 | _dt->findCost(u, rem); |
---|
491 | _flow->set(e, rem); |
---|
492 | _dt->cut(u); |
---|
493 | _dt->addCost(u, - rem); |
---|
494 | _dt->addCost(u, _max_value); |
---|
495 | } |
---|
496 | } |
---|
497 | for (InEdgeIt e(_graph, n); e != INVALID; ++e) { |
---|
498 | Node u = _graph.source(e); |
---|
499 | if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) { |
---|
500 | Value rem; |
---|
501 | _dt->findCost(u, rem); |
---|
502 | _flow->set(e, (*_capacity)[e] - rem); |
---|
503 | _dt->cut(u); |
---|
504 | _dt->addCost(u, - rem); |
---|
505 | _dt->addCost(u, _max_value); |
---|
506 | } |
---|
507 | } |
---|
508 | } |
---|
509 | |
---|
510 | void extractTrees() { |
---|
511 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
512 | |
---|
513 | Node w = _dt->findRoot(n); |
---|
514 | |
---|
515 | while (w != n) { |
---|
516 | |
---|
517 | Value rem; |
---|
518 | Node u = _dt->findCost(n, rem); |
---|
519 | |
---|
520 | _dt->cut(u); |
---|
521 | _dt->addCost(u, - rem); |
---|
522 | _dt->addCost(u, _max_value); |
---|
523 | |
---|
524 | Edge e = (*_dt_edges)[u]; |
---|
525 | _dt_edges->set(u, INVALID); |
---|
526 | |
---|
527 | if (u == _graph.source(e)) { |
---|
528 | _flow->set(e, (*_capacity)[e] - rem); |
---|
529 | } else { |
---|
530 | _flow->set(e, rem); |
---|
531 | } |
---|
532 | |
---|
533 | w = _dt->findRoot(n); |
---|
534 | } |
---|
535 | } |
---|
536 | } |
---|
537 | |
---|
538 | |
---|
539 | public: |
---|
540 | |
---|
541 | /// \name Execution control The simplest way to execute the |
---|
542 | /// algorithm is to use the \c run() member functions. |
---|
543 | /// \n |
---|
544 | /// If you need more control on initial solution or |
---|
545 | /// execution then you have to call one \ref init() function and then |
---|
546 | /// the start() or multiple times the \c augment() member function. |
---|
547 | |
---|
548 | ///@{ |
---|
549 | |
---|
550 | /// \brief Initializes the algorithm |
---|
551 | /// |
---|
552 | /// It sets the flow to empty flow. |
---|
553 | void init() { |
---|
554 | createStructures(); |
---|
555 | |
---|
556 | _dt->clear(); |
---|
557 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
558 | _dt->makeTree(n); |
---|
559 | _dt->addCost(n, _max_value); |
---|
560 | } |
---|
561 | |
---|
562 | for (EdgeIt it(_graph); it != INVALID; ++it) { |
---|
563 | _flow->set(it, 0); |
---|
564 | } |
---|
565 | _flow_value = 0; |
---|
566 | } |
---|
567 | |
---|
568 | /// \brief Initializes the algorithm |
---|
569 | /// |
---|
570 | /// Initializes the flow to the \c flowMap. The \c flowMap should |
---|
571 | /// contain a feasible flow, ie. in each node excluding the source |
---|
572 | /// and the target the incoming flow should be equal to the |
---|
573 | /// outgoing flow. |
---|
574 | template <typename FlowMap> |
---|
575 | void flowInit(const FlowMap& flowMap) { |
---|
576 | createStructures(); |
---|
577 | |
---|
578 | _dt->clear(); |
---|
579 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
580 | _dt->makeTree(n); |
---|
581 | _dt->addCost(n, _max_value); |
---|
582 | } |
---|
583 | |
---|
584 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
585 | _flow->set(e, flowMap[e]); |
---|
586 | } |
---|
587 | _flow_value = 0; |
---|
588 | for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) { |
---|
589 | _flow_value += (*_flow)[jt]; |
---|
590 | } |
---|
591 | for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) { |
---|
592 | _flow_value -= (*_flow)[jt]; |
---|
593 | } |
---|
594 | } |
---|
595 | |
---|
596 | /// \brief Initializes the algorithm |
---|
597 | /// |
---|
598 | /// Initializes the flow to the \c flowMap. The \c flowMap should |
---|
599 | /// contain a feasible flow, ie. in each node excluding the source |
---|
600 | /// and the target the incoming flow should be equal to the |
---|
601 | /// outgoing flow. |
---|
602 | /// \return %False when the given flowMap does not contain |
---|
603 | /// feasible flow. |
---|
604 | template <typename FlowMap> |
---|
605 | bool checkedFlowInit(const FlowMap& flowMap) { |
---|
606 | createStructures(); |
---|
607 | |
---|
608 | _dt->clear(); |
---|
609 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
610 | _dt->makeTree(n); |
---|
611 | _dt->addCost(n, _max_value); |
---|
612 | } |
---|
613 | |
---|
614 | for (EdgeIt e(_graph); e != INVALID; ++e) { |
---|
615 | _flow->set(e, flowMap[e]); |
---|
616 | } |
---|
617 | for (NodeIt it(_graph); it != INVALID; ++it) { |
---|
618 | if (it == _source || it == _target) continue; |
---|
619 | Value outFlow = 0; |
---|
620 | for (OutEdgeIt jt(_graph, it); jt != INVALID; ++jt) { |
---|
621 | outFlow += (*_flow)[jt]; |
---|
622 | } |
---|
623 | Value inFlow = 0; |
---|
624 | for (InEdgeIt jt(_graph, it); jt != INVALID; ++jt) { |
---|
625 | inFlow += (*_flow)[jt]; |
---|
626 | } |
---|
627 | if (_tolerance.different(outFlow, inFlow)) { |
---|
