1 | /* -*- C++ -*- |
---|
2 | * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_GRAPH_ADAPTOR_H |
---|
18 | #define LEMON_GRAPH_ADAPTOR_H |
---|
19 | |
---|
20 | ///\ingroup graph_adaptors |
---|
21 | ///\file |
---|
22 | ///\brief Several graph adaptors. |
---|
23 | /// |
---|
24 | ///This file contains several useful graph adaptor functions. |
---|
25 | /// |
---|
26 | ///\author Marton Makai |
---|
27 | |
---|
28 | #include <lemon/invalid.h> |
---|
29 | #include <lemon/maps.h> |
---|
30 | #include <lemon/bits/erasable_graph_extender.h> |
---|
31 | #include <lemon/bits/clearable_graph_extender.h> |
---|
32 | #include <lemon/bits/extendable_graph_extender.h> |
---|
33 | #include <lemon/bits/iterable_graph_extender.h> |
---|
34 | #include <lemon/bits/alteration_notifier.h> |
---|
35 | #include <lemon/bits/default_map.h> |
---|
36 | #include <lemon/bits/graph_extender.h> |
---|
37 | #include <iostream> |
---|
38 | |
---|
39 | namespace lemon { |
---|
40 | |
---|
41 | //x\brief Base type for the Graph Adaptors |
---|
42 | //x\ingroup graph_adaptors |
---|
43 | //x |
---|
44 | //xBase type for the Graph Adaptors |
---|
45 | //x |
---|
46 | //x\warning Graph adaptors are in even |
---|
47 | //xmore experimental state than the other |
---|
48 | //xparts of the lib. Use them at you own risk. |
---|
49 | //x |
---|
50 | //xThis is the base type for most of LEMON graph adaptors. |
---|
51 | //xThis class implements a trivial graph adaptor i.e. it only wraps the |
---|
52 | //xfunctions and types of the graph. The purpose of this class is to |
---|
53 | //xmake easier implementing graph adaptors. E.g. if an adaptor is |
---|
54 | //xconsidered which differs from the wrapped graph only in some of its |
---|
55 | //xfunctions or types, then it can be derived from GraphAdaptor, |
---|
56 | //xand only the |
---|
57 | //xdifferences should be implemented. |
---|
58 | //x |
---|
59 | //xauthor Marton Makai |
---|
60 | template<typename _Graph> |
---|
61 | class GraphAdaptorBase { |
---|
62 | public: |
---|
63 | typedef _Graph Graph; |
---|
64 | typedef Graph ParentGraph; |
---|
65 | |
---|
66 | protected: |
---|
67 | Graph* graph; |
---|
68 | GraphAdaptorBase() : graph(0) { } |
---|
69 | void setGraph(Graph& _graph) { graph=&_graph; } |
---|
70 | |
---|
71 | public: |
---|
72 | GraphAdaptorBase(Graph& _graph) : graph(&_graph) { } |
---|
73 | |
---|
74 | typedef typename Graph::Node Node; |
---|
75 | typedef typename Graph::Edge Edge; |
---|
76 | |
---|
77 | void first(Node& i) const { graph->first(i); } |
---|
78 | void first(Edge& i) const { graph->first(i); } |
---|
79 | void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); } |
---|
80 | void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); } |
---|
81 | |
---|
82 | void next(Node& i) const { graph->next(i); } |
---|
83 | void next(Edge& i) const { graph->next(i); } |
---|
84 | void nextIn(Edge& i) const { graph->nextIn(i); } |
---|
85 | void nextOut(Edge& i) const { graph->nextOut(i); } |
---|
86 | |
---|
87 | Node source(const Edge& e) const { return graph->source(e); } |
---|
88 | Node target(const Edge& e) const { return graph->target(e); } |
---|
89 | |
---|
90 | typedef NodeNumTagIndicator<Graph> NodeNumTag; |
---|
91 | int nodeNum() const { return graph->nodeNum(); } |
---|
92 | |
---|
93 | typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
---|
94 | int edgeNum() const { return graph->edgeNum(); } |
---|
95 | |
---|
96 | typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
---|
97 | Edge findEdge(const Node& source, const Node& target, |
---|
98 | const Edge& prev = INVALID) { |
---|
99 | return graph->findEdge(source, target, prev); |
---|
100 | } |
---|
101 | |
---|
102 | Node addNode() const { |
---|
103 | return Node(graph->addNode()); |
---|
104 | } |
---|
105 | |
---|
106 | Edge addEdge(const Node& source, const Node& target) const { |
---|
107 | return Edge(graph->addEdge(source, target)); |
---|
108 | } |
---|
109 | |
---|
110 | void erase(const Node& i) const { graph->erase(i); } |
---|
111 | void erase(const Edge& i) const { graph->erase(i); } |
---|
112 | |
---|
113 | void clear() const { graph->clear(); } |
---|
114 | |
---|
115 | int id(const Node& v) const { return graph->id(v); } |
---|
116 | int id(const Edge& e) const { return graph->id(e); } |
---|
117 | |
---|
118 | Edge oppositeNode(const Edge& e) const { |
---|
119 | return Edge(graph->opposite(e)); |
---|
120 | } |
---|
121 | |
---|
122 | template <typename _Value> |
---|
123 | class NodeMap : public _Graph::template NodeMap<_Value> { |
---|
124 | public: |
---|
125 | typedef typename _Graph::template NodeMap<_Value> Parent; |
---|
126 | explicit NodeMap(const GraphAdaptorBase<_Graph>& gw) |
---|
127 | : Parent(*gw.graph) { } |
---|
128 | NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) |
---|
129 | : Parent(*gw.graph, value) { } |
---|
130 | }; |
---|
131 | |
---|
132 | template <typename _Value> |
---|
133 | class EdgeMap : public _Graph::template EdgeMap<_Value> { |
---|
134 | public: |
---|
135 | typedef typename _Graph::template EdgeMap<_Value> Parent; |
---|
136 | explicit EdgeMap(const GraphAdaptorBase<_Graph>& gw) |
---|
137 | : Parent(*gw.graph) { } |
---|
138 | EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) |
---|
139 | : Parent(*gw.graph, value) { } |
---|
140 | }; |
---|
141 | |
---|
142 | }; |
---|
143 | |
---|
144 | template <typename _Graph> |
---|
145 | class GraphAdaptor : |
---|
146 | public IterableGraphExtender<GraphAdaptorBase<_Graph> > { |
---|
147 | public: |
---|
148 | typedef _Graph Graph; |
---|
149 | typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent; |
---|
150 | protected: |
---|
151 | GraphAdaptor() : Parent() { } |
---|
152 | |
---|
153 | public: |
---|
154 | explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); } |
---|
155 | }; |
---|
156 | |
---|
157 | template <typename _Graph> |
---|
158 | class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
159 | public: |
---|
160 | typedef _Graph Graph; |
---|
161 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
162 | protected: |
---|
163 | RevGraphAdaptorBase() : Parent() { } |
---|
164 | public: |
---|
165 | typedef typename Parent::Node Node; |
---|
166 | typedef typename Parent::Edge Edge; |
---|
167 | |
---|
168 | void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); } |
---|
169 | void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); } |
---|
170 | |
---|
171 | void nextIn(Edge& i) const { Parent::nextOut(i); } |
---|
172 | void nextOut(Edge& i) const { Parent::nextIn(i); } |
---|
173 | |
---|
174 | Node source(const Edge& e) const { return Parent::target(e); } |
---|
175 | Node target(const Edge& e) const { return Parent::source(e); } |
---|
176 | }; |
---|
177 | |
---|
178 | |
---|
179 | ///\brief A graph adaptor which reverses the orientation of the edges. |
---|
180 | ///\ingroup graph_adaptors |
---|
181 | /// |
---|
182 | ///\warning Graph adaptors are in even more experimental |
---|
183 | ///state than the other |
---|
184 | ///parts of the lib. Use them at you own risk. |
---|
185 | /// |
---|
186 | /// If \c g is defined as |
---|
187 | ///\code |
---|
188 | /// ListGraph g; |
---|
189 | ///\endcode |
---|
190 | /// then |
---|
191 | ///\code |
---|
192 | /// RevGraphAdaptor<ListGraph> gw(g); |
---|
193 | ///\endcode |
---|
194 | ///implements the graph obtained from \c g by |
---|
195 | /// reversing the orientation of its edges. |
---|
196 | |
---|
197 | template<typename _Graph> |
---|
198 | class RevGraphAdaptor : |
---|
199 | public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > { |
---|
200 | public: |
---|
201 | typedef _Graph Graph; |
---|
202 | typedef IterableGraphExtender< |
---|
203 | RevGraphAdaptorBase<_Graph> > Parent; |
---|
204 | protected: |
---|
205 | RevGraphAdaptor() { } |
---|
206 | public: |
---|
207 | explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); } |
---|
208 | }; |
---|
209 | |
---|
210 | |
---|
211 | template <typename _Graph, typename NodeFilterMap, |
---|
212 | typename EdgeFilterMap, bool checked = true> |
---|
213 | class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
214 | public: |
---|
215 | typedef _Graph Graph; |
---|
216 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
217 | protected: |
---|
218 | NodeFilterMap* node_filter_map; |
---|
219 | EdgeFilterMap* edge_filter_map; |
---|
220 | SubGraphAdaptorBase() : Parent(), |
---|
221 | node_filter_map(0), edge_filter_map(0) { } |
---|
222 | |
---|
223 | void setNodeFilterMap(NodeFilterMap& _node_filter_map) { |
---|
224 | node_filter_map=&_node_filter_map; |
---|
225 | } |
---|
226 | void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { |
