COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/list_graph.h @ 1982:f0eb6b79dcdf

Last change on this file since 1982:f0eb6b79dcdf was 1982:f0eb6b79dcdf, checked in by Balazs Dezso, 18 years ago

ListBpUGraph

File size: 24.9 KB
RevLine 
[948]1/* -*- C++ -*-
2 *
[1956]3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[948]8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
[395]18
[921]19#ifndef LEMON_LIST_GRAPH_H
20#define LEMON_LIST_GRAPH_H
[395]21
[948]22///\ingroup graphs
23///\file
[1909]24///\brief ListGraph, ListUGraph classes.
[948]25
[1791]26#include <lemon/bits/graph_extender.h>
[782]27
[1774]28#include <lemon/error.h>
29
[1979]30#include <vector>
[1011]31#include <list>
[782]32
[921]33namespace lemon {
[395]34
[946]35  class ListGraphBase {
[406]36
[949]37  protected:
[946]38    struct NodeT {
[1470]39      int first_in, first_out;
[397]40      int prev, next;
[395]41    };
[946]42 
43    struct EdgeT {
[986]44      int target, source;
[397]45      int prev_in, prev_out;
46      int next_in, next_out;
[395]47    };
48
49    std::vector<NodeT> nodes;
[946]50
[397]51    int first_node;
[946]52
[397]53    int first_free_node;
[946]54
[395]55    std::vector<EdgeT> edges;
[946]56
[397]57    int first_free_edge;
[395]58   
[782]59  public:
[395]60   
[946]61    typedef ListGraphBase Graph;
[397]62   
[946]63    class Node {
[975]64      friend class ListGraphBase;
[946]65    protected:
[395]66
[946]67      int id;
68      Node(int pid) { id = pid;}
[395]69
[946]70    public:
71      Node() {}
72      Node (Invalid) { id = -1; }
73      bool operator==(const Node& node) const {return id == node.id;}
74      bool operator!=(const Node& node) const {return id != node.id;}
75      bool operator<(const Node& node) const {return id < node.id;}
76    };
[782]77
[946]78    class Edge {
[975]79      friend class ListGraphBase;
[946]80    protected:
[782]81
[946]82      int id;
83      Edge(int pid) { id = pid;}
[395]84
[946]85    public:
86      Edge() {}
87      Edge (Invalid) { id = -1; }
88      bool operator==(const Edge& edge) const {return id == edge.id;}
89      bool operator!=(const Edge& edge) const {return id != edge.id;}
90      bool operator<(const Edge& edge) const {return id < edge.id;}
91    };
92
93
94
95    ListGraphBase()
[782]96      : nodes(), first_node(-1),
97        first_free_node(-1), edges(), first_free_edge(-1) {}
98
[395]99   
[813]100    /// Maximum node ID.
101   
102    /// Maximum node ID.
103    ///\sa id(Node)
[1791]104    int maxNodeId() const { return nodes.size()-1; }
[946]105
[813]106    /// Maximum edge ID.
107   
108    /// Maximum edge ID.
109    ///\sa id(Edge)
[1791]110    int maxEdgeId() const { return edges.size()-1; }
[395]111
[986]112    Node source(Edge e) const { return edges[e.id].source; }
113    Node target(Edge e) const { return edges[e.id].target; }
[395]114
115
[946]116    void first(Node& node) const {
117      node.id = first_node;
118    }
119
120    void next(Node& node) const {
121      node.id = nodes[node.id].next;
122    }
123
124
125    void first(Edge& e) const {
126      int n;
127      for(n = first_node;
128          n!=-1 && nodes[n].first_in == -1;
129          n = nodes[n].next);
130      e.id = (n == -1) ? -1 : nodes[n].first_in;
131    }
132
133    void next(Edge& edge) const {
134      if (edges[edge.id].next_in != -1) {
135        edge.id = edges[edge.id].next_in;
136      } else {
137        int n;
[986]138        for(n = nodes[edges[edge.id].target].next;
[946]139          n!=-1 && nodes[n].first_in == -1;
140          n = nodes[n].next);
141        edge.id = (n == -1) ? -1 : nodes[n].first_in;
142      }     
143    }
144
145    void firstOut(Edge &e, const Node& v) const {
146      e.id = nodes[v.id].first_out;
147    }
148    void nextOut(Edge &e) const {
149      e.id=edges[e.id].next_out;
150    }
151
152    void firstIn(Edge &e, const Node& v) const {
153      e.id = nodes[v.id].first_in;
154    }
155    void nextIn(Edge &e) const {
156      e.id=edges[e.id].next_in;
157    }
158
[813]159   
[946]160    static int id(Node v) { return v.id; }
161    static int id(Edge e) { return e.id; }
[395]162
[1791]163    static Node nodeFromId(int id) { return Node(id);}
164    static Edge edgeFromId(int id) { return Edge(id);}
[1106]165
[397]166    /// Adds a new node to the graph.