628 | return false; |
---|
629 | } |
---|
630 | } |
---|
631 | for (EdgeIt it(_graph); it != INVALID; ++it) { |
---|
632 | if (_tolerance.less((*_flow)[it], 0)) return false; |
---|
633 | if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false; |
---|
634 | } |
---|
635 | _flow_value = 0; |
---|
636 | for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) { |
---|
637 | _flow_value += (*_flow)[jt]; |
---|
638 | } |
---|
639 | for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) { |
---|
640 | _flow_value -= (*_flow)[jt]; |
---|
641 | } |
---|
642 | return true; |
---|
643 | } |
---|
644 | |
---|
645 | /// \brief Executes the algorithm |
---|
646 | /// |
---|
647 | /// It runs augmenting phases by adding blocking flow until the |
---|
648 | /// optimal solution is reached. |
---|
649 | void start() { |
---|
650 | while (augment()); |
---|
651 | } |
---|
652 | |
---|
653 | /// \brief Augments the flow with a blocking flow on a layered |
---|
654 | /// graph. |
---|
655 | /// |
---|
656 | /// This function builds a layered graph and then find a blocking |
---|
657 | /// flow on this graph. The number of the levels in the layered |
---|
658 | /// graph is strictly increasing in each augmenting phase |
---|
659 | /// therefore the number of the augmentings is at most \f$ n-1 |
---|
660 | /// \f$. The length of each phase is at most \f$ O(m \log(n)) |
---|
661 | /// \f$, that the overall time complexity is \f$ O(nm \log(n)) \f$. |
---|
662 | /// \return %False when there is not residual path between the |
---|
663 | /// source and the target so the current flow is a feasible and |
---|
664 | /// optimal solution. |
---|
665 | bool augment() { |
---|
666 | Node n; |
---|
667 | |
---|
668 | if (createLayeredGraph()) { |
---|
669 | |
---|
670 | Timer bf_timer; |
---|
671 | initEdges(); |
---|
672 | |
---|
673 | n = _dt->findRoot(_source); |
---|
674 | while (true) { |
---|
675 | Edge e; |
---|
676 | if (n == _target) { |
---|
677 | augmentPath(); |
---|
678 | } else if (!advance(n)) { |
---|
679 | if (n != _source) { |
---|
680 | retreat(n); |
---|
681 | } else { |
---|
682 | break; |
---|
683 | } |
---|
684 | } |
---|
685 | n = _dt->findRoot(_source); |
---|
686 | } |
---|
687 | extractTrees(); |
---|
688 | |
---|
689 | return true; |
---|
690 | } else { |
---|
691 | return false; |
---|
692 | } |
---|
693 | } |
---|
694 | |
---|
695 | /// \brief runs the algorithm. |
---|
696 | /// |
---|
697 | /// It is just a shorthand for: |
---|
698 | /// |
---|
699 | ///\code |
---|
700 | /// ek.init(); |
---|
701 | /// ek.start(); |
---|
702 | ///\endcode |
---|
703 | void run() { |
---|
704 | init(); |
---|
705 | start(); |
---|
706 | } |
---|
707 | |
---|
708 | /// @} |
---|
709 | |
---|
710 | /// \name Query Functions |
---|
711 | /// The result of the Dinitz-Sleator-Tarjan algorithm can be |
---|
712 | /// obtained using these functions. |
---|
713 | /// \n |
---|
714 | /// Before the use of these functions, |
---|
715 | /// either run() or start() must be called. |
---|
716 | |
---|
717 | ///@{ |
---|
718 | |
---|
719 | /// \brief Returns the value of the maximum flow. |
---|
720 | /// |
---|
721 | /// Returns the value of the maximum flow by returning the excess |
---|
722 | /// of the target node \c t. This value equals to the value of |
---|
723 | /// the maximum flow already after the first phase. |
---|
724 | Value flowValue() const { |
---|
725 | return _flow_value; |
---|
726 | } |
---|
727 | |
---|
728 | |
---|
729 | /// \brief Returns the flow on the edge. |
---|
730 | /// |
---|
731 | /// Sets the \c flowMap to the flow on the edges. This method can |
---|
732 | /// be called after the second phase of algorithm. |
---|
733 | Value flow(const Edge& edge) const { |
---|
734 | return (*_flow)[edge]; |
---|
735 | } |
---|
736 | |
---|
737 | /// \brief Returns true when the node is on the source side of minimum cut. |
---|
738 | /// |
---|
739 | |
---|
740 | /// Returns true when the node is on the source side of minimum |
---|
741 | /// cut. This method can be called both after running \ref |
---|
742 | /// startFirstPhase() and \ref startSecondPhase(). |
---|
743 | bool minCut(const Node& node) const { |
---|
744 | return (*_level)[node] == -2; |
---|
745 | } |
---|
746 | |
---|
747 | /// \brief Returns a minimum value cut. |
---|
748 | /// |
---|
749 | /// Sets \c cut to the characteristic vector of a minimum value cut |
---|
750 | /// It simply calls the minMinCut member. |
---|
751 | /// \retval cut Write node bool map. |
---|
752 | template <typename CutMap> |
---|
753 | void minCutMap(CutMap& cutMap) const { |
---|
754 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
755 | cutMap.set(n, (*_level)[n] == -2); |
---|
756 | } |
---|
757 | cutMap.set(_source, true); |
---|
758 | } |
---|
759 | |
---|
760 | /// @} |
---|
761 | |
---|
762 | }; |
---|
763 | } |
---|
764 | |
---|
765 | #endif |
---|