---|
227 | edge_filter_map=&_edge_filter_map; |
---|
228 | } |
---|
229 | |
---|
230 | public: |
---|
231 | |
---|
232 | typedef typename Parent::Node Node; |
---|
233 | typedef typename Parent::Edge Edge; |
---|
234 | |
---|
235 | void first(Node& i) const { |
---|
236 | Parent::first(i); |
---|
237 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
---|
238 | } |
---|
239 | |
---|
240 | void first(Edge& i) const { |
---|
241 | Parent::first(i); |
---|
242 | while (i!=INVALID && (!(*edge_filter_map)[i] |
---|
243 | || !(*node_filter_map)[Parent::source(i)] |
---|
244 | || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); |
---|
245 | } |
---|
246 | |
---|
247 | void firstIn(Edge& i, const Node& n) const { |
---|
248 | Parent::firstIn(i, n); |
---|
249 | while (i!=INVALID && (!(*edge_filter_map)[i] |
---|
250 | || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); |
---|
251 | } |
---|
252 | |
---|
253 | void firstOut(Edge& i, const Node& n) const { |
---|
254 | Parent::firstOut(i, n); |
---|
255 | while (i!=INVALID && (!(*edge_filter_map)[i] |
---|
256 | || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); |
---|
257 | } |
---|
258 | |
---|
259 | void next(Node& i) const { |
---|
260 | Parent::next(i); |
---|
261 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
---|
262 | } |
---|
263 | |
---|
264 | void next(Edge& i) const { |
---|
265 | Parent::next(i); |
---|
266 | while (i!=INVALID && (!(*edge_filter_map)[i] |
---|
267 | || !(*node_filter_map)[Parent::source(i)] |
---|
268 | || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); |
---|
269 | } |
---|
270 | |
---|
271 | void nextIn(Edge& i) const { |
---|
272 | Parent::nextIn(i); |
---|
273 | while (i!=INVALID && (!(*edge_filter_map)[i] |
---|
274 | || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); |
---|
275 | } |
---|
276 | |
---|
277 | void nextOut(Edge& i) const { |
---|
278 | Parent::nextOut(i); |
---|
279 | while (i!=INVALID && (!(*edge_filter_map)[i] |
---|
280 | || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); |
---|
281 | } |
---|
282 | |
---|
283 | //x\e |
---|
284 | |
---|
285 | //x This function hides \c n in the graph, i.e. the iteration |
---|
286 | //x jumps over it. This is done by simply setting the value of \c n |
---|
287 | //x to be false in the corresponding node-map. |
---|
288 | void hide(const Node& n) const { node_filter_map->set(n, false); } |
---|
289 | |
---|
290 | //x\e |
---|
291 | |
---|
292 | //x This function hides \c e in the graph, i.e. the iteration |
---|
293 | //x jumps over it. This is done by simply setting the value of \c e |
---|
294 | //x to be false in the corresponding edge-map. |
---|
295 | void hide(const Edge& e) const { edge_filter_map->set(e, false); } |
---|
296 | |
---|
297 | //x\e |
---|
298 | |
---|
299 | //x The value of \c n is set to be true in the node-map which stores |
---|
300 | //x hide information. If \c n was hidden previuosly, then it is shown |
---|
301 | //x again |
---|
302 | void unHide(const Node& n) const { node_filter_map->set(n, true); } |
---|
303 | |
---|
304 | //x\e |
---|
305 | |
---|
306 | //x The value of \c e is set to be true in the edge-map which stores |
---|
307 | //x hide information. If \c e was hidden previuosly, then it is shown |
---|
308 | //x again |
---|
309 | void unHide(const Edge& e) const { edge_filter_map->set(e, true); } |
---|
310 | |
---|
311 | //x Returns true if \c n is hidden. |
---|
312 | |
---|
313 | //x\e |
---|
314 | //x |
---|
315 | bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } |
---|
316 | |
---|
317 | //x Returns true if \c n is hidden. |
---|
318 | |
---|
319 | //x\e |
---|
320 | //x |
---|
321 | bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } |
---|
322 | |
---|
323 | typedef False NodeNumTag; |
---|
324 | typedef False EdgeNumTag; |
---|
325 | }; |
---|
326 | |
---|
327 | template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap> |
---|
328 | class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> |
---|
329 | : public GraphAdaptorBase<_Graph> { |
---|
330 | public: |
---|
331 | typedef _Graph Graph; |
---|
332 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
333 | protected: |
---|
334 | NodeFilterMap* node_filter_map; |
---|
335 | EdgeFilterMap* edge_filter_map; |
---|
336 | SubGraphAdaptorBase() : Parent(), |
---|
337 | node_filter_map(0), edge_filter_map(0) { } |
---|
338 | |
---|
339 | void setNodeFilterMap(NodeFilterMap& _node_filter_map) { |
---|
340 | node_filter_map=&_node_filter_map; |
---|
341 | } |
---|
342 | void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { |
---|
343 | edge_filter_map=&_edge_filter_map; |
---|
344 | } |
---|
345 | |
---|
346 | public: |
---|
347 | |
---|
348 | typedef typename Parent::Node Node; |
---|
349 | typedef typename Parent::Edge Edge; |
---|
350 | |
---|
351 | void first(Node& i) const { |
---|
352 | Parent::first(i); |
---|
353 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
---|
354 | } |
---|
355 | |
---|
356 | void first(Edge& i) const { |
---|
357 | Parent::first(i); |
---|
358 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); |
---|
359 | } |
---|
360 | |
---|
361 | void firstIn(Edge& i, const Node& n) const { |
---|
362 | Parent::firstIn(i, n); |
---|
363 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); |
---|
364 | } |
---|
365 | |
---|
366 | void firstOut(Edge& i, const Node& n) const { |
---|
367 | Parent::firstOut(i, n); |
---|
368 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); |
---|
369 | } |
---|
370 | |
---|
371 | void next(Node& i) const { |
---|
372 | Parent::next(i); |
---|
373 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
---|
374 | } |
---|
375 | void next(Edge& i) const { |
---|
376 | Parent::next(i); |
---|
377 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); |
---|
378 | } |
---|
379 | void nextIn(Edge& i) const { |
---|
380 | Parent::nextIn(i); |
---|
381 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); |
---|
382 | } |
---|
383 | |
---|
384 | void nextOut(Edge& i) const { |
---|
385 | Parent::nextOut(i); |
---|
386 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); |
---|
387 | } |
---|
388 | |
---|
389 | //x\e |
---|
390 | |
---|
391 | //x This function hides \c n in the graph, i.e. the iteration |
---|
392 | //x jumps over it. This is done by simply setting the value of \c n |
---|
393 | //x to be false in the corresponding node-map. |
---|
394 | void hide(const Node& n) const { node_filter_map->set(n, false); } |
---|
395 | |
---|
396 | //x\e |
---|
397 | |
---|
398 | //x This function hides \c e in the graph, i.e. the iteration |
---|
399 | //x jumps over it. This is done by simply setting the value of \c e |
---|
400 | //x to be false in the corresponding edge-map. |
---|
401 | void hide(const Edge& e) const { edge_filter_map->set(e, false); } |
---|
402 | |
---|
403 | //x\e |
---|
404 | |
---|
405 | //x The value of \c n is set to be true in the node-map which stores |
---|
406 | //x hide information. If \c n was hidden previuosly, then it is shown |
---|
407 | //x again |
---|
408 | void unHide(const Node& n) const { node_filter_map->set(n, true); } |
---|
409 | |
---|
410 | //x\e |
---|
411 | |
---|
412 | //x The value of \c e is set to be true in the edge-map which stores |
---|
413 | //x hide information. If \c e was hidden previuosly, then it is shown |
---|
414 | //x again |
---|
415 | void unHide(const Edge& e) const { edge_filter_map->set(e, true); } |
---|
416 | |
---|
417 | //x Returns true if \c n is hidden. |
---|
418 | |
---|
419 | //x\e |
---|
420 | //x |
---|
421 | bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } |
---|
422 | |
---|
423 | //x Returns true if \c n is hidden. |
---|
424 | |
---|
425 | //x\e |
---|
426 | //x |
---|
427 | bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } |
---|
428 | |
---|
429 | typedef False NodeNumTag; |
---|
430 | typedef False EdgeNumTag; |
---|
431 | }; |
---|
432 | |
---|
433 | //x\brief A graph adaptor for hiding nodes and edges from a graph. |
---|
434 | //x\ingroup graph_adaptors |
---|
435 | //x |
---|
436 | //x\warning Graph adaptors are in even more experimental |
---|
437 | //xstate than the other |
---|
438 | //xparts of the lib. Use them at you own risk. |
---|
439 | //x |
---|
440 | //xSubGraphAdaptor shows the graph with filtered node-set and |
---|
441 | //xedge-set. If the \c checked parameter is true then it filters the edgeset |
---|
442 | //xto do not get invalid edges without source or target. |
---|
443 | //xLet \f$G=(V, A)\f$ be a directed graph |
---|
444 | //xand suppose that the graph instance \c g of type ListGraph implements |
