COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/kruskal.h @ 2384:805c5a2a36dd

Last change on this file since 2384:805c5a2a36dd was 2354:3609c77b77be, checked in by Alpar Juttner, 17 years ago

Doc improvements

File size: 13.2 KB
RevLine 
[906]1/* -*- C++ -*-
2 *
[1956]3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[921]19#ifndef LEMON_KRUSKAL_H
20#define LEMON_KRUSKAL_H
[810]21
22#include <algorithm>
[1942]23#include <vector>
[921]24#include <lemon/unionfind.h>
[1993]25#include <lemon/bits/utility.h>
26#include <lemon/bits/traits.h>
[810]27
28///\ingroup spantree
29///\file
30///\brief Kruskal's algorithm to compute a minimum cost tree
31///
32///Kruskal's algorithm to compute a minimum cost tree.
[1557]33///
[810]34
[921]35namespace lemon {
[810]36
37  /// \addtogroup spantree
38  /// @{
39
40  /// Kruskal's algorithm to find a minimum cost tree of a graph.
41
42  /// This function runs Kruskal's algorithm to find a minimum cost tree.
[1557]43  /// Due to hard C++ hacking, it accepts various input and output types.
44  ///
[1555]45  /// \param g The graph the algorithm runs on.
[2260]46  /// It can be either \ref concepts::Graph "directed" or
47  /// \ref concepts::UGraph "undirected".
[1555]48  /// If the graph is directed, the algorithm consider it to be
49  /// undirected by disregarding the direction of the edges.
[810]50  ///
[1557]51  /// \param in This object is used to describe the edge costs. It can be one
52  /// of the following choices.
53  /// - An STL compatible 'Forward Container'
[824]54  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
[1557]55  /// where \c X is the type of the costs. The pairs indicates the edges along
56  /// with the assigned cost. <em>They must be in a
57  /// cost-ascending order.</em>
58  /// - Any readable Edge map. The values of the map indicate the edge costs.
[810]59  ///
[1557]60  /// \retval out Here we also have a choise.
[2259]61  /// - It can be a writable \c bool edge map.
[810]62  /// After running the algorithm
63  /// this will contain the found minimum cost spanning tree: the value of an
64  /// edge will be set to \c true if it belongs to the tree, otherwise it will
65  /// be set to \c false. The value of each edge will be set exactly once.
[1557]66  /// - It can also be an iteraror of an STL Container with
67  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
68  /// The algorithm copies the elements of the found tree into this sequence.
69  /// For example, if we know that the spanning tree of the graph \c g has
[1603]70  /// say 53 edges, then
[2259]71  /// we can put its edges into an STL vector \c tree with a code like this.
[1946]72  ///\code
[1557]73  /// std::vector<Edge> tree(53);
74  /// kruskal(g,cost,tree.begin());
[1946]75  ///\endcode
[1557]76  /// Or if we don't know in advance the size of the tree, we can write this.
[1946]77  ///\code
[1557]78  /// std::vector<Edge> tree;
79  /// kruskal(g,cost,std::back_inserter(tree));
[1946]80  ///\endcode
[810]81  ///
82  /// \return The cost of the found tree.
[1449]83  ///
[2259]84  /// \warning If kruskal runs on an
[2260]85  /// \ref lemon::concepts::UGraph "undirected graph", be sure that the
[1603]86  /// map storing the tree is also undirected
[1909]87  /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
[1603]88  /// half of the edges will not be set.