167
[813]168    /// \warning It adds the new node to the front of the list.
[397]169    /// (i.e. the lastly added node becomes the first.)
[946]170    Node addNode() {     
[397]171      int n;
172     
[946]173      if(first_free_node==-1) {
174        n = nodes.size();
175        nodes.push_back(NodeT());
176      } else {
[397]177        n = first_free_node;
178        first_free_node = nodes[n].next;
179      }
180     
181      nodes[n].next = first_node;
182      if(first_node != -1) nodes[first_node].prev = n;
183      first_node = n;
184      nodes[n].prev = -1;
185     
186      nodes[n].first_in = nodes[n].first_out = -1;
187     
[946]188      return Node(n);
[395]189    }
190   
191    Edge addEdge(Node u, Node v) {
[946]192      int n;     
193
194      if (first_free_edge == -1) {
195        n = edges.size();
196        edges.push_back(EdgeT());
197      } else {
[397]198        n = first_free_edge;
199        first_free_edge = edges[n].next_in;
200      }
201     
[986]202      edges[n].source = u.id;
203      edges[n].target = v.id;
[395]204
[946]205      edges[n].next_out = nodes[u.id].first_out;
206      if(nodes[u.id].first_out != -1) {
207        edges[nodes[u.id].first_out].prev_out = n;
208      }
209     
210      edges[n].next_in = nodes[v.id].first_in;
211      if(nodes[v.id].first_in != -1) {
212        edges[nodes[v.id].first_in].prev_in = n;
213      }
214     
[397]215      edges[n].prev_in = edges[n].prev_out = -1;
216       
[946]217      nodes[u.id].first_out = nodes[v.id].first_in = n;
[397]218
[946]219      return Edge(n);
[395]220    }
[774]221   
[946]222    void erase(const Node& node) {
223      int n = node.id;
224     
225      if(nodes[n].next != -1) {
226        nodes[nodes[n].next].prev = nodes[n].prev;
227      }
228     
229      if(nodes[n].prev != -1) {
230        nodes[nodes[n].prev].next = nodes[n].next;
231      } else {
232        first_node = nodes[n].next;
233      }
234     
235      nodes[n].next = first_free_node;
236      first_free_node = n;
[395]237
[774]238    }
239   
[946]240    void erase(const Edge& edge) {
241      int n = edge.id;
[397]242     
[946]243      if(edges[n].next_in!=-1) {
[397]244        edges[edges[n].next_in].prev_in = edges[n].prev_in;
[946]245      }
246
247      if(edges[n].prev_in!=-1) {
[397]248        edges[edges[n].prev_in].next_in = edges[n].next_in;
[946]249      } else {
[986]250        nodes[edges[n].target].first_in = edges[n].next_in;
[946]251      }
252
[397]253     
[946]254      if(edges[n].next_out!=-1) {
[397]255        edges[edges[n].next_out].prev_out = edges[n].prev_out;
[946]256      }
257
258      if(edges[n].prev_out!=-1) {
[397]259        edges[edges[n].prev_out].next_out = edges[n].next_out;
[946]260      } else {
[986]261        nodes[edges[n].source].first_out = edges[n].next_out;
[946]262      }
[397]263     
264      edges[n].next_in = first_free_edge;
[695]265      first_free_edge = n;     
[397]266
267    }
268
269    void clear() {
[782]270      edges.clear();
271      nodes.clear();
[946]272      first_node = first_free_node = first_free_edge = -1;
[937]273    }
274
[949]275  protected:
[1546]276    void _changeTarget(Edge e, Node n)
[949]277    {
278      if(edges[e.id].next_in != -1)
279        edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
280      if(edges[e.id].prev_in != -1)
281        edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
[986]282      else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
[1702]283      if (nodes[n.id].first_in != -1) {
284        edges[nodes[n.id].first_in].prev_in = e.id;
285      }
[986]286      edges[e.id].target = n.id;
[949]287      edges[e.id].prev_in = -1;
288      edges[e.id].next_in = nodes[n.id].first_in;
289      nodes[n.id].first_in = e.id;
290    }
[1546]291    void _changeSource(Edge e, Node n)
[949]292    {
293      if(edges[e.id].next_out != -1)
294        edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
295      if(edges[e.id].prev_out != -1)
296        edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
[986]297      else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
[1702]298      if (nodes[n.id].first_out != -1) {
299        edges[nodes[n.id].first_out].prev_out = e.id;
300      }
[986]301      edges[e.id].source = n.id;
[949]302      edges[e.id].prev_out = -1;
303      edges[e.id].next_out = nodes[n.id].first_out;
304      nodes[n.id].first_out = e.id;
305    }
306
[919]307  };
[909]308
[1979]309  typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
[400]310
[1718]311  /// \addtogroup graphs
312  /// @{
[400]313
[948]314  ///A list graph class.