---|
445 | //x\f$G\f$. |
---|
446 | //x/Let moreover \f$b_V\f$ and |
---|
447 | //x\f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. |
---|
448 | //xSubGraphAdaptor<...>::NodeIt iterates |
---|
449 | //xon the node-set \f$\{v\in V : b_V(v)=true\}\f$ and |
---|
450 | //xSubGraphAdaptor<...>::EdgeIt iterates |
---|
451 | //xon the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, |
---|
452 | //xSubGraphAdaptor<...>::OutEdgeIt and |
---|
453 | //xSubGraphAdaptor<...>::InEdgeIt iterates |
---|
454 | //xonly on edges leaving and entering a specific node which have true value. |
---|
455 | //x |
---|
456 | //xIf the \c checked template parameter is false then we have to note that |
---|
457 | //xthe node-iterator cares only the filter on the node-set, and the |
---|
458 | //xedge-iterator cares only the filter on the edge-set. |
---|
459 | //xThis way the edge-map |
---|
460 | //xshould filter all edges which's source or target is filtered by the |
---|
461 | //xnode-filter. |
---|
462 | //x\code |
---|
463 | //xtypedef ListGraph Graph; |
---|
464 | //xGraph g; |
---|
465 | //xtypedef Graph::Node Node; |
---|
466 | //xtypedef Graph::Edge Edge; |
---|
467 | //xNode u=g.addNode(); //node of id 0 |
---|
468 | //xNode v=g.addNode(); //node of id 1 |
---|
469 | //xNode e=g.addEdge(u, v); //edge of id 0 |
---|
470 | //xNode f=g.addEdge(v, u); //edge of id 1 |
---|
471 | //xGraph::NodeMap<bool> nm(g, true); |
---|
472 | //xnm.set(u, false); |
---|
473 | //xGraph::EdgeMap<bool> em(g, true); |
---|
474 | //xem.set(e, false); |
---|
475 | //xtypedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW; |
---|
476 | //xSubGW gw(g, nm, em); |
---|
477 | //xfor (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl; |
---|
478 | //xstd::cout << ":-)" << std::endl; |
---|
479 | //xfor (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl; |
---|
480 | //x\endcode |
---|
481 | //xThe output of the above code is the following. |
---|
482 | //x\code |
---|
483 | //x1 |
---|
484 | //x:-) |
---|
485 | //x1 |
---|
486 | //x\endcode |
---|
487 | //xNote that \c n is of type \c SubGW::NodeIt, but it can be converted to |
---|
488 | //x\c Graph::Node that is why \c g.id(n) can be applied. |
---|
489 | //x |
---|
490 | //xFor other examples see also the documentation of NodeSubGraphAdaptor and |
---|
491 | //xEdgeSubGraphAdaptor. |
---|
492 | //x |
---|
493 | //x\author Marton Makai |
---|
494 | |
---|
495 | template<typename _Graph, typename NodeFilterMap, |
---|
496 | typename EdgeFilterMap, bool checked = true> |
---|
497 | class SubGraphAdaptor : |
---|
498 | public IterableGraphExtender< |
---|
499 | SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > { |
---|
500 | public: |
---|
501 | typedef _Graph Graph; |
---|
502 | typedef IterableGraphExtender< |
---|
503 | SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; |
---|
504 | protected: |
---|
505 | SubGraphAdaptor() { } |
---|
506 | public: |
---|
507 | SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, |
---|
508 | EdgeFilterMap& _edge_filter_map) { |
---|
509 | setGraph(_graph); |
---|
510 | setNodeFilterMap(_node_filter_map); |
---|
511 | setEdgeFilterMap(_edge_filter_map); |
---|
512 | } |
---|
513 | }; |
---|
514 | |
---|
515 | |
---|
516 | |
---|
517 | //x\brief An adaptor for hiding nodes from a graph. |
---|
518 | //x\ingroup graph_adaptors |
---|
519 | //x |
---|
520 | //x\warning Graph adaptors are in even more experimental state |
---|
521 | //xthan the other |
---|
522 | //xparts of the lib. Use them at you own risk. |
---|
523 | //x |
---|
524 | //xAn adaptor for hiding nodes from a graph. |
---|
525 | //xThis adaptor specializes SubGraphAdaptor in the way that only |
---|
526 | //xthe node-set |
---|
527 | //xcan be filtered. In usual case the checked parameter is true, we get the |
---|
528 | //xinduced subgraph. But if the checked parameter is false then we can only |
---|
529 | //xfilter only isolated nodes. |
---|
530 | //x\author Marton Makai |
---|
531 | template<typename Graph, typename NodeFilterMap, bool checked = true> |
---|
532 | class NodeSubGraphAdaptor : |
---|
533 | public SubGraphAdaptor<Graph, NodeFilterMap, |
---|
534 | ConstMap<typename Graph::Edge,bool>, checked> { |
---|
535 | public: |
---|
536 | typedef SubGraphAdaptor<Graph, NodeFilterMap, |
---|
537 | ConstMap<typename Graph::Edge,bool> > Parent; |
---|
538 | protected: |
---|
539 | ConstMap<typename Graph::Edge, bool> const_true_map; |
---|
540 | public: |
---|
541 | NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : |
---|
542 | Parent(), const_true_map(true) { |
---|
543 | Parent::setGraph(_graph); |
---|
544 | Parent::setNodeFilterMap(_node_filter_map); |
---|
545 | Parent::setEdgeFilterMap(const_true_map); |
---|
546 | } |
---|
547 | }; |
---|
548 | |
---|
549 | |
---|
550 | //x\brief An adaptor for hiding edges from a graph. |
---|
551 | //x |
---|
552 | //x\warning Graph adaptors are in even more experimental state |
---|
553 | //xthan the other parts of the lib. Use them at you own risk. |
---|
554 | //x |
---|
555 | //xAn adaptor for hiding edges from a graph. |
---|
556 | //xThis adaptor specializes SubGraphAdaptor in the way that |
---|
557 | //xonly the edge-set |
---|
558 | //xcan be filtered. The usefulness of this adaptor is demonstrated in the |
---|
559 | //xproblem of searching a maximum number of edge-disjoint shortest paths |
---|
560 | //xbetween |
---|
561 | //xtwo nodes \c s and \c t. Shortest here means being shortest w.r.t. |
---|
562 | //xnon-negative edge-lengths. Note that |
---|
563 | //xthe comprehension of the presented solution |
---|
564 | //xneed's some elementary knowledge from combinatorial optimization. |
---|
565 | //x |
---|
566 | //xIf a single shortest path is to be |
---|
567 | //xsearched between \c s and \c t, then this can be done easily by |
---|
568 | //xapplying the Dijkstra algorithm. What happens, if a maximum number of |
---|
569 | //xedge-disjoint shortest paths is to be computed. It can be proved that an |
---|
570 | //xedge can be in a shortest path if and only |
---|
571 | //xif it is tight with respect to |
---|
572 | //xthe potential function computed by Dijkstra. |
---|
573 | //xMoreover, any path containing |
---|
574 | //xonly such edges is a shortest one. |
---|
575 | //xThus we have to compute a maximum number |
---|
576 | //xof edge-disjoint paths between \c s and \c t in |
---|
577 | //xthe graph which has edge-set |
---|
578 | //xall the tight edges. The computation will be demonstrated |
---|
579 | //xon the following |
---|
580 | //xgraph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. |
---|
581 | //xThe full source code is available in \ref sub_graph_adaptor_demo.cc. |
---|
582 | //xIf you are interested in more demo programs, you can use |
---|
583 | //x\ref dim_to_dot.cc to generate .dot files from dimacs files. |
---|
584 | //xThe .dot file of the following figure was generated by |
---|
585 | //xthe demo program \ref dim_to_dot.cc. |
---|
586 | //x |
---|
587 | //x\dot |
---|
588 | //xdigraph lemon_dot_example { |
---|
589 | //xnode [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; |
---|
590 | //xn0 [ label="0 (s)" ]; |
---|
591 | //xn1 [ label="1" ]; |
---|
592 | //xn2 [ label="2" ]; |
---|
593 | //xn3 [ label="3" ]; |
---|
594 | //xn4 [ label="4" ]; |
---|
595 | //xn5 [ label="5" ]; |
---|
596 | //xn6 [ label="6 (t)" ]; |
---|
597 | //xedge [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; |
---|
598 | //xn5 -> n6 [ label="9, length:4" ]; |
---|
599 | //xn4 -> n6 [ label="8, length:2" ]; |
---|
600 | //xn3 -> n5 [ label="7, length:1" ]; |
---|
601 | //xn2 -> n5 [ label="6, length:3" ]; |
---|
602 | //xn2 -> n6 [ label="5, length:5" ]; |
---|
603 | //xn2 -> n4 [ label="4, length:2" ]; |
---|
604 | //xn1 -> n4 [ label="3, length:3" ]; |
---|
605 | //xn0 -> n3 [ label="2, length:1" ]; |
---|
606 | //xn0 -> n2 [ label="1, length:2" ]; |
---|
607 | //xn0 -> n1 [ label="0, length:3" ]; |
---|
608 | //x} |
---|
609 | //x\enddot |
---|
610 | //x |
---|
611 | //x\code |
---|
612 | //xGraph g; |
---|
613 | //xNode s, t; |
---|
614 | //xLengthMap length(g); |
---|
615 | //x |
---|
616 | //xreadDimacs(std::cin, g, length, s, t); |
---|
617 | //x |
---|
618 | //xcout << "edges with lengths (of form id, source--length->target): " << endl; |
---|
619 | //xfor(EdgeIt e(g); e!=INVALID; ++e) |
---|
620 | //x cout << g.id(e) << ", " << g.id(g.source(e)) << "--" |
---|
621 | //x << length[e] << "->" << g.id(g.target(e)) << endl; |
---|
622 | //x |
---|
623 | //xcout << "s: " << g.id(s) << " t: " << g.id(t) << endl; |
---|
624 | //x\endcode |
---|
625 | //xNext, the potential function is computed with Dijkstra. |