89  ///
[810]90
[1557]91#ifdef DOXYGEN
[824]92  template <class GR, class IN, class OUT>
[2354]93  CostType
[1547]94  kruskal(GR const& g, IN const& in,
[1557]95          OUT& out)
96#else
97  template <class GR, class IN, class OUT>
98  typename IN::value_type::second_type
99  kruskal(GR const& g, IN const& in,
100          OUT& out,
101//        typename IN::value_type::first_type = typename GR::Edge()
102//        ,typename OUT::Key = OUT::Key()
103//        //,typename OUT::Key = typename GR::Edge()
104          const typename IN::value_type::first_type * =
105          (const typename IN::value_type::first_type *)(0),
106          const typename OUT::Key * = (const typename OUT::Key *)(0)
107          )
108#endif
[810]109  {
[824]110    typedef typename IN::value_type::second_type EdgeCost;
111    typedef typename GR::template NodeMap<int> NodeIntMap;
112    typedef typename GR::Node Node;
[810]113
[2205]114    NodeIntMap comp(g);
[2308]115    UnionFind<NodeIntMap> uf(comp);
[2205]116    for (typename GR::NodeIt it(g); it != INVALID; ++it) {
117      uf.insert(it);
118    }
[810]119     
120    EdgeCost tot_cost = 0;
[824]121    for (typename IN::const_iterator p = in.begin();
[810]122         p!=in.end(); ++p ) {
[1547]123      if ( uf.join(g.target((*p).first),
124                   g.source((*p).first)) ) {
[810]125        out.set((*p).first, true);
126        tot_cost += (*p).second;
127      }
128      else {
129        out.set((*p).first, false);
130      }
131    }
132    return tot_cost;
133  }
134
[1557]135 
136  /// @}
137
138 
[810]139  /* A work-around for running Kruskal with const-reference bool maps... */
140
[885]141  /// Helper class for calling kruskal with "constant" output map.
142
143  /// Helper class for calling kruskal with output maps constructed
144  /// on-the-fly.
[810]145  ///
[885]146  /// A typical examle is the following call:
[1547]147  /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
[885]148  /// Here, the third argument is a temporary object (which wraps around an
149  /// iterator with a writable bool map interface), and thus by rules of C++
150  /// is a \c const object. To enable call like this exist this class and
151  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
152  /// third argument.
[824]153  template<class Map>
[810]154  class NonConstMapWr {
155    const Map &m;
156  public:
[1557]157    typedef typename Map::Key Key;
[987]158    typedef typename Map::Value Value;
[810]159
160    NonConstMapWr(const Map &_m) : m(_m) {}
161
[987]162    template<class Key>
163    void set(Key const& k, Value const &v) const { m.set(k,v); }
[810]164  };
165
[824]166  template <class GR, class IN, class OUT>
[810]167  inline
[885]168  typename IN::value_type::second_type
[1557]169  kruskal(GR const& g, IN const& edges, OUT const& out_map,
170//        typename IN::value_type::first_type = typename GR::Edge(),
171//        typename OUT::Key = GR::Edge()
172          const typename IN::value_type::first_type * =
173          (const typename IN::value_type::first_type *)(0),
174          const typename OUT::Key * = (const typename OUT::Key *)(0)
175          )
[810]176  {
[824]177    NonConstMapWr<OUT> map_wr(out_map);
[1547]178    return kruskal(g, edges, map_wr);
[810]179  } 
180
181  /* ** ** Input-objects ** ** */
182
[1274]183  /// Kruskal's input source.
[1557]184 
[1274]185  /// Kruskal's input source.
[810]186  ///
[1570]187  /// In most cases you possibly want to use the \ref kruskal() instead.
[810]188  ///
189  /// \sa makeKruskalMapInput()
190  ///
[824]191  ///\param GR The type of the graph the algorithm runs on.
[810]192  ///\param Map An edge map containing the cost of the edges.
193  ///\par
194  ///The cost type can be any type satisfying
195  ///the STL 'LessThan comparable'
196  ///concept if it also has an operator+() implemented. (It is necessary for
197  ///computing the total cost of the tree).