[400]315
[948]316  ///This is a simple and fast erasable graph implementation.
317  ///
[1010]318  ///It addition that it conforms to the
319  ///\ref concept::ErasableGraph "ErasableGraph" concept,
320  ///it also provides several additional useful extra functionalities.
[959]321  ///\sa concept::ErasableGraph.
[782]322
[1669]323  class ListGraph : public ExtendedListGraphBase
[948]324  {
325  public:
[1546]326    /// Changes the target of \c e to \c n
[948]327
[1546]328    /// Changes the target of \c e to \c n
[948]329    ///
[1010]330    ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
[1546]331    ///referencing the changed edge remain
[1010]332    ///valid. However <tt>InEdge</tt>'s are invalidated.
[1718]333    void changeTarget(Edge e, Node n) {
334      _changeTarget(e,n);
335    }
[1546]336    /// Changes the source of \c e to \c n
[948]337
[1546]338    /// Changes the source of \c e to \c n
[948]339    ///
[1010]340    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
[1546]341    ///referencing the changed edge remain
[1010]342    ///valid. However <tt>OutEdge</tt>'s are invalidated.
[1718]343    void changeSource(Edge e, Node n) {
344      _changeSource(e,n);
345    }
[949]346
[1010]347    /// Invert the direction of an edge.
348
349    ///\note The <tt>Edge</tt>'s
[1546]350    ///referencing the changed edge remain
[1010]351    ///valid. However <tt>OutEdge</tt>'s  and <tt>InEdge</tt>'s are invalidated.
352    void reverseEdge(Edge e) {
353      Node t=target(e);
[1546]354      _changeTarget(e,source(e));
355      _changeSource(e,t);
[1010]356    }
357
358    ///Using this it possible to avoid the superfluous memory allocation.
359
[949]360    ///Using this it possible to avoid the superfluous memory allocation.
361    ///\todo more docs...
362    void reserveEdge(int n) { edges.reserve(n); };
[1010]363
364    ///Contract two nodes.
365
366    ///This function contracts two nodes.
367    ///
368    ///Node \p b will be removed but instead of deleting
369    ///its neighboring edges, they will be joined to \p a.
370    ///The last parameter \p r controls whether to remove loops. \c true
371    ///means that loops will be removed.
372    ///
373    ///\note The <tt>Edge</tt>s
[1281]374    ///referencing a moved edge remain
[1010]375    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
376    ///may be invalidated.
[1718]377    void contract(Node a, Node b, bool r = true)
[1010]378    {
379      for(OutEdgeIt e(*this,b);e!=INVALID;) {
380        OutEdgeIt f=e;
381        ++f;
382        if(r && target(e)==a) erase(e);
[1546]383        else changeSource(e,a);
[1010]384        e=f;
385      }
386      for(InEdgeIt e(*this,b);e!=INVALID;) {
387        InEdgeIt f=e;
388        ++f;
389        if(r && source(e)==a) erase(e);
[1546]390        else changeTarget(e,a);
[1010]391        e=f;
392      }
393      erase(b);
394    }
[1011]395
[1281]396    ///Split a node.
[1011]397
[1284]398    ///This function splits a node. First a new node is added to the graph,
399    ///then the source of each outgoing edge of \c n is moved to this new node.
[1281]400    ///If \c connect is \c true (this is the default value), then a new edge
401    ///from \c n to the newly created node is also added.
