/* -*- C++ -*- * lemon/linear_heap.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_LINEAR_HEAP_H #define LEMON_LINEAR_HEAP_H ///\ingroup auxdat ///\file ///\brief Binary Heap implementation. #include #include #include namespace lemon { /// \ingroup auxdat /// \brief A Linear Heap implementation. /// /// This class implements the \e linear \e heap data structure. A \e heap /// is a data structure for storing items with specified values called \e /// priorities in such a way that finding the item with minimum priority is /// efficient. The linear heap is very simple implementation, it can store /// only integer priorities and it stores for each priority in the [0..C] /// range a list of items. So it should be used only when the priorities /// are small. It is not intended to use as dijkstra heap. /// /// \param _Item Type of the items to be stored. /// \param _ItemIntMap A read and writable Item int map, used internally /// to handle the cross references. /// \param minimize If the given parameter is true then the heap gives back /// the lowest priority. template class LinearHeap { public: typedef _Item Item; typedef int Prio; typedef std::pair Pair; typedef _ItemIntMap ItemIntMap; /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The ItemIntMap \e should be initialized in such way that it maps /// PRE_HEAP (-1) to any element to be put in the heap... enum state_enum { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; public: /// \brief The constructor. /// /// The constructor. /// \param _index should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. explicit LinearHeap(ItemIntMap &_index) : index(_index), minimal(0) {} /// The number of items stored in the heap. /// /// \brief Returns the number of items stored in the heap. int size() const { return data.size(); } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return data.empty(); } /// \brief Make empty this heap. /// /// Make empty this heap. void clear() { for (int i = 0; i < (int)data.size(); ++i) { index[data[i].item] = -2; } data.clear(); first.clear(); minimal = 0; } private: void relocate_last(int idx) { if (idx + 1 < (int)data.size()) { data[idx] = data.back(); if (data[idx].prev != -1) { data[data[idx].prev].next = idx; } else { first[data[idx].value] = idx; } if (data[idx].next != -1) { data[data[idx].next].prev = idx; } index[data[idx].item] = idx; } data.pop_back(); } void unlace(int idx) { if (data[idx].prev != -1) { data[data[idx].prev].next = data[idx].next; } else { first[data[idx].value] = data[idx].next; } if (data[idx].next != -1) { data[data[idx].next].prev = data[idx].prev; } } void lace(int idx) { if ((int)first.size() <= data[idx].value) { first.resize(data[idx].value + 1, -1); } data[idx].next = first[data[idx].value]; if (data[idx].next != -1) { data[data[idx].next].prev = idx; } first[data[idx].value] = idx; data[idx].prev = -1; } public: /// \brief Insert a pair of item and priority into the heap. /// /// Adds \c p.first to the heap with priority \c p.second. /// \param p The pair to insert. void push(const Pair& p) { push(p.first, p.second); } /// \brief Insert an item into the heap with the given priority. /// /// Adds \c i to the heap with priority \c p. /// \param i The item to insert. /// \param p The priority of the item. void push(const Item &i, const Prio &p) { int idx = data.size(); index[i] = idx; data.push_back(LinearItem(i, p)); lace(idx); if (p < minimal) { minimal = p; } } /// \brief Returns the item with minimum priority. /// /// This method returns the item with minimum priority. /// \pre The heap must be nonempty. Item top() const { while (first[minimal] == -1) { ++minimal; } return data[first[minimal]].item; } /// \brief Returns the minimum priority. /// /// It returns the minimum priority. /// \pre The heap must be nonempty. Prio prio() const { while (first[minimal] == -1) { ++minimal; } return minimal; } /// \brief Deletes the item with minimum priority. /// /// This method deletes the item with minimum priority from the heap. /// \pre The heap must be non-empty. void pop() { while (first[minimal] == -1) { ++minimal; } int idx = first[minimal]; index[data[idx].item] = -2; unlace(idx); relocate_last(idx); } /// \brief Deletes \c i from the heap. /// /// This method deletes item \c i from the heap, if \c i was /// already stored in the heap. /// \param i The item to erase. void erase(const Item &i) { int idx = index[i]; index[data[idx].item] = -2; unlace(idx); relocate_last(idx); } /// \brief Returns the priority of \c i. /// /// This function returns the priority of item \c i. /// \pre \c i must be in the heap. /// \param i The item. Prio operator[](const Item &i) const { int idx = index[i]; return data[idx].value; } /// \brief \c i gets to the heap with priority \c p independently /// if \c i was already there. /// /// This method calls \ref push(\c i, \c p) if \c i is not stored /// in the heap and sets the priority