---|
626 | //x\code |
---|
627 | //xtypedef Dijkstra<Graph, LengthMap> Dijkstra; |
---|
628 | //xDijkstra dijkstra(g, length); |
---|
629 | //xdijkstra.run(s); |
---|
630 | //x\endcode |
---|
631 | //xNext, we consrtruct a map which filters the edge-set to the tight edges. |
---|
632 | //x\code |
---|
633 | //xtypedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> |
---|
634 | //x TightEdgeFilter; |
---|
635 | //xTightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length); |
---|
636 | //x |
---|
637 | //xtypedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW; |
---|
638 | //xSubGW gw(g, tight_edge_filter); |
---|
639 | //x\endcode |
---|
640 | //xThen, the maximum nimber of edge-disjoint \c s-\c t paths are computed |
---|
641 | //xwith a max flow algorithm Preflow. |
---|
642 | //x\code |
---|
643 | //xConstMap<Edge, int> const_1_map(1); |
---|
644 | //xGraph::EdgeMap<int> flow(g, 0); |
---|
645 | //x |
---|
646 | //xPreflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > |
---|
647 | //x preflow(gw, s, t, const_1_map, flow); |
---|
648 | //xpreflow.run(); |
---|
649 | //x\endcode |
---|
650 | //xLast, the output is: |
---|
651 | //x\code |
---|
652 | //xcout << "maximum number of edge-disjoint shortest path: " |
---|
653 | //x << preflow.flowValue() << endl; |
---|
654 | //xcout << "edges of the maximum number of edge-disjoint shortest s-t paths: " |
---|
655 | //x << endl; |
---|
656 | //xfor(EdgeIt e(g); e!=INVALID; ++e) |
---|
657 | //x if (flow[e]) |
---|
658 | //x cout << " " << g.id(g.source(e)) << "--" |
---|
659 | //x << length[e] << "->" << g.id(g.target(e)) << endl; |
---|
660 | //x\endcode |
---|
661 | //xThe program has the following (expected :-)) output: |
---|
662 | //x\code |
---|
663 | //xedges with lengths (of form id, source--length->target): |
---|
664 | //x 9, 5--4->6 |
---|
665 | //x 8, 4--2->6 |
---|
666 | //x 7, 3--1->5 |
---|
667 | //x 6, 2--3->5 |
---|
668 | //x 5, 2--5->6 |
---|
669 | //x 4, 2--2->4 |
---|
670 | //x 3, 1--3->4 |
---|
671 | //x 2, 0--1->3 |
---|
672 | //x 1, 0--2->2 |
---|
673 | //x 0, 0--3->1 |
---|
674 | //xs: 0 t: 6 |
---|
675 | //xmaximum number of edge-disjoint shortest path: 2 |
---|
676 | //xedges of the maximum number of edge-disjoint shortest s-t paths: |
---|
677 | //x 9, 5--4->6 |
---|
678 | //x 8, 4--2->6 |
---|
679 | //x 7, 3--1->5 |
---|
680 | //x 4, 2--2->4 |
---|
681 | //x 2, 0--1->3 |
---|
682 | //x 1, 0--2->2 |
---|
683 | //x\endcode |
---|
684 | //x |
---|
685 | //x\author Marton Makai |
---|
686 | template<typename Graph, typename EdgeFilterMap> |
---|
687 | class EdgeSubGraphAdaptor : |
---|
688 | public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, |
---|
689 | EdgeFilterMap, false> { |
---|
690 | public: |
---|
691 | typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, |
---|
692 | EdgeFilterMap, false> Parent; |
---|
693 | protected: |
---|
694 | ConstMap<typename Graph::Node, bool> const_true_map; |
---|
695 | public: |
---|
696 | EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : |
---|
697 | Parent(), const_true_map(true) { |
---|
698 | Parent::setGraph(_graph); |
---|
699 | Parent::setNodeFilterMap(const_true_map); |
---|
700 | Parent::setEdgeFilterMap(_edge_filter_map); |
---|
701 | } |
---|
702 | }; |
---|
703 | |
---|
704 | template <typename _Graph> |
---|
705 | class UGraphAdaptorBase : |
---|
706 | public UGraphExtender<GraphAdaptorBase<_Graph> > { |
---|
707 | public: |
---|
708 | typedef _Graph Graph; |
---|
709 | typedef UGraphExtender<GraphAdaptorBase<_Graph> > Parent; |
---|
710 | protected: |
---|
711 | UGraphAdaptorBase() : Parent() { } |
---|
712 | public: |
---|
713 | typedef typename Parent::UEdge UEdge; |
---|
714 | typedef typename Parent::Edge Edge; |
---|
715 | |
---|
716 | template <typename T> |
---|
717 | class EdgeMap { |
---|
718 | protected: |
---|
719 | const UGraphAdaptorBase<_Graph>* g; |
---|
720 | template <typename TT> friend class EdgeMap; |
---|
721 | typename _Graph::template EdgeMap<T> forward_map, backward_map; |
---|
722 | public: |
---|
723 | typedef T Value; |
---|
724 | typedef Edge Key; |
---|
725 | |
---|
726 | EdgeMap(const UGraphAdaptorBase<_Graph>& _g) : g(&_g), |
---|
727 | forward_map(*(g->graph)), backward_map(*(g->graph)) { } |
---|
728 | |
---|
729 | EdgeMap(const UGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), |
---|
730 | forward_map(*(g->graph), a), backward_map(*(g->graph), a) { } |
---|
731 | |
---|
732 | void set(Edge e, T a) { |
---|
733 | if (g->direction(e)) |
---|
734 | forward_map.set(e, a); |
---|
735 | else |
---|
736 | backward_map.set(e, a); |
---|
737 | } |
---|
738 | |
---|
739 | T operator[](Edge e) const { |
---|
740 | if (g->direction(e)) |
---|
741 | return forward_map[e]; |
---|
742 | else |
---|
743 | return backward_map[e]; |
---|
744 | } |
---|
745 | }; |
---|
746 | |
---|
747 | template <typename T> |
---|
748 | class UEdgeMap { |
---|
749 | template <typename TT> friend class UEdgeMap; |
---|
750 | typename _Graph::template EdgeMap<T> map; |
---|
751 | public: |
---|
752 | typedef T Value; |
---|
753 | typedef UEdge Key; |
---|
754 | |
---|
755 | UEdgeMap(const UGraphAdaptorBase<_Graph>& g) : |
---|
756 | map(*(g.graph)) { } |
---|
757 | |
---|
758 | UEdgeMap(const UGraphAdaptorBase<_Graph>& g, T a) : |
---|
759 | map(*(g.graph), a) { } |
---|
760 | |
---|
761 | void set(UEdge e, T a) { |
---|
762 | map.set(e, a); |
---|
763 | } |
---|
764 | |
---|
765 | T operator[](UEdge e) const { |
---|
766 | return map[e]; |
---|
767 | } |
---|
768 | }; |
---|
769 | |
---|
770 | }; |
---|
771 | |
---|
772 | //x\brief An undirected graph is made from a directed graph by an adaptor |
---|
773 | //x\ingroup graph_adaptors |
---|
774 | //x |
---|
775 | //x Undocumented, untested!!! |
---|
776 | //x If somebody knows nice demo application, let's polulate it. |
---|
777 | //x |
---|
778 | //x \author Marton Makai |
---|
779 | template<typename _Graph> |
---|
780 | class UGraphAdaptor : |
---|
781 | public IterableUGraphExtender< |
---|
782 | UGraphAdaptorBase<_Graph> > { |
---|
783 | public: |
---|
784 | typedef _Graph Graph; |
---|
785 | typedef IterableUGraphExtender< |
---|
786 | UGraphAdaptorBase<_Graph> > Parent; |
---|
787 | protected: |
---|
788 | UGraphAdaptor() { } |
---|
789 | public: |
---|
790 | UGraphAdaptor(_Graph& _graph) { |
---|
791 | setGraph(_graph); |
---|
792 | } |
---|
793 | }; |
---|
794 | |
---|
795 | |
---|
796 | template <typename _Graph, |
---|
797 | typename ForwardFilterMap, typename BackwardFilterMap> |
---|
798 | class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
799 | public: |
---|
800 | typedef _Graph Graph; |
---|
801 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
802 | protected: |
---|
803 | ForwardFilterMap* forward_filter; |
---|
804 | BackwardFilterMap* backward_filter; |
---|
805 | SubBidirGraphAdaptorBase() : Parent(), |
---|
806 | forward_filter(0), backward_filter(0) { } |
---|
807 | |
---|
808 | void setForwardFilterMap(ForwardFilterMap& _forward_filter) { |
---|
809 | forward_filter=&_forward_filter; |
---|
810 | } |
---|
811 | void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { |
---|
812 | backward_filter=&_backward_filter; |
---|
813 | } |
---|
814 | |
---|
815 | public: |
---|
816 | // SubGraphAdaptorBase(Graph& _graph, |
---|
817 | // NodeFilterMap& _node_filter_map, |
---|
818 | // EdgeFilterMap& _edge_filter_map) : |
---|
819 | // Parent(&_graph), |
---|
820 | // node_filter_map(&node_filter_map), |
---|
821 | // edge_filter_map(&edge_filter_map) { } |
---|
822 | |
---|
823 | typedef typename Parent::Node Node; |
---|
824 | typedef typename _Graph::Edge GraphEdge; |
---|
825 | template <typename T> class EdgeMap; |
---|
826 | // SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from |
---|
827 | // _Graph::Edge. It contains an extra bool flag which is true |
---|
828 | // if and only if the |
---|
829 | // edge is the backward version of the original edge. |
---|
830 | class Edge : public _Graph::Edge { |
---|
831 | friend class SubBidirGraphAdaptorBase< |
---|
832 | Graph, ForwardFilterMap, BackwardFilterMap>; |
---|
833 | template<typename T> friend class EdgeMap; |
---|
834 | protected: |
---|
835 | bool backward; //true, iff backward |
---|
836 | public: |
---|
837 | Edge() { } |
---|
838 | // \todo =false is needed, or causes problems? |
---|
839 | // If \c _backward is false, then we get an edge corresponding to the |
---|
840 | // original one, otherwise its oppositely directed pair is obtained. |
---|
841 | Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : |
---|
842 | _Graph::Edge(e), backward(_backward) { } |
---|