198  ///
[824]199  template<class GR, class Map>
[810]200  class KruskalMapInput
[824]201    : public std::vector< std::pair<typename GR::Edge,
[987]202                                    typename Map::Value> > {
[810]203   
204  public:
[824]205    typedef std::vector< std::pair<typename GR::Edge,
[987]206                                   typename Map::Value> > Parent;
[810]207    typedef typename Parent::value_type value_type;
208
209  private:
210    class comparePair {
211    public:
212      bool operator()(const value_type& a,
213                      const value_type& b) {
214        return a.second < b.second;
215      }
216    };
217
[1449]218    template<class _GR>
[1979]219    typename enable_if<UndirectedTagIndicator<_GR>,void>::type
[1547]220    fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0)
[1449]221    {
[1909]222      for(typename GR::UEdgeIt e(g);e!=INVALID;++e)
[1679]223        push_back(value_type(g.direct(e, true), m[e]));
[1449]224    }
225
226    template<class _GR>
[1979]227    typename disable_if<UndirectedTagIndicator<_GR>,void>::type
[1547]228    fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1)
[1449]229    {
[1547]230      for(typename GR::EdgeIt e(g);e!=INVALID;++e)
[1449]231        push_back(value_type(e, m[e]));
232    }
233   
234   
[810]235  public:
236
237    void sort() {
238      std::sort(this->begin(), this->end(), comparePair());
239    }
240
[1547]241    KruskalMapInput(GR const& g, Map const& m) {
242      fillWithEdges(g,m);
[810]243      sort();
244    }
245  };
246
247  /// Creates a KruskalMapInput object for \ref kruskal()
248
[1274]249  /// It makes easier to use
[810]250  /// \ref KruskalMapInput by making it unnecessary
251  /// to explicitly give the type of the parameters.
252  ///
253  /// In most cases you possibly
[1570]254  /// want to use \ref kruskal() instead.
[810]255  ///
[1547]256  ///\param g The type of the graph the algorithm runs on.
[810]257  ///\param m An edge map containing the cost of the edges.
258  ///\par
259  ///The cost type can be any type satisfying the
260  ///STL 'LessThan Comparable'
261  ///concept if it also has an operator+() implemented. (It is necessary for
262  ///computing the total cost of the tree).
263  ///
264  ///\return An appropriate input source for \ref kruskal().
265  ///
[824]266  template<class GR, class Map>
[810]267  inline
[1547]268  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
[810]269  {
[1547]270    return KruskalMapInput<GR,Map>(g,m);
[810]271  }
272 
273 
[885]274
275  /* ** ** Output-objects: simple writable bool maps ** ** */
[810]276 
[885]277
278
[810]279  /// A writable bool-map that makes a sequence of "true" keys
280
281  /// A writable bool-map that creates a sequence out of keys that receives
282  /// the value "true".
[885]283  ///
284  /// \sa makeKruskalSequenceOutput()
285  ///
286  /// Very often, when looking for a min cost spanning tree, we want as
287  /// output a container containing the edges of the found tree. For this
288  /// purpose exist this class that wraps around an STL iterator with a
289  /// writable bool map interface. When a key gets value "true" this key
290  /// is added to sequence pointed by the iterator.
291  ///
292  /// A typical usage:
[1946]293  ///\code
[885]294  /// std::vector<Graph::Edge> v;
295  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
[1946]296  ///\endcode
[885]297  ///
298  /// For the most common case, when the input is given by a simple edge
299  /// map and the output is a sequence of the tree edges, a special
300  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
301  ///
[987]302  /// \warning Not a regular property map, as it doesn't know its Key
[885]303
[824]304  template<class Iterator>
[885]305  class KruskalSequenceOutput {
[810]306    mutable Iterator it;
307
308  public:
[1942]309    typedef typename std::iterator_traits<Iterator>::value_type Key;
[987]310    typedef bool Value;
[810]311
[885]312    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
[810]313
[987]314    template<typename Key>
315    void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
[810]316  };
317
[824]318  template<class Iterator>
[810]319  inline
[885]320  KruskalSequenceOutput<Iterator>
321  makeKruskalSequenceOutput(Iterator it) {
322    return KruskalSequenceOutput<Iterator>(it);
[810]323  }
324
[885]325
326
[810]327  /* ** ** Wrapper funtions ** ** */
328
[1557]329//   \brief Wrapper function to kruskal().