402    ///\return The newly created node.
403    ///
404    ///\note The <tt>Edge</tt>s
405    ///referencing a moved edge remain
406    ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
407    ///may be invalidated.
[1770]408    ///\warning This functionality cannot be used together with the Snapshot
[1284]409    ///feature.
[1281]410    ///\todo It could be implemented in a bit faster way.
411    Node split(Node n, bool connect = true)
412    {
413      Node b = addNode();
414      for(OutEdgeIt e(*this,n);e!=INVALID;) {
415        OutEdgeIt f=e;
416        ++f;
[1546]417        changeSource(e,b);
[1281]418        e=f;
419      }
420      if(connect) addEdge(n,b);
421      return b;
422    }
423     
[1812]424    ///Split an edge.
425
426    ///This function splits an edge. First a new node \c b is added to the graph,
427    ///then the original edge is re-targetes to \c b. Finally an edge
428    ///from \c b to the original target is added.
429    ///\return The newly created node.
430    ///\warning This functionality cannot be used together with the Snapshot
431    ///feature.
432    Node split(Edge e)
433    {
434      Node b = addNode();
435      addEdge(b,target(e));
436      changeTarget(e,b);
437      return b;
438    }
439     
[1011]440    ///Class to make a snapshot of the graph and to restrore to it later.
441
442    ///Class to make a snapshot of the graph and to restrore to it later.
443    ///
444    ///The newly added nodes and edges can be removed using the
445    ///restore() function.
446    ///
447    ///\warning Edge and node deletions cannot be restored.
[1770]448    ///\warning Snapshots cannot be nested.
449    class Snapshot : protected AlterationNotifier<Node>::ObserverBase,
[1039]450                     protected AlterationNotifier<Edge>::ObserverBase
[1011]451    {
[1774]452    public:
453     
454      class UnsupportedOperation : public LogicError {
455      public:
456        virtual const char* exceptionName() const {
457          return "lemon::ListGraph::Snapshot::UnsupportedOperation";
458        }
459      };
460           
461
[1011]462      protected:
463     
464      ListGraph *g;
465      std::list<Node> added_nodes;
466      std::list<Edge> added_edges;
467     
468      bool active;
469      virtual void add(const Node& n) {
470        added_nodes.push_back(n);
471      };
472      virtual void erase(const Node&)
473      {
[1774]474        throw UnsupportedOperation();
[1011]475      }
476      virtual void add(const Edge& n) {
477        added_edges.push_back(n);
478      };
479      virtual void erase(const Edge&)
480      {
[1774]481        throw UnsupportedOperation();
[1011]482      }
483
[1457]484      ///\bug What is this used for?
485      ///
486      virtual void build() {}
487      ///\bug What is this used for?
488      ///
489      virtual void clear() {}
490
[1011]491      void regist(ListGraph &_g) {
492        g=&_g;
[1039]493        AlterationNotifier<Node>::ObserverBase::
[1040]494          attach(g->getNotifier(Node()));
[1039]495        AlterationNotifier<Edge>::ObserverBase::
[1040]496          attach(g->getNotifier(Edge()));
[1011]497      }
498           
499      void deregist() {
[1039]500        AlterationNotifier<Node>::ObserverBase::
[1011]501          detach();
[1039]502        AlterationNotifier<Edge>::ObserverBase::
[1011]503          detach();
504        g=0;
505      }
[1774]506
[1011]507    public:
508      ///Default constructur.
509     
510      ///Default constructur.
511      ///To actually make a snapshot you must call save().
512      ///
[1770]513      Snapshot() : g(0) {}
[1011]514      ///Constructor that immediately makes a snapshot.
515     
516      ///This constructor immediately makes a snapshot of the graph.
517      ///\param _g The graph we make a snapshot of.
[1770]518      Snapshot(ListGraph &_g) {
[1011]519        regist(_g);
520      }
521      ///\bug Is it necessary?
522      ///
[1770]523      ~Snapshot()
[1011]524      {
525        if(g) deregist();
526      }
527     
528      ///Make a snapshot.
529
530      ///Make a snapshot of the graph.
531      ///
532      ///This function can be called more than once. In case of a repeated
533      ///call, the previous snapshot gets lost.
534      ///\param _g The graph we make the snapshot of.
535      void save(ListGraph &_g)
536      {
537        if(g!=&_g) {
538          if(g) deregist();
539          regist(_g);
540        }
541        added_nodes.clear();
542        added_edges.clear();
543      }
544     
545    ///Undo the changes until the last snapshot.
