1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #include<lemon/bits/invalid.h> |
---|
20 | #include<lemon/topology.h> |
---|
21 | #include <list> |
---|
22 | |
---|
23 | /// \ingroup graph_prop |
---|
24 | /// \file |
---|
25 | /// \brief Euler tour |
---|
26 | /// |
---|
27 | ///This file provides an Euler tour iterator and ways to check |
---|
28 | ///if a graph is euler. |
---|
29 | |
---|
30 | |
---|
31 | namespace lemon { |
---|
32 | |
---|
33 | ///Euler iterator for directed graphs. |
---|
34 | |
---|
35 | /// \ingroup graph_prop |
---|
36 | ///This iterator converts to the \c Edge type of the graph and using |
---|
37 | ///operator ++ it provides an Euler tour of a \e directed |
---|
38 | ///graph (if there exists). |
---|
39 | /// |
---|
40 | ///For example |
---|
41 | ///if the given graph if Euler (i.e it has only one nontrivial component |
---|
42 | ///and the in-degree is equal to the out-degree for all nodes), |
---|
43 | ///the following code will put the edges of \c g |
---|
44 | ///to the vector \c et according to an |
---|
45 | ///Euler tour of \c g. |
---|
46 | ///\code |
---|
47 | /// std::vector<ListGraph::Edge> et; |
---|
48 | /// for(EulerIt<ListGraph> e(g),e!=INVALID;++e) |
---|
49 | /// et.push_back(e); |
---|
50 | ///\endcode |
---|
51 | ///If \c g is not Euler then the resulted tour will not be full or closed. |
---|
52 | ///\sa UEulerIt |
---|
53 | ///\todo Test required |
---|
54 | template<class Graph> |
---|
55 | class EulerIt |
---|
56 | { |
---|
57 | typedef typename Graph::Node Node; |
---|
58 | typedef typename Graph::NodeIt NodeIt; |
---|
59 | typedef typename Graph::Edge Edge; |
---|
60 | typedef typename Graph::EdgeIt EdgeIt; |
---|
61 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
62 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
63 | |
---|
64 | const Graph &g; |
---|
65 | typename Graph::template NodeMap<OutEdgeIt> nedge; |
---|
66 | std::list<Edge> euler; |
---|
67 | |
---|
68 | public: |
---|
69 | |
---|
70 | ///Constructor |
---|
71 | |
---|
72 | ///\param _g A directed graph. |
---|
73 | ///\param start The starting point of the tour. If it is not given |
---|
74 | /// the tour will start from the first node. |
---|
75 | EulerIt(const Graph &_g,typename Graph::Node start=INVALID) |
---|
76 | : g(_g), nedge(g) |
---|
77 | { |
---|
78 | if(start==INVALID) start=NodeIt(g); |
---|
79 | for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n); |
---|
80 | while(nedge[start]!=INVALID) { |
---|
81 | euler.push_back(nedge[start]); |
---|
82 | Node next=g.target(nedge[start]); |
---|
83 | ++nedge[start]; |
---|
84 | start=next; |
---|
85 | } |
---|
86 | } |
---|
87 | |
---|
88 | ///Edge Conversion |
---|
89 | operator Edge() { return euler.empty()?INVALID:euler.front(); } |
---|
90 | bool operator==(Invalid) { return euler.empty(); } |
---|
91 | bool operator!=(Invalid) { return !euler.empty(); } |
---|
92 | |
---|
93 | ///Next edge of the tour |
---|
94 | EulerIt &operator++() { |
---|
95 | Node s=g.target(euler.front()); |
---|
96 | euler.pop_front(); |
---|
97 | //This produces a warning.Strange. |
---|
98 | //std::list<Edge>::iterator next=euler.begin(); |
---|
99 | typename std::list<Edge>::iterator next=euler.begin(); |
---|
100 | while(nedge[s]!=INVALID) { |
---|
101 | euler.insert(next,nedge[s]); |
---|
102 | Node n=g.target(nedge[s]); |
---|
103 | ++nedge[s]; |
---|
104 | s=n; |
---|
105 | } |
---|
106 | return *this; |
---|
107 | } |
---|
108 | ///Postfix incrementation |
---|
109 | |
---|
110 | ///\warning This incrementation |
---|
111 | ///returns an \c Edge, not an \ref EulerIt, as one may |
---|
112 | ///expect. |
---|
113 | Edge operator++(int) |
---|
114 | { |
---|
115 | Edge e=*this; |
---|
116 | ++(*this); |
---|
117 | return e; |
---|
118 | } |
---|
119 | }; |
---|
120 | |
---|
121 | ///Euler iterator for undirected graphs. |
---|
122 | |
---|
123 | /// \ingroup graph_prop |
---|
124 | ///This iterator converts to the \c Edge (or \c UEdge) |
---|
125 | ///type of the graph and using |
---|
126 | ///operator ++ it provides an Euler tour of an undirected |
---|
127 | ///graph (if there exists). |
---|
128 | /// |
---|
129 | ///For example |
---|
130 | ///if the given graph if Euler (i.e it has only one nontrivial component |
---|
131 | ///and the degree of each node is even), |
---|
132 | ///the following code will print the edge IDs according to an |
---|
133 | ///Euler tour of \c g. |
---|
134 | ///\code |
---|
135 | /// for(UEulerIt<ListUGraph> e(g),e!=INVALID;++e) { |
---|
136 | /// std::cout << g.id(UEdge(e)) << std::eol; |
---|
137 | /// } |
---|
138 | ///\endcode |
---|
139 | ///Although the iterator provides an Euler tour of an undirected graph, |
---|
140 | ///in order to indicate the direction of the tour, UEulerIt |