330//   Input is from an edge map, output is a plain bool map.
331// 
332//   Wrapper function to kruskal().
333//   Input is from an edge map, output is a plain bool map.
334// 
335//   \param g The type of the graph the algorithm runs on.
336//   \param in An edge map containing the cost of the edges.
337//   \par
338//   The cost type can be any type satisfying the
339//   STL 'LessThan Comparable'
340//   concept if it also has an operator+() implemented. (It is necessary for
341//   computing the total cost of the tree).
342// 
343//   \retval out This must be a writable \c bool edge map.
344//   After running the algorithm
345//   this will contain the found minimum cost spanning tree: the value of an
346//   edge will be set to \c true if it belongs to the tree, otherwise it will
347//   be set to \c false. The value of each edge will be set exactly once.
348// 
349//   \return The cost of the found tree.
[810]350
[824]351  template <class GR, class IN, class RET>
[810]352  inline
[987]353  typename IN::Value
[1557]354  kruskal(GR const& g,
355          IN const& in,
356          RET &out,
357          //      typename IN::Key = typename GR::Edge(),
358          //typename IN::Key = typename IN::Key (),
359          //      typename RET::Key = typename GR::Edge()
360          const typename IN::Key *  = (const typename IN::Key *)(0),
361          const typename RET::Key * = (const typename RET::Key *)(0)
362          )
363  {
[1547]364    return kruskal(g,
365                   KruskalMapInput<GR,IN>(g,in),
[810]366                   out);
367  }
368
[1557]369//   \brief Wrapper function to kruskal().
370//   Input is from an edge map, output is an STL Sequence.
371// 
372//   Wrapper function to kruskal().
373//   Input is from an edge map, output is an STL Sequence.
374// 
375//   \param g The type of the graph the algorithm runs on.
376//   \param in An edge map containing the cost of the edges.
377//   \par
378//   The cost type can be any type satisfying the
379//   STL 'LessThan Comparable'
380//   concept if it also has an operator+() implemented. (It is necessary for
381//   computing the total cost of the tree).
382// 
383//   \retval out This must be an iteraror of an STL Container with
384//   <tt>GR::Edge</tt> as its <tt>value_type</tt>.
385//   The algorithm copies the elements of the found tree into this sequence.
386//   For example, if we know that the spanning tree of the graph \c g has
[1603]387//   say 53 edges, then
[2259]388//   we can put its edges into an STL vector \c tree with a code like this.
[1946]389//\code
[1557]390//   std::vector<Edge> tree(53);
[1570]391//   kruskal(g,cost,tree.begin());
[1946]392//\endcode
[1557]393//   Or if we don't know in advance the size of the tree, we can write this.
[1946]394//\code
[1557]395//   std::vector<Edge> tree;
[1570]396//   kruskal(g,cost,std::back_inserter(tree));
[1946]397//\endcode
[1557]398// 
399//   \return The cost of the found tree.
400// 
401//   \bug its name does not follow the coding style.
[885]402
[824]403  template <class GR, class IN, class RET>
[810]404  inline
[987]405  typename IN::Value
[1557]406  kruskal(const GR& g,
407          const IN& in,
408          RET out,
409          const typename RET::value_type * =
410          (const typename RET::value_type *)(0)
411          )
[810]412  {
[885]413    KruskalSequenceOutput<RET> _out(out);
[1547]414    return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
[810]415  }
[1557]416 
[1942]417  template <class GR, class IN, class RET>
418  inline
419  typename IN::Value
420  kruskal(const GR& g,
421          const IN& in,
422          RET *out
423          )
424  {
425    KruskalSequenceOutput<RET*> _out(out);
426    return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
427  }
428 
[810]429  /// @}
430
[921]431} //namespace lemon
[810]432
[921]433#endif //LEMON_KRUSKAL_H
Note: See TracBrowser for help on using the repository browser.