546
547    ///Undo the changes until last snapshot created by save().
548    ///
549    ///\todo This function might be called undo().
550      void restore() {
[1457]551        ListGraph &old_g=*g;
[1011]552        deregist();
553        while(!added_edges.empty()) {
[1457]554          old_g.erase(added_edges.front());
[1011]555          added_edges.pop_front();
556        }
557        while(!added_nodes.empty()) {
[1457]558          old_g.erase(added_nodes.front());
[1011]559          added_nodes.pop_front();
560        }
561      }
562    };
563   
[949]564  };
[1034]565
[1555]566  ///@}
[1034]567
568  /**************** Undirected List Graph ****************/
569
[1979]570  typedef UGraphExtender<UGraphBaseExtender<
571    ListGraphBase> > ExtendedListUGraphBase;
[1034]572
[1718]573  /// \addtogroup graphs
574  /// @{
[1555]575
[1035]576  ///An undirected list graph class.
577
578  ///This is a simple and fast erasable undirected graph implementation.
579  ///
580  ///It conforms to the
[1909]581  ///\ref concept::UGraph "UGraph" concept.
[1035]582  ///
[1909]583  ///\sa concept::UGraph.
[1035]584  ///
[1770]585  ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
[1161]586  ///haven't been implemented yet.
[1035]587  ///
[1909]588  class ListUGraph : public ExtendedListUGraphBase {
[1718]589  public:
[1909]590    typedef ExtendedListUGraphBase Parent;
[1718]591    /// \brief Changes the target of \c e to \c n
592    ///
593    /// Changes the target of \c e to \c n
594    ///
595    /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
596    /// referencing the changed edge remain
597    /// valid. However <tt>InEdge</tt>'s are invalidated.
[1909]598    void changeTarget(UEdge e, Node n) {
[1718]599      _changeTarget(e,n);
600    }
601    /// Changes the source of \c e to \c n
602    ///
603    /// Changes the source of \c e to \c n
604    ///
605    ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
606    ///referencing the changed edge remain
607    ///valid. However <tt>OutEdge</tt>'s are invalidated.
[1909]608    void changeSource(UEdge e, Node n) {
[1718]609      _changeSource(e,n);
610    }
611    /// \brief Contract two nodes.
612    ///
613    /// This function contracts two nodes.
614    ///
615    /// Node \p b will be removed but instead of deleting
616    /// its neighboring edges, they will be joined to \p a.
617    /// The last parameter \p r controls whether to remove loops. \c true
618    /// means that loops will be removed.
619    ///
620    /// \note The <tt>Edge</tt>s
621    /// referencing a moved edge remain
622    /// valid.
623    void contract(Node a, Node b, bool r = true) {
624      for(IncEdgeIt e(*this, b); e!=INVALID;) {
625        IncEdgeIt f = e; ++f;
626        if (r && runningNode(e) == a) {
627          erase(e);
628        } else if (source(e) == b) {
629          changeSource(e, a);
630        } else {
631          changeTarget(e, a);
632        }
633        e = f;
634      }
635      erase(b);
636    }
[1034]637  };
638
[1982]639
640  class ListBpUGraphBase {
641  public:
642
643    class NodeSetError : public LogicError {
644      virtual const char* exceptionName() const {
645        return "lemon::ListBpUGraph::NodeSetError";
646      }
647    };
648
649  protected:
650
651    struct NodeT {
652      int first_edge, next_node;
653    };
654
655    struct EdgeT {
656      int aNode, prev_out, next_out;
657      int bNode, prev_in, next_in;
658    };
659
660    std::vector<NodeT> aNodes;
661    std::vector<NodeT> bNodes;
662
663    std::vector<EdgeT> edges;
664
665    int first_anode;
666    int first_free_anode;
667
668    int first_bnode;
669    int first_free_bnode;
670
671    int first_free_edge;
672
673  public:
674 
675    class Node {
676      friend class ListBpUGraphBase;