843 | Edge(Invalid i) : _Graph::Edge(i), backward(true) { } |
---|
844 | bool operator==(const Edge& v) const { |
---|
845 | return (this->backward==v.backward && |
---|
846 | static_cast<typename _Graph::Edge>(*this)== |
---|
847 | static_cast<typename _Graph::Edge>(v)); |
---|
848 | } |
---|
849 | bool operator!=(const Edge& v) const { |
---|
850 | return (this->backward!=v.backward || |
---|
851 | static_cast<typename _Graph::Edge>(*this)!= |
---|
852 | static_cast<typename _Graph::Edge>(v)); |
---|
853 | } |
---|
854 | }; |
---|
855 | |
---|
856 | void first(Node& i) const { |
---|
857 | Parent::first(i); |
---|
858 | } |
---|
859 | |
---|
860 | void first(Edge& i) const { |
---|
861 | Parent::first(i); |
---|
862 | i.backward=false; |
---|
863 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
864 | !(*forward_filter)[i]) Parent::next(i); |
---|
865 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
866 | Parent::first(i); |
---|
867 | i.backward=true; |
---|
868 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
869 | !(*backward_filter)[i]) Parent::next(i); |
---|
870 | } |
---|
871 | } |
---|
872 | |
---|
873 | void firstIn(Edge& i, const Node& n) const { |
---|
874 | Parent::firstIn(i, n); |
---|
875 | i.backward=false; |
---|
876 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
877 | !(*forward_filter)[i]) Parent::nextIn(i); |
---|
878 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
879 | Parent::firstOut(i, n); |
---|
880 | i.backward=true; |
---|
881 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
882 | !(*backward_filter)[i]) Parent::nextOut(i); |
---|
883 | } |
---|
884 | } |
---|
885 | |
---|
886 | void firstOut(Edge& i, const Node& n) const { |
---|
887 | Parent::firstOut(i, n); |
---|
888 | i.backward=false; |
---|
889 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
890 | !(*forward_filter)[i]) Parent::nextOut(i); |
---|
891 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
892 | Parent::firstIn(i, n); |
---|
893 | i.backward=true; |
---|
894 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
895 | !(*backward_filter)[i]) Parent::nextIn(i); |
---|
896 | } |
---|
897 | } |
---|
898 | |
---|
899 | void next(Node& i) const { |
---|
900 | Parent::next(i); |
---|
901 | } |
---|
902 | |
---|
903 | void next(Edge& i) const { |
---|
904 | if (!(i.backward)) { |
---|
905 | Parent::next(i); |
---|
906 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
907 | !(*forward_filter)[i]) Parent::next(i); |
---|
908 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
909 | Parent::first(i); |
---|
910 | i.backward=true; |
---|
911 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
912 | !(*backward_filter)[i]) Parent::next(i); |
---|
913 | } |
---|
914 | } else { |
---|
915 | Parent::next(i); |
---|
916 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
917 | !(*backward_filter)[i]) Parent::next(i); |
---|
918 | } |
---|
919 | } |
---|
920 | |
---|
921 | void nextIn(Edge& i) const { |
---|
922 | if (!(i.backward)) { |
---|
923 | Node n=Parent::target(i); |
---|
924 | Parent::nextIn(i); |
---|
925 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
926 | !(*forward_filter)[i]) Parent::nextIn(i); |
---|
927 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
928 | Parent::firstOut(i, n); |
---|
929 | i.backward=true; |
---|
930 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
931 | !(*backward_filter)[i]) Parent::nextOut(i); |
---|
932 | } |
---|
933 | } else { |
---|
934 | Parent::nextOut(i); |
---|
935 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
936 | !(*backward_filter)[i]) Parent::nextOut(i); |
---|
937 | } |
---|
938 | } |
---|
939 | |
---|
940 | void nextOut(Edge& i) const { |
---|
941 | if (!(i.backward)) { |
---|
942 | Node n=Parent::source(i); |
---|
943 | Parent::nextOut(i); |
---|
944 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
945 | !(*forward_filter)[i]) Parent::nextOut(i); |
---|
946 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
947 | Parent::firstIn(i, n); |
---|
948 | i.backward=true; |
---|
949 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
950 | !(*backward_filter)[i]) Parent::nextIn(i); |
---|
951 | } |
---|
952 | } else { |
---|
953 | Parent::nextIn(i); |
---|
954 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
955 | !(*backward_filter)[i]) Parent::nextIn(i); |
---|
956 | } |
---|
957 | } |
---|
958 | |
---|
959 | Node source(Edge e) const { |
---|
960 | return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); } |
---|
961 | Node target(Edge e) const { |
---|
962 | return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); } |
---|
963 | |
---|
964 | //x Gives back the opposite edge. |
---|
965 | |
---|
966 | //x\e |
---|
967 | //x |
---|
968 | Edge opposite(const Edge& e) const { |
---|
969 | Edge f=e; |
---|
970 | f.backward=!f.backward; |
---|
971 | return f; |
---|
972 | } |
---|
973 | |
---|
974 | //x\e |
---|
975 | |
---|
976 | //x \warning This is a linear time operation and works only if |
---|
977 | //x \c Graph::EdgeIt is defined. |
---|
978 | //x \todo hmm |
---|
979 | int edgeNum() const { |
---|
980 | int i=0; |
---|
981 | Edge e; |
---|
982 | for (first(e); e!=INVALID; next(e)) ++i; |
---|
983 | return i; |
---|
984 | } |
---|
985 | |
---|
986 | bool forward(const Edge& e) const { return !e.backward; } |
---|
987 | bool backward(const Edge& e) const { return e.backward; } |
---|
988 | |
---|
989 | //x\e |
---|
990 | |
---|
991 | //x \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two |
---|
992 | //x _Graph::EdgeMap one for the forward edges and |
---|
993 | //x one for the backward edges. |
---|
994 | template <typename T> |
---|
995 | class EdgeMap { |
---|
996 | template <typename TT> friend class EdgeMap; |
---|
997 | typename _Graph::template EdgeMap<T> forward_map, backward_map; |
---|
998 | public: |
---|
999 | typedef T Value; |
---|
1000 | typedef Edge Key; |
---|
1001 | |
---|
1002 | EdgeMap(const SubBidirGraphAdaptorBase<_Graph, |
---|
1003 | ForwardFilterMap, BackwardFilterMap>& g) : |
---|
1004 | forward_map(*(g.graph)), backward_map(*(g.graph)) { } |
---|
1005 | |
---|
1006 | EdgeMap(const SubBidirGraphAdaptorBase<_Graph, |
---|
1007 | ForwardFilterMap, BackwardFilterMap>& g, T a) : |
---|
1008 | forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } |
---|
1009 | |
---|
1010 | void set(Edge e, T a) { |
---|
1011 | if (!e.backward) |
---|
1012 | forward_map.set(e, a); |
---|
1013 | else |
---|
1014 | backward_map.set(e, a); |
---|
1015 | } |
---|
1016 | |
---|
1017 | // typename _Graph::template EdgeMap<T>::ConstReference |
---|
1018 | // operator[](Edge e) const { |
---|
1019 | // if (!e.backward) |
---|
1020 | // return forward_map[e]; |
---|
1021 | // else |
---|
1022 | // return backward_map[e]; |
---|
1023 | // } |
---|
1024 | |
---|
1025 | // typename _Graph::template EdgeMap<T>::Reference |
---|
1026 | T operator[](Edge e) const { |
---|
1027 | if (!e.backward) |
---|
1028 | return forward_map[e]; |
---|
1029 | else |
---|
1030 | return backward_map[e]; |
---|
1031 | } |
---|
1032 | |
---|
1033 | void update() { |
---|
1034 | forward_map.update(); |
---|
1035 | backward_map.update(); |
---|
1036 | } |
---|
1037 | }; |
---|
1038 | |
---|
1039 | }; |
---|
1040 | |
---|
1041 | |
---|
1042 | //x\brief An adaptor for composing a subgraph of a |
---|
1043 | //x bidirected graph made from a directed one. |
---|
1044 | //x\ingroup graph_adaptors |
---|
1045 | //x |
---|
1046 | //x An adaptor for composing a subgraph of a |
---|
1047 | //x bidirected graph made from a directed one. |
---|
1048 | //x |
---|
1049 | //x\warning Graph adaptors are in even more experimental state |
---|
1050 | //xthan the other |
---|
1051 | //xparts of the lib. Use them at you own risk. |
---|
1052 | //x |
---|
1053 | //x Let \f$G=(V, A)\f$ be a directed graph and for each directed edge |
---|
1054 | //x \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by |
---|
1055 | //x reversing its orientation. We are given moreover two bool valued |
---|
1056 | //x maps on the edge-set, |
---|
1057 | //x \f$forward\_filter\f$, and \f$backward\_filter\f$. |
---|
1058 | //x SubBidirGraphAdaptor implements the graph structure with node-set |
---|
1059 | //x \f$V\f$ and edge-set |
---|
1060 | //x \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. |
---|
1061 | //x The purpose of writing + instead of union is because parallel |
---|
1062 | //x edges can arise. (Similarly, antiparallel edges also can arise). |
---|
1063 | //x In other words, a subgraph of the bidirected graph obtained, which |
---|
1064 | //x is given by orienting the edges of the original graph in both directions. |
---|