---|
141 | ///returns directed edges (that convert to the undirected ones, of course). |
---|
142 | /// |
---|
143 | ///If \c g is not Euler then the resulted tour will not be full or closed. |
---|
144 | ///\sa EulerIt |
---|
145 | ///\todo Test required |
---|
146 | template<class Graph> |
---|
147 | class UEulerIt |
---|
148 | { |
---|
149 | typedef typename Graph::Node Node; |
---|
150 | typedef typename Graph::NodeIt NodeIt; |
---|
151 | typedef typename Graph::Edge Edge; |
---|
152 | typedef typename Graph::UEdge UEdge; |
---|
153 | typedef typename Graph::EdgeIt EdgeIt; |
---|
154 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
155 | typedef typename Graph::InEdgeIt InEdgeIt; |
---|
156 | |
---|
157 | const Graph &g; |
---|
158 | typename Graph::template NodeMap<OutEdgeIt> nedge; |
---|
159 | typename Graph::template UEdgeMap<bool> visited; |
---|
160 | std::list<Edge> euler; |
---|
161 | |
---|
162 | public: |
---|
163 | |
---|
164 | ///Constructor |
---|
165 | |
---|
166 | ///\param _g An undirected graph. |
---|
167 | ///\param start The starting point of the tour. If it is not given |
---|
168 | /// the tour will start from the first node. |
---|
169 | UEulerIt(const Graph &_g,typename Graph::Node start=INVALID) |
---|
170 | : g(_g), nedge(g), visited(g,false) |
---|
171 | { |
---|
172 | if(start==INVALID) start=NodeIt(g); |
---|
173 | for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutEdgeIt(g,n); |
---|
174 | while(nedge[start]!=INVALID) { |
---|
175 | euler.push_back(nedge[start]); |
---|
176 | visited[nedge[start]]=true; |
---|
177 | Node next=g.target(nedge[start]); |
---|
178 | ++nedge[start]; |
---|
179 | start=next; |
---|
180 | while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start]; |
---|
181 | } |
---|
182 | } |
---|
183 | |
---|
184 | ///Edge Conversion |
---|
185 | operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
---|
186 | ///Edge Conversion |
---|
187 | operator UEdge() const { return euler.empty()?INVALID:euler.front(); } |
---|
188 | ///\e |
---|
189 | bool operator==(Invalid) const { return euler.empty(); } |
---|
190 | ///\e |
---|
191 | bool operator!=(Invalid) const { return !euler.empty(); } |
---|
192 | |
---|
193 | ///Next edge of the tour |
---|
194 | UEulerIt &operator++() { |
---|
195 | Node s=g.target(euler.front()); |
---|
196 | euler.pop_front(); |
---|
197 | typename std::list<Edge>::iterator next=euler.begin(); |
---|
198 | |
---|
199 | while(nedge[s]!=INVALID) { |
---|
200 | while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
---|
201 | if(nedge[s]==INVALID) break; |
---|
202 | else { |
---|
203 | euler.insert(next,nedge[s]); |
---|
204 | visited[nedge[s]]=true; |
---|
205 | Node n=g.target(nedge[s]); |
---|
206 | ++nedge[s]; |
---|
207 | s=n; |
---|
208 | } |
---|
209 | } |
---|
210 | return *this; |
---|
211 | } |
---|
212 | |
---|
213 | ///Postfix incrementation |
---|
214 | |
---|
215 | ///\warning This incrementation |
---|
216 | ///returns an \c Edge, not an \ref UEulerIt, as one may |
---|
217 | ///expect. |
---|
218 | Edge operator++(int) |
---|
219 | { |
---|
220 | Edge e=*this; |
---|
221 | ++(*this); |
---|
222 | return e; |
---|
223 | } |
---|
224 | }; |
---|
225 | |
---|
226 | |
---|
227 | ///Checks if the graph is Euler |
---|
228 | |
---|
229 | /// \ingroup graph_prop |
---|
230 | ///Checks if the graph is Euler. It works for both directed and |
---|
231 | ///undirected graphs. |
---|
232 | ///\note By definition, a directed graph is called \e Euler if |
---|
233 | ///and only if connected and the number of it is incoming and outgoing edges |
---|
234 | ///are the same for each node. |
---|
235 | ///Similarly, an undirected graph is called \e Euler if |
---|
236 | ///and only if it is connected and the number of incident edges is even |
---|
237 | ///for each node. <em>Therefore, there are graphs which are not Euler, but |
---|
238 | ///still have an Euler tour</em>. |
---|
239 | ///\todo Test required |
---|
240 | template<class Graph> |
---|
241 | #ifdef DOXYGEN |
---|
242 | bool |
---|
243 | #else |
---|
244 | typename enable_if<UndirectedTagIndicator<Graph>,bool>::type |
---|
245 | euler(const Graph &g) |
---|
246 | { |
---|
247 | for(typename Graph::NodeIt n(g);n!=INVALID;++n) |
---|
248 | if(countIncEdges(g,n)%2) return false; |
---|
249 | return connected(g); |
---|
250 | } |
---|
251 | template<class Graph> |
---|
252 | typename disable_if<UndirectedTagIndicator<Graph>,bool>::type |
---|
253 | #endif |
---|
254 | euler(const Graph &g) |
---|
255 | { |
---|
256 | for(typename Graph::NodeIt n(g);n!=INVALID;++n) |
---|
257 | if(countInEdges(g,n)!=countOutEdges(g,n)) return false; |
---|
258 | return connected(g); |
---|
259 | } |
---|
260 | |
---|
261 | } |
---|