677    protected:
678      int id;
679
680      Node(int _id) : id(_id) {}
681    public:
682      Node() {}
683      Node(Invalid) { id = -1; }
684      bool operator==(const Node i) const {return id==i.id;}
685      bool operator!=(const Node i) const {return id!=i.id;}
686      bool operator<(const Node i) const {return id<i.id;}
687    };
688
689    class Edge {
690      friend class ListBpUGraphBase;
691    protected:
692      int id;
693
694      Edge(int _id) { id = _id;}
695    public:
696      Edge() {}
697      Edge (Invalid) { id = -1; }
698      bool operator==(const Edge i) const {return id==i.id;}
699      bool operator!=(const Edge i) const {return id!=i.id;}
700      bool operator<(const Edge i) const {return id<i.id;}
701    };
702
703    ListBpUGraphBase()
704      : first_anode(-1), first_free_anode(-1),
705        first_bnode(-1), first_free_bnode(-1),
706        first_free_edge(-1) {}
707
708    void firstANode(Node& node) const {
709      node.id = first_anode != -1 ? (first_anode << 1) : -1;
710    }
711    void nextANode(Node& node) const {
712      node.id = aNodes[node.id >> 1].next_node;
713    }
714
715    void firstBNode(Node& node) const {
716      node.id =  first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
717    }
718    void nextBNode(Node& node) const {
719      node.id = aNodes[node.id >> 1].next_node;
720    }
721
722    void first(Node& node) const {
723      if (first_anode != -1) {
724        node.id = (first_anode << 1);
725      } else if (first_bnode != -1) {
726        node.id = (first_bnode << 1) + 1;
727      } else {
728        node.id = -1;
729      }
730    }
731    void next(Node& node) const {
732      if (aNode(node)) {
733        node.id = aNodes[node.id >> 1].next_node;
734        if (node.id == -1) {
735          if (first_bnode != -1) {
736            node.id = (first_bnode << 1) + 1;
737          }
738        }
739      } else {
740        node.id = bNodes[node.id >> 1].next_node;
741      }
742    }
743 
744    void first(Edge& edge) const {
745      int aNodeId = first_anode;
746      while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
747        aNodeId = aNodes[aNodeId].next_node != -1 ?
748          aNodes[aNodeId].next_node >> 1 : -1;
749      }
750      if (aNodeId != -1) {
751        edge.id = aNodes[aNodeId].first_edge;
752      } else {
753        edge.id = -1;
754      }
755    }
756    void next(Edge& edge) const {
757      int aNodeId = edges[edge.id].aNode >> 1;
758      edge.id = edges[edge.id].next_out;
759      if (edge.id == -1) {
760        aNodeId = aNodes[aNodeId].next_node != -1 ?
761          aNodes[aNodeId].next_node >> 1 : -1;
762        while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
763          aNodeId = aNodes[aNodeId].next_node != -1 ?
764          aNodes[aNodeId].next_node >> 1 : -1;
765        }
766        if (aNodeId != -1) {
767          edge.id = aNodes[aNodeId].first_edge;
768        } else {
769          edge.id = -1;
770        }
771      }
772    }
773
774    void firstOut(Edge& edge, const Node& node) const {
775      LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
776      edge.id = aNodes[node.id >> 1].first_edge;
777    }
778    void nextOut(Edge& edge) const {
779      edge.id = edges[edge.id].next_out;
780    }
781
782    void firstIn(Edge& edge, const Node& node) const {
783      LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
784      edge.id = bNodes[node.id >> 1].first_edge;
785    }
786    void nextIn(Edge& edge) const {
787      edge.id = edges[edge.id].next_in;
788    }
789
790    static int id(const Node& node) {
791      return node.id;
792    }
793    static Node nodeFromId(int id) {
794      return Node(id);
795    }
796    int maxNodeId() const {
797      return aNodes.size() > bNodes.size() ?