1065 | //x As the oppositely directed edges are logically different, |
---|
1066 | //x the maps are able to attach different values for them. |
---|
1067 | //x |
---|
1068 | //x An example for such a construction is \c RevGraphAdaptor where the |
---|
1069 | //x forward_filter is everywhere false and the backward_filter is |
---|
1070 | //x everywhere true. We note that for sake of efficiency, |
---|
1071 | //x \c RevGraphAdaptor is implemented in a different way. |
---|
1072 | //x But BidirGraphAdaptor is obtained from |
---|
1073 | //x SubBidirGraphAdaptor by considering everywhere true |
---|
1074 | //x valued maps both for forward_filter and backward_filter. |
---|
1075 | //x |
---|
1076 | //x The most important application of SubBidirGraphAdaptor |
---|
1077 | //x is ResGraphAdaptor, which stands for the residual graph in directed |
---|
1078 | //x flow and circulation problems. |
---|
1079 | //x As adaptors usually, the SubBidirGraphAdaptor implements the |
---|
1080 | //x above mentioned graph structure without its physical storage, |
---|
1081 | //x that is the whole stuff is stored in constant memory. |
---|
1082 | template<typename _Graph, |
---|
1083 | typename ForwardFilterMap, typename BackwardFilterMap> |
---|
1084 | class SubBidirGraphAdaptor : |
---|
1085 | public IterableGraphExtender< |
---|
1086 | SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > { |
---|
1087 | public: |
---|
1088 | typedef _Graph Graph; |
---|
1089 | typedef IterableGraphExtender< |
---|
1090 | SubBidirGraphAdaptorBase< |
---|
1091 | _Graph, ForwardFilterMap, BackwardFilterMap> > Parent; |
---|
1092 | protected: |
---|
1093 | SubBidirGraphAdaptor() { } |
---|
1094 | public: |
---|
1095 | SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, |
---|
1096 | BackwardFilterMap& _backward_filter) { |
---|
1097 | setGraph(_graph); |
---|
1098 | setForwardFilterMap(_forward_filter); |
---|
1099 | setBackwardFilterMap(_backward_filter); |
---|
1100 | } |
---|
1101 | }; |
---|
1102 | |
---|
1103 | |
---|
1104 | |
---|
1105 | //x\brief An adaptor for composing bidirected graph from a directed one. |
---|
1106 | //x\ingroup graph_adaptors |
---|
1107 | //x |
---|
1108 | //x\warning Graph adaptors are in even more experimental state |
---|
1109 | //xthan the other |
---|
1110 | //xparts of the lib. Use them at you own risk. |
---|
1111 | //x |
---|
1112 | //x An adaptor for composing bidirected graph from a directed one. |
---|
1113 | //x A bidirected graph is composed over the directed one without physical |
---|
1114 | //x storage. As the oppositely directed edges are logically different ones |
---|
1115 | //x the maps are able to attach different values for them. |
---|
1116 | template<typename Graph> |
---|
1117 | class BidirGraphAdaptor : |
---|
1118 | public SubBidirGraphAdaptor< |
---|
1119 | Graph, |
---|
1120 | ConstMap<typename Graph::Edge, bool>, |
---|
1121 | ConstMap<typename Graph::Edge, bool> > { |
---|
1122 | public: |
---|
1123 | typedef SubBidirGraphAdaptor< |
---|
1124 | Graph, |
---|
1125 | ConstMap<typename Graph::Edge, bool>, |
---|
1126 | ConstMap<typename Graph::Edge, bool> > Parent; |
---|
1127 | protected: |
---|
1128 | ConstMap<typename Graph::Edge, bool> cm; |
---|
1129 | |
---|
1130 | BidirGraphAdaptor() : Parent(), cm(true) { |
---|
1131 | Parent::setForwardFilterMap(cm); |
---|
1132 | Parent::setBackwardFilterMap(cm); |
---|
1133 | } |
---|
1134 | public: |
---|
1135 | BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { |
---|
1136 | Parent::setGraph(_graph); |
---|
1137 | Parent::setForwardFilterMap(cm); |
---|
1138 | Parent::setBackwardFilterMap(cm); |
---|
1139 | } |
---|
1140 | |
---|
1141 | int edgeNum() const { |
---|
1142 | return 2*this->graph->edgeNum(); |
---|
1143 | } |
---|
1144 | }; |
---|
1145 | |
---|
1146 | |
---|
1147 | template<typename Graph, typename Number, |
---|
1148 | typename CapacityMap, typename FlowMap> |
---|
1149 | class ResForwardFilter { |
---|
1150 | // const Graph* graph; |
---|
1151 | const CapacityMap* capacity; |
---|
1152 | const FlowMap* flow; |
---|
1153 | public: |
---|
1154 | ResForwardFilter(/*const Graph& _graph, */ |
---|
1155 | const CapacityMap& _capacity, const FlowMap& _flow) : |
---|
1156 | /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } |
---|
1157 | ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } |
---|
1158 | void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } |
---|
1159 | void setFlow(const FlowMap& _flow) { flow=&_flow; } |
---|
1160 | bool operator[](const typename Graph::Edge& e) const { |
---|
1161 | return (Number((*flow)[e]) < Number((*capacity)[e])); |
---|
1162 | } |
---|
1163 | }; |
---|
1164 | |
---|
1165 | template<typename Graph, typename Number, |
---|
1166 | typename CapacityMap, typename FlowMap> |
---|
1167 | class ResBackwardFilter { |
---|
1168 | const CapacityMap* capacity; |
---|
1169 | const FlowMap* flow; |
---|
1170 | public: |
---|
1171 | ResBackwardFilter(/*const Graph& _graph,*/ |
---|
1172 | const CapacityMap& _capacity, const FlowMap& _flow) : |
---|
1173 | /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } |
---|
1174 | ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } |
---|
1175 | void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } |
---|
1176 | void setFlow(const FlowMap& _flow) { flow=&_flow; } |
---|
1177 | bool operator[](const typename Graph::Edge& e) const { |
---|
1178 | return (Number(0) < Number((*flow)[e])); |
---|
1179 | } |
---|
1180 | }; |
---|
1181 | |
---|
1182 | |
---|
1183 | //x\brief An adaptor for composing the residual |
---|
1184 | //xgraph for directed flow and circulation problems. |
---|
1185 | //x\ingroup graph_adaptors |
---|
1186 | //x |
---|
1187 | //xAn adaptor for composing the residual graph for |
---|
1188 | //xdirected flow and circulation problems. |
---|
1189 | //xLet \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a |
---|
1190 | //xnumber type. Let moreover |
---|
1191 | //x\f$f,c:A\to F\f$, be functions on the edge-set. |
---|
1192 | //xIn the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow |
---|
1193 | //xand \f$c\f$ for a capacity function. |
---|
1194 | //xSuppose that a graph instange \c g of type |
---|
1195 | //x\c ListGraph implements \f$G\f$ . |
---|
1196 | //x\code |
---|
1197 | //x ListGraph g; |
---|
1198 | //x\endcode |
---|
1199 | //xThen RevGraphAdaptor implements the graph structure with node-set |
---|
1200 | //x\f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where |
---|
1201 | //x\f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and |
---|
1202 | //x\f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, |
---|
1203 | //xi.e. the so called residual graph. |
---|
1204 | //xWhen we take the union \f$A_{forward}\cup A_{backward}\f$, |
---|
1205 | //xmultilicities are counted, i.e. if an edge is in both |
---|
1206 | //x\f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it |
---|
1207 | //xappears twice. |
---|
1208 | //xThe following code shows how |
---|
1209 | //xsuch an instance can be constructed. |
---|
1210 | //x\code |
---|
1211 | //xtypedef ListGraph Graph; |
---|
1212 | //xGraph::EdgeMap<int> f(g); |
---|
1213 | //xGraph::EdgeMap<int> c(g); |
---|
1214 | //xResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g); |
---|
1215 | //x\endcode |
---|
1216 | //x\author Marton Makai |
---|
1217 | //x |
---|
1218 | template<typename Graph, typename Number, |
---|
1219 | typename CapacityMap, typename FlowMap> |
---|
1220 | class ResGraphAdaptor : |
---|
1221 | public SubBidirGraphAdaptor< |
---|
1222 | Graph, |
---|
1223 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap>, |
---|
1224 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > { |
---|
1225 | public: |
---|
1226 | typedef SubBidirGraphAdaptor< |
---|
1227 | Graph, |
---|
1228 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap>, |
---|
1229 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent; |
---|
1230 | protected: |
---|
1231 | const CapacityMap* capacity; |
---|
1232 | FlowMap* flow; |
---|
1233 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter; |
---|
1234 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter; |
---|
1235 | ResGraphAdaptor() : Parent(), |
---|
1236 | capacity(0), flow(0) { } |
---|
1237 | void setCapacityMap(const CapacityMap& _capacity) { |
---|
1238 | capacity=&_capacity; |
---|
1239 | forward_filter.setCapacity(_capacity); |
---|
1240 | backward_filter.setCapacity(_capacity); |
---|
1241 | } |
---|
1242 | void setFlowMap(FlowMap& _flow) { |
---|
1243 | flow=&_flow; |
---|
1244 | forward_filter.setFlow(_flow); |
---|
1245 | backward_filter.setFlow(_flow); |
---|
1246 | } |
---|