of \c i to \c p otherwise. /// \param i The item. /// \param p The priority. void set(const Item &i, const Prio &p) { int idx = index[i]; if (idx < 0) { push(i,p); } else if (p > data[idx].value) { increase(i, p); } else { decrease(i, p); } } /// \brief Decreases the priority of \c i to \c p. /// This method decreases the priority of item \c i to \c p. /// \pre \c i must be stored in the heap with priority at least \c /// p relative to \c Compare. /// \param i The item. /// \param p The priority. void decrease(const Item &i, const Prio &p) { int idx = index[i]; unlace(idx); data[idx].value = p; if (p < minimal) { minimal = p; } lace(idx); } /// \brief Increases the priority of \c i to \c p. /// /// This method sets the priority of item \c i to \c p. /// \pre \c i must be stored in the heap with priority at most \c /// p relative to \c Compare. /// \param i The item. /// \param p The priority. void increase(const Item &i, const Prio &p) { int idx = index[i]; unlace(idx); data[idx].value = p; lace(idx); } /// \brief Returns if \c item is in, has already been in, or has /// never been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. /// \param i The item. state_enum state(const Item &i) const { int idx = index[i]; if (idx >= 0) idx = 0; return state_enum(idx); } /// \brief Sets the state of the \c item in the heap. /// /// Sets the state of the \c item in the heap. It can be used to /// manually clear the heap when it is important to achive the /// better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, state_enum st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } index[i] = st; break; case IN_HEAP: break; } } private: struct LinearItem { LinearItem(const Item& _item, int _value) : item(_item), value(_value) {} Item item; int value; int prev, next; }; ItemIntMap& index; std::vector first; std::vector data; mutable int minimal; }; // class LinearHeap template class LinearHeap<_Item, _ItemIntMap, false> { public: typedef _Item Item; typedef int Prio; typedef std::pair Pair; typedef _ItemIntMap ItemIntMap; enum state_enum { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; public: explicit LinearHeap(ItemIntMap &_index) : index(_index), maximal(-1) {} int size() const { return data.size(); } bool empty() const { return data.empty(); } void clear() { for (int i = 0; i < (int)data.size(); ++i) { index[data[i].item] = -2; } data.clear(); first.clear(); maximal = -1; } private: void relocate_last(int idx) { if (idx + 1 != (int)data.size()) { data[idx] = data.back(); if (data[idx].prev != -1) { data[data[idx].prev].next = idx; } else { first[data[idx].value] = idx; } if (data[idx].next != -1) { data[data[idx].next].prev = idx; } index[data[idx].item] = idx; } data.pop_back(); } void unlace(int idx) { if (data[idx].prev != -1) { data[data[idx].prev].next = data[idx].next; } else { first[data[idx].value] = data[idx].next; } if (data[idx].next != -1) { data[data[idx].next].prev = data[idx].prev; } } void lace(int idx) { if ((int)first.size() <= data[idx].value) { first.resize(data[idx].value + 1, -1); } data[idx].next = first[data[idx].value]; if (data[idx].next != -1) { data[data[idx].next].prev = idx; } first[data[idx].value] = idx; data[idx].prev = -1; } public: void push(const Pair& p) { push(p.first, p.second); } void push(const Item &i, const Prio &p) { int idx = data.size(); index[i] = idx; data.push_back(LinearItem(i, p)); lace(idx); if (data[idx].value > maximal) { maximal = data[idx].value; } } Item top() const { while (first[maximal] == -1) { --maximal; } return data[first[maximal]].item; } Prio prio() const { while (first[maximal] == -1) { --maximal; } return maximal; } void pop() { while (first[maximal] == -1) { --maximal; } int idx = first[maximal]; index[data[idx].item] = -2; unlace(idx); relocate_last(idx); } void erase(const Item &i) { int idx = index[i]; index[data[idx].item] = -2; unlace(idx); relocate_last(idx); } Prio operator[](const Item &i) const { int idx = index[i]; return data[idx].value; } void set(const Item &i, const Prio &p) { int idx = index[i]; if (idx < 0) { push(i,p); } else if (p > data[idx].value) { decrease(i, p); } else { increase(i, p); } } void decrease(const Item &i, const Prio &p) { int idx = index[i]; unlace(idx); data[idx].value = p; if (p > maximal) { maximal = p; } lace(idx); } void increase(const Item &i, const Prio &p) { int idx = index[i]; unlace(idx); data[idx].value = p; lace(idx); } state_enum state(const Item &i) const { int idx = index[i]; if (idx >= 0) idx = 0; return state_enum(idx); } void state(const Item& i, state_enum st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } index[i] = st; break; case IN_HEAP: break; } } private: struct LinearItem { LinearItem(const Item& _item, int _value) : item(_item), value(_value) {} Item item; int value; int prev, next; }; ItemIntMap& index; std::vector first; std::vector data; mutable int maximal; }; // class LinearHeap } #endif