798        aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
799    }
800 
801    static int id(const Edge& edge) {
802      return edge.id;
803    }
804    static Edge edgeFromId(int id) {
805      return Edge(id);
806    }
807    int maxEdgeId() const {
808      return edges.size();
809    }
810 
811    static int aNodeId(const Node& node) {
812      return node.id >> 1;
813    }
814    static Node fromANodeId(int id, Node) {
815      return Node(id << 1);
816    }
817    int maxANodeId() const {
818      return aNodes.size();
819    }
820
821    static int bNodeId(const Node& node) {
822      return node.id >> 1;
823    }
824    static Node fromBNodeId(int id) {
825      return Node((id << 1) + 1);
826    }
827    int maxBNodeId() const {
828      return bNodes.size();
829    }
830
831    Node aNode(const Edge& edge) const {
832      return Node(edges[edge.id].aNode);
833    }
834    Node bNode(const Edge& edge) const {
835      return Node(edges[edge.id].bNode);
836    }
837
838    static bool aNode(const Node& node) {
839      return (node.id & 1) == 0;
840    }
841
842    static bool bNode(const Node& node) {
843      return (node.id & 1) == 1;
844    }
845
846    Node addANode() {
847      int aNodeId;
848      if (first_free_anode == -1) {
849        aNodeId = aNodes.size();
850        aNodes.push_back(NodeT());
851      } else {
852        aNodeId = first_free_anode;
853        first_free_anode = aNodes[first_free_anode].next_node;
854      }
855      aNodes[aNodeId].next_node =
856        first_anode != -1 ? (first_anode << 1) : -1;
857      first_anode = aNodeId;
858      aNodes[aNodeId].first_edge = -1;
859      return Node(aNodeId << 1);
860    }
861
862    Node addBNode() {
863      int bNodeId;
864      if (first_free_anode == -1) {
865        bNodeId = bNodes.size();
866        bNodes.push_back(NodeT());
867      } else {
868        bNodeId = first_free_bnode;
869        first_free_bnode = bNodes[first_free_bnode].next_node;
870      }
871      bNodes[bNodeId].next_node =
872        first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
873      first_bnode = bNodeId;
874      bNodes[bNodeId].first_edge = -1;
875      return Node((bNodeId << 1) + 1);
876    }
877
878    Edge addEdge(const Node& source, const Node& target) {
879      LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
880      int edgeId;
881      if (first_free_edge != -1) {
882        edgeId = first_free_edge;
883        first_free_edge = edges[edgeId].next_out;
884      } else {
885        edgeId = edges.size();
886        edges.push_back(EdgeT());
887      }
888      if ((source.id & 1) == 0) {
889        edges[edgeId].aNode = source.id;
890        edges[edgeId].bNode = target.id;
891      } else {
892        edges[edgeId].aNode = target.id;
893        edges[edgeId].bNode = source.id;
894      }
895      edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
896      edges[edgeId].prev_out = -1;
897      if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
898        edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
899      }
900      aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
901      edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
902      edges[edgeId].prev_in = -1;
903      if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
904        edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
905      }
906      bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
907      return Edge(edgeId);
908    }
909
910    void erase(const Node& node) {
911      if (aNode(node)) {
912        int aNodeId = node.id >> 1;
913        aNodes[aNodeId].next_node = first_free_anode;
914        first_free_anode = aNodeId;
915      } else {
916        int bNodeId = node.id >> 1;
917        bNodes[bNodeId].next_node = first_free_bnode;
918        first_free_bnode = bNodeId;
919      }
920    }
921
922    void erase(const Edge& edge) {
923      if (edges[edge.id].prev_out != -1) {
924        edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
925      } else {
926        aNodes[edges[edge.id].aNode].first_edge = edges[edge.id].next_out;
927      }
928      if (edges[edge.id].next_out != -1) {
929        edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
930      }
931      if (edges[edge.id].prev_in != -1) {
932        edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
933      } else {
934        bNodes[edges[edge.id].bNode].first_edge = edges[edge.id].next_in;
935      }
936      if (edges[edge.id].next_in != -1) {
937        edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
938      }
939      edges[edge.id].next_out = first_free_edge;
940      first_free_edge = edge.id;
941    }
942
943    void clear() {
944      aNodes.clear();
945      bNodes.clear();
946      edges.clear();
947      first_anode = -1;
948      first_free_anode = -1;
949      first_bnode = -1;
950      first_free_bnode = -1;
951      first_free_edge = -1;
952    }
953
954  };
955
956
957  typedef BpUGraphExtender< BpUGraphBaseExtender<
958    ListBpUGraphBase> > ExtendedListBpUGraphBase;
959
960  /// \ingroup graphs
961  ///
962  /// \brief A smart bipartite undirected graph class.
963  ///
964  /// This is a bipartite undirected graph implementation.
965  /// Except from this it conforms to
966  /// the \ref concept::BpUGraph "BpUGraph" concept.
967  /// \sa concept::BpUGraph.
968  ///
969  class ListBpUGraph : public ExtendedListBpUGraphBase {};
970
[949]971 
[948]972  /// @} 
973} //namespace lemon
[946]974 
[400]975
[946]976#endif
Note: See TracBrowser for help on using the repository browser.