1247 | public: |
---|
1248 | ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, |
---|
1249 | FlowMap& _flow) : |
---|
1250 | Parent(), capacity(&_capacity), flow(&_flow), |
---|
1251 | forward_filter(/*_graph,*/ _capacity, _flow), |
---|
1252 | backward_filter(/*_graph,*/ _capacity, _flow) { |
---|
1253 | Parent::setGraph(_graph); |
---|
1254 | Parent::setForwardFilterMap(forward_filter); |
---|
1255 | Parent::setBackwardFilterMap(backward_filter); |
---|
1256 | } |
---|
1257 | |
---|
1258 | typedef typename Parent::Edge Edge; |
---|
1259 | |
---|
1260 | void augment(const Edge& e, Number a) const { |
---|
1261 | if (Parent::forward(e)) |
---|
1262 | flow->set(e, (*flow)[e]+a); |
---|
1263 | else |
---|
1264 | flow->set(e, (*flow)[e]-a); |
---|
1265 | } |
---|
1266 | |
---|
1267 | //x \brief Residual capacity map. |
---|
1268 | //x |
---|
1269 | //x In generic residual graphs the residual capacity can be obtained |
---|
1270 | //x as a map. |
---|
1271 | class ResCap { |
---|
1272 | protected: |
---|
1273 | const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph; |
---|
1274 | public: |
---|
1275 | typedef Number Value; |
---|
1276 | typedef Edge Key; |
---|
1277 | ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& |
---|
1278 | _res_graph) : res_graph(&_res_graph) { } |
---|
1279 | Number operator[](const Edge& e) const { |
---|
1280 | if (res_graph->forward(e)) |
---|
1281 | return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; |
---|
1282 | else |
---|
1283 | return (*(res_graph->flow))[e]; |
---|
1284 | } |
---|
1285 | }; |
---|
1286 | |
---|
1287 | // KEEP_MAPS(Parent, ResGraphAdaptor); |
---|
1288 | }; |
---|
1289 | |
---|
1290 | |
---|
1291 | |
---|
1292 | template <typename _Graph, typename FirstOutEdgesMap> |
---|
1293 | class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
1294 | public: |
---|
1295 | typedef _Graph Graph; |
---|
1296 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
1297 | protected: |
---|
1298 | FirstOutEdgesMap* first_out_edges; |
---|
1299 | ErasingFirstGraphAdaptorBase() : Parent(), |
---|
1300 | first_out_edges(0) { } |
---|
1301 | |
---|
1302 | void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) { |
---|
1303 | first_out_edges=&_first_out_edges; |
---|
1304 | } |
---|
1305 | |
---|
1306 | public: |
---|
1307 | |
---|
1308 | typedef typename Parent::Node Node; |
---|
1309 | typedef typename Parent::Edge Edge; |
---|
1310 | |
---|
1311 | void firstOut(Edge& i, const Node& n) const { |
---|
1312 | i=(*first_out_edges)[n]; |
---|
1313 | } |
---|
1314 | |
---|
1315 | void erase(const Edge& e) const { |
---|
1316 | Node n=source(e); |
---|
1317 | Edge f=e; |
---|
1318 | Parent::nextOut(f); |
---|
1319 | first_out_edges->set(n, f); |
---|
1320 | } |
---|
1321 | }; |
---|
1322 | |
---|
1323 | |
---|
1324 | //x\brief For blocking flows. |
---|
1325 | //x\ingroup graph_adaptors |
---|
1326 | //x |
---|
1327 | //x\warning Graph adaptors are in even more |
---|
1328 | //xexperimental state than the other |
---|
1329 | //xparts of the lib. Use them at you own risk. |
---|
1330 | //x |
---|
1331 | //xThis graph adaptor is used for on-the-fly |
---|
1332 | //xDinits blocking flow computations. |
---|
1333 | //xFor each node, an out-edge is stored which is used when the |
---|
1334 | //x\code |
---|
1335 | //xOutEdgeIt& first(OutEdgeIt&, const Node&) |
---|
1336 | //x\endcode |
---|
1337 | //xis called. |
---|
1338 | //x |
---|
1339 | //x\author Marton Makai |
---|
1340 | //x |
---|
1341 | template <typename _Graph, typename FirstOutEdgesMap> |
---|
1342 | class ErasingFirstGraphAdaptor : |
---|
1343 | public IterableGraphExtender< |
---|
1344 | ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > { |
---|
1345 | public: |
---|
1346 | typedef _Graph Graph; |
---|
1347 | typedef IterableGraphExtender< |
---|
1348 | ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent; |
---|
1349 | ErasingFirstGraphAdaptor(Graph& _graph, |
---|
1350 | FirstOutEdgesMap& _first_out_edges) { |
---|
1351 | setGraph(_graph); |
---|
1352 | setFirstOutEdgesMap(_first_out_edges); |
---|
1353 | } |
---|
1354 | |
---|
1355 | }; |
---|
1356 | |
---|
1357 | template <typename _Graph> |
---|
1358 | class SplitGraphAdaptorBase |
---|
1359 | : public GraphAdaptorBase<_Graph> { |
---|
1360 | public: |
---|
1361 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
1362 | |
---|
1363 | class Node; |
---|
1364 | class Edge; |
---|
1365 | template <typename T> class NodeMap; |
---|
1366 | template <typename T> class EdgeMap; |
---|
1367 | |
---|
1368 | |
---|
1369 | class Node : public Parent::Node { |
---|
1370 | friend class SplitGraphAdaptorBase; |
---|
1371 | template <typename T> friend class NodeMap; |
---|
1372 | typedef typename Parent::Node NodeParent; |
---|
1373 | private: |
---|
1374 | |
---|
1375 | bool entry; |
---|
1376 | Node(typename Parent::Node _node, bool _entry) |
---|
1377 | : Parent::Node(_node), entry(_entry) {} |
---|
1378 | |
---|
1379 | public: |
---|
1380 | Node() {} |
---|
1381 | Node(Invalid) : NodeParent(INVALID), entry(true) {} |
---|
1382 | |
---|
1383 | bool operator==(const Node& node) const { |
---|
1384 | return NodeParent::operator==(node) && entry == node.entry; |
---|
1385 | } |
---|
1386 | |
---|
1387 | bool operator!=(const Node& node) const { |
---|
1388 | return !(*this == node); |
---|
1389 | } |
---|
1390 | |
---|
1391 | bool operator<(const Node& node) const { |
---|
1392 | return NodeParent::operator<(node) || |
---|
1393 | (NodeParent::operator==(node) && entry < node.entry); |
---|
1394 | } |
---|
1395 | }; |
---|
1396 | |
---|
1397 | //x \todo May we want VARIANT/union type |
---|
1398 | class Edge : public Parent::Edge { |
---|
1399 | friend class SplitGraphAdaptorBase; |
---|
1400 | template <typename T> friend class EdgeMap; |
---|
1401 | private: |
---|
1402 | typedef typename Parent::Edge EdgeParent; |
---|
1403 | typedef typename Parent::Node NodeParent; |
---|
1404 | NodeParent bind; |
---|
1405 | |
---|
1406 | Edge(const EdgeParent& edge, const NodeParent& node) |
---|
1407 | : EdgeParent(edge), bind(node) {} |
---|
1408 | public: |
---|
1409 | Edge() {} |
---|
1410 | Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {} |
---|
1411 | |
---|
1412 | bool operator==(const Edge& edge) const { |
---|
1413 | return EdgeParent::operator==(edge) && bind == edge.bind; |
---|
1414 | } |
---|
1415 | |
---|
1416 | bool operator!=(const Edge& edge) const { |
---|
1417 | return !(*this == edge); |
---|
1418 | } |
---|
1419 | |
---|
1420 | bool operator<(const Edge& edge) const { |
---|
1421 | return EdgeParent::operator<(edge) || |
---|
1422 | (EdgeParent::operator==(edge) && bind < edge.bind); |
---|
1423 | } |
---|
1424 | }; |
---|
1425 | |
---|
1426 | void first(Node& node) const { |
---|
1427 | Parent::first(node); |
---|
1428 | node.entry = true; |
---|
1429 | } |
---|
1430 | |
---|
1431 | void next(Node& node) const { |
---|
1432 | if (node.entry) { |
---|
1433 | node.entry = false; |
---|
1434 | } else { |
---|
1435 | node.entry = true; |
---|
1436 | Parent::next(node); |
---|
1437 | } |
---|
1438 | } |
---|
1439 | |
---|
1440 | void first(Edge& edge) const { |
---|
1441 | Parent::first(edge); |
---|
1442 | if ((typename Parent::Edge&)edge == INVALID) { |
---|
1443 | Parent::first(edge.bind); |
---|
1444 | } else { |
---|
1445 | edge.bind = INVALID; |
---|
1446 | } |
---|
1447 | } |
---|
1448 | |
---|
1449 | void next(Edge& edge) const { |
---|
1450 | if ((typename Parent::Edge&)edge != INVALID) { |
---|
1451 | Parent::next(edge); |
---|
1452 | if ((typename Parent::Edge&)edge == INVALID) { |
---|
1453 | Parent::first(edge.bind); |
---|
1454 | } |
---|
1455 | } else { |
---|
1456 | Parent::next(edge.bind); |
---|
1457 | } |
---|
1458 | } |
---|
1459 | |
---|
1460 | void firstIn(Edge& edge, const Node& node) const { |
---|
1461 | if (node.entry) { |
---|
1462 | Parent::firstIn(edge, node); |
---|
1463 | edge.bind = INVALID; |
---|
1464 | } else { |
---|
1465 | (typename Parent::Edge&)edge = INVALID; |
---|
1466 | edge.bind = node; |
---|
1467 | } |
---|
1468 | } |
---|
1469 | |
---|
1470 | void nextIn(Edge& edge) const { |
---|
1471 | if ((typename Parent::Edge&)edge != INVALID) { |
---|
1472 | Parent::nextIn(edge); |
---|
1473 | } else { |
---|
1474 | edge.bind = INVALID; |
---|
1475 | } |
---|
1476 | } |
---|
1477 | |
---|
1478 | void firstOut(Edge& edge, const Node& node) const { |
---|
1479 | if (!node.entry) { |
---|
1480 | Parent::firstOut(edge, node); |
---|
1481 | edge.bind = INVALID; |
---|
1482 | } else { |
---|
1483 | (typename Parent::Edge&)edge = INVALID; |
---|
1484 | edge.bind = node; |
---|
1485 | } |
---|
1486 | } |
---|
1487 | |
---|
1488 | void nextOut(Edge& edge) const { |
---|
1489 | if ((typename Parent::Edge&)edge != INVALID) { |
---|
1490 | Parent::nextOut(edge); |
---|
1491 | } else { |
---|
1492 | edge.bind = INVALID; |
---|
1493 | } |
---|
1494 | } |
---|
1495 | |
---|
1496 | Node source(const Edge& edge) const { |
---|
1497 | if ((typename Parent::Edge&)edge != INVALID) { |
---|
1498 | return Node(Parent::source(edge), false); |
---|
1499 | } else { |
---|
1500 | return Node(edge.bind, true); |
---|
1501 | } |
---|
1502 | } |
---|
1503 | |
---|
1504 | Node target(const Edge& edge) const { |
---|
1505 | if ((typename Parent::Edge&)edge != INVALID) { |
---|
1506 | return Node(Parent::target(edge), true); |
---|
1507 | } else { |
---|
1508 | return Node(edge.bind, false); |
---|
1509 | } |
---|
1510 | } |
---|
1511 | |
---|
1512 | static bool entryNode(const Node& node) { |
---|
1513 | return node.entry; |
---|
1514 | } |
---|
1515 | |
---|
1516 | static bool exitNode(const Node& node) { |
---|
1517 | return !node.entry; |
---|
1518 | } |
---|
1519 | |
---|
1520 | static Node getEntry(const typename Parent::Node& node) { |
---|
1521 | return Node(node, true); |
---|
1522 | } |
---|
1523 | |
---|
1524 | static Node getExit(const typename Parent::Node& node) { |
---|
1525 | return Node(node, false); |
---|
1526 | } |
---|
1527 | |
---|
1528 | static bool originalEdge(const Edge& edge) { |
---|
1529 | return (typename Parent::Edge&)edge != INVALID; |
---|
1530 | } |
---|
1531 | |
---|
1532 | static bool bindingEdge(const Edge& edge) { |
---|
1533 | return edge.bind != INVALID; |
---|
1534 | } |
---|
1535 | |
---|
1536 | static Node getBindedNode(const Edge& edge) { |
---|
1537 | return edge.bind; |
---|
1538 | } |
---|
1539 | |
---|
1540 | int nodeNum() const { |
---|
1541 | return Parent::nodeNum() * 2; |
---|
1542 | } |
---|
1543 | |
---|
1544 | typedef CompileTimeAnd<typename Parent::NodeNumTag, |
---|
1545 | typename Parent::EdgeNumTag> EdgeNumTag; |
---|
1546 | |
---|
1547 | int edgeNum() const { |
---|
1548 | return Parent::edgeNum() + Parent::nodeNum(); |
---|
1549 | } |
---|
1550 | |
---|
1551 | Edge findEdge(const Node& source, const Node& target, |
---|
1552 | const Edge& prev = INVALID) const { |
---|
1553 | if (exitNode(source) && entryNode(target)) { |
---|
1554 | return Parent::findEdge(source, target, prev); |
---|
1555 | } else { |
---|
1556 | if (prev == INVALID && entryNode(source) && exitNode(target) && |
---|
1557 | (typename Parent::Node&)source == (typename Parent::Node&)target) { |
---|
1558 | return Edge(INVALID, source); |
---|
1559 | } else { |
---|
1560 | return INVALID; |
---|
1561 | } |
---|
1562 | } |
---|
1563 | } |
---|
1564 | |
---|
1565 | template <typename T> |
---|
1566 | class NodeMap : public MapBase<Node, T> { |
---|
1567 | typedef typename Parent::template NodeMap<T> NodeImpl; |
---|
1568 | public: |
---|
1569 | NodeMap(const SplitGraphAdaptorBase& _graph) |
---|
1570 | : entry(_graph), exit(_graph) {} |
---|
1571 | NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) |
---|
1572 | : entry(_graph, t), exit(_graph, t) {} |
---|
1573 | |
---|
1574 | void set(const Node& key, const T& val) { |
---|
1575 | if (key.entry) { entry.set(key, val); } |
---|
1576 | else {exit.set(key, val); } |
---|
1577 | } |
---|
1578 | |
---|
1579 | typename MapTraits<NodeImpl>::ReturnValue |
---|
1580 | operator[](const Node& key) { |
---|
1581 | if (key.entry) { return entry[key]; } |
---|
1582 | else { return exit[key]; } |
---|
1583 | } |
---|
1584 | |
---|
1585 | typename MapTraits<NodeImpl>::ConstReturnValue |
---|
1586 | operator[](const Node& key) const { |
---|
1587 | if (key.entry) { return entry[key]; } |
---|
1588 | else { return exit[key]; } |
---|
1589 | } |
---|
1590 | |
---|
1591 | private: |
---|
1592 | NodeImpl entry, exit; |
---|
1593 | }; |
---|
1594 | |
---|
1595 | template <typename T> |
---|
1596 | class EdgeMap : public MapBase<Edge, T> { |
---|
1597 | typedef typename Parent::template NodeMap<T> NodeImpl; |
---|
1598 | typedef typename Parent::template EdgeMap<T> EdgeImpl; |
---|
1599 | public: |
---|
1600 | EdgeMap(const SplitGraphAdaptorBase& _graph) |
---|
1601 | : bind(_graph), orig(_graph) {} |
---|
1602 | EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) |
---|
1603 | : bind(_graph, t), orig(_graph, t) {} |
---|
1604 | |
---|
1605 | void set(const Edge& key, const T& val) { |
---|
1606 | if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); } |
---|
1607 | else {bind.set(key.bind, val); } |
---|
1608 | } |
---|
1609 | |
---|
1610 | typename MapTraits<EdgeImpl>::ReturnValue |
---|
1611 | operator[](const Edge& key) { |
---|
1612 | if ((typename Parent::Edge&)key != INVALID) { return orig[key]; } |
---|
1613 | else {return bind[key.bind]; } |
---|
1614 | } |
---|
1615 | |
---|
1616 | typename MapTraits<EdgeImpl>::ConstReturnValue |
---|
1617 | operator[](const Edge& key) const { |
---|
1618 | if ((typename Parent::Edge&)key != INVALID) { return orig[key]; } |
---|
1619 | else {return bind[key.bind]; } |
---|
1620 | } |
---|
1621 | |
---|
1622 | private: |
---|
1623 | typename Parent::template NodeMap<T> bind; |
---|
1624 | typename Parent::template EdgeMap<T> orig; |
---|
1625 | }; |
---|
1626 | |
---|
1627 | template <typename EntryMap, typename ExitMap> |
---|
1628 | class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> { |
---|
1629 | public: |
---|
1630 | typedef MapBase<Node, typename EntryMap::Value> Parent; |
---|
1631 | |
---|
1632 | typedef typename Parent::Key Key; |
---|
1633 | typedef typename Parent::Value Value; |
---|
1634 | |
---|
1635 | CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) |
---|
1636 | : entryMap(_entryMap), exitMap(_exitMap) {} |
---|
1637 | |
---|
1638 | Value& operator[](const Key& key) { |
---|
1639 | if (key.entry) { |
---|
1640 | return entryMap[key]; |
---|
1641 | } else { |
---|
1642 | return exitMap[key]; |
---|
1643 | } |
---|
1644 | } |
---|
1645 | |
---|
1646 | Value operator[](const Key& key) const { |
---|
1647 | if (key.entry) { |
---|
1648 | return entryMap[key]; |
---|
1649 | } else { |
---|
1650 | return exitMap[key]; |
---|
1651 | } |
---|
1652 | } |
---|
1653 | |
---|
1654 | void set(const Key& key, const Value& value) { |
---|
1655 | if (key.entry) { |
---|
1656 | entryMap.set(key, value); |
---|
1657 | } else { |
---|
1658 | exitMap.set(key, value); |
---|
1659 | } |
---|
1660 | } |
---|
1661 | |
---|
1662 | private: |
---|
1663 | |
---|
1664 | EntryMap& entryMap; |
---|
1665 | ExitMap& exitMap; |
---|
1666 | |
---|
1667 | }; |
---|
1668 | |
---|
1669 | template <typename EdgeMap, typename NodeMap> |
---|
1670 | class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> { |
---|
1671 | public: |
---|
1672 | typedef MapBase<Edge, typename EdgeMap::Value> Parent; |
---|
1673 | |
---|
1674 | typedef typename Parent::Key Key; |
---|
1675 | typedef typename Parent::Value Value; |
---|
1676 | |
---|
1677 | CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) |
---|
1678 | : edgeMap(_edgeMap), nodeMap(_nodeMap) {} |
---|
1679 | |
---|
1680 | void set(const Edge& edge, const Value& val) { |
---|
1681 | if (SplitGraphAdaptorBase::originalEdge(edge)) { |
---|
1682 | edgeMap.set(edge, val); |
---|
1683 | } else { |
---|
1684 | nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val); |
---|
1685 | } |
---|
1686 | } |
---|
1687 | |
---|
1688 | Value operator[](const Key& edge) const { |
---|
1689 | if (SplitGraphAdaptorBase::originalEdge(edge)) { |
---|
1690 | return edgeMap[edge]; |
---|
1691 | } else { |
---|
1692 | return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)]; |
---|
1693 | } |
---|
1694 | } |
---|
1695 | |
---|
1696 | Value& operator[](const Key& edge) { |
---|
1697 | if (SplitGraphAdaptorBase::originalEdge(edge)) { |
---|
1698 | return edgeMap[edge]; |
---|
1699 | } else { |
---|
1700 | return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)]; |
---|
1701 | } |
---|
1702 | } |
---|
1703 | |
---|
1704 | private: |
---|
1705 | EdgeMap& edgeMap; |
---|
1706 | NodeMap& nodeMap; |
---|
1707 | }; |
---|
1708 | |
---|
1709 | }; |
---|
1710 | |
---|
1711 | template <typename _Graph> |
---|
1712 | class SplitGraphAdaptor |
---|
1713 | : public IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > { |
---|
1714 | public: |
---|
1715 | typedef IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > Parent; |
---|
1716 | |
---|
1717 | SplitGraphAdaptor(_Graph& graph) { |
---|
1718 | Parent::setGraph(graph); |
---|
1719 | } |
---|
1720 | |
---|
1721 | |
---|
1722 | }; |
---|
1723 | |
---|
1724 | } //namespace lemon |
---|
1725 | |
---|
1726 | #endif //LEMON_GRAPH_ADAPTOR_H |
---|
1727 | |
---|