/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2006 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_LIST_GRAPH_H #define LEMON_LIST_GRAPH_H ///\ingroup graphs ///\file ///\brief ListGraph class. #include #include #include namespace lemon { class ListGraphBase { protected: struct NodeT { int first_in, first_out; int prev, next; }; struct EdgeT { int target, source; int prev_in, prev_out; int next_in, next_out; }; std::vector nodes; int first_node; int first_free_node; std::vector edges; int first_free_edge; public: typedef ListGraphBase Graph; class Node { friend class ListGraphBase; protected: int id; explicit Node(int pid) { id = pid;} public: Node() {} Node (Invalid) { id = -1; } bool operator==(const Node& node) const {return id == node.id;} bool operator!=(const Node& node) const {return id != node.id;} bool operator<(const Node& node) const {return id < node.id;} }; class Edge { friend class ListGraphBase; protected: int id; explicit Edge(int pid) { id = pid;} public: Edge() {} Edge (Invalid) { id = -1; } bool operator==(const Edge& edge) const {return id == edge.id;} bool operator!=(const Edge& edge) const {return id != edge.id;} bool operator<(const Edge& edge) const {return id < edge.id;} }; ListGraphBase() : nodes(), first_node(-1), first_free_node(-1), edges(), first_free_edge(-1) {} /// Maximum node ID. /// Maximum node ID. ///\sa id(Node) int maxNodeId() const { return nodes.size()-1; } /// Maximum edge ID. /// Maximum edge ID. ///\sa id(Edge) int maxEdgeId() const { return edges.size()-1; } Node source(Edge e) const { return Node(edges[e.id].source); } Node target(Edge e) const { return Node(edges[e.id].target); } void first(Node& node) const { node.id = first_node; } void next(Node& node) const { node.id = nodes[node.id].next; } void first(Edge& e) const { int n; for(n = first_node; n!=-1 && nodes[n].first_in == -1; n = nodes[n].next); e.id = (n == -1) ? -1 : nodes[n].first_in; } void next(Edge& edge) const { if (edges[edge.id].next_in != -1) { edge.id = edges[edge.id].next_in; } else { int n; for(n = nodes[edges[edge.id].target].next; n!=-1 && nodes[n].first_in == -1; n = nodes[n].next); edge.id = (n == -1) ? -1 : nodes[n].first_in; } } void firstOut(Edge &e, const Node& v) const { e.id = nodes[v.id].first_out; } void nextOut(Edge &e) const { e.id=edges[e.id].next_out; } void firstIn(Edge &e, const Node& v) const { e.id = nodes[v.id].first_in; } void nextIn(Edge &e) const { e.id=edges[e.id].next_in; } static int id(Node v) { return v.id; } static int id(Edge e) { return e.id; } static Node nodeFromId(int id) { return Node(id);} static Edge edgeFromId(int id) { return Edge(id);} /// Adds a new node to the graph. /// \warning It adds the new node to the front of the list. /// (i.e. the lastly added node becomes the first.) Node addNode() { int n; if(first_free_node==-1) { n = nodes.size(); nodes.push_back(NodeT()); } else { n = first_free_node; first_free_node = nodes[n].next; } nodes[n].next = first_node; if(first_node != -1) nodes[first_node].prev = n; first_node = n; nodes[n].prev = -1; nodes[n].first_in = nodes[n].first_out = -1; return Node(n); } Edge addEdge(Node u, Node v) { int n; if (first_free_edge == -1) { n = edges.size(); edges.push_back(EdgeT()); } else { n = first_free_edge; first_free_edge = edges[n].next_in; } edges[n].source = u.id; edges[n].target = v.id; edges[n].next_out = nodes[u.id].first_out; if(nodes[u.id].first_out != -1) { edges[nodes[u.id].first_out].prev_out = n; } edges[n].next_in = nodes[v.id].first_in; if(nodes[v.id].first_in != -1) { edges[nodes[v.id].first_in].prev_in = n; } edges[n].prev_in = edges[n].prev_out = -1; nodes[u.id].first_out = nodes[v.id].first_in = n; return Edge(n); } void erase(const Node& node) { int n = node.id; if(nodes[n].next != -1) { nodes[nodes[n].next].prev = nodes[n].prev; } if(nodes[n].prev != -1) { nodes[nodes[n].prev].next = nodes[n].next; } else { first_node = nodes[n].next; } nodes[n].next = first_free_node; first_free_node = n; } void erase(const Edge& edge) { int n = edge.id; if(edges[n].next_in!=-1) { edges[edges[n].next_in].prev_in = edges[n].prev_in; } if(edges[n].prev_in!=-1) { edges[edges[n].prev_in].next_in = edges[n].next_in; } else { nodes[edges[n].target].first_in = edges[n].next_in; } if(edges[n].next_out!=-1) { edges[edges[n].next_out].prev_out = edges[n].prev_out; } if(edges[n].prev_out!=-1) { edges[edges[n].prev_out].next_out = edges[n].next_out; } else { nodes[edges[n].source].first_out = edges[n].next_out; } edges[n].next_in = first_free_edge; first_free_edge = n; } void clear() { edges.clear(); nodes.clear(); first_node = first_free_node = first_free_edge = -1; } protected: void changeTarget(Edge e, Node n) { if(edges[e.id].next_in != -1) edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in; if(edges[e.id].prev_in != -1) edges[edges[e.id].prev_in].next_in = edges[e.id].next_in; else nodes[edges[e.id].target].first_in = edges[e.id].next_in; if (nodes[n.id].first_in != -1) { edges[nodes[n.id].first_in].prev_in = e.id; } edges[e.id].target = n.id; edges[e.id].prev_in = -1; edges[e.id].next_in = nodes[n.id].first_in; nodes[n.id].first_in = e.id; } void changeSource(Edge e, Node n) { if(edges[e.id].next_out != -1) edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out; if(edges[e.id].prev_out != -1) edges[edges[e.id].prev_out].next_out = edges[e.id].next_out; else nodes[edges[e.id].source].first_out = edges[e.id].next_out; if (nodes[n.id].first_out != -1) { edges[nodes[n.id].first_out].prev_out = e.id; } edges[e.id].source = n.id; edges[e.id].prev_out = -1; edges[e.id].next_out = nodes[n.id].first_out; nodes[n.id].first_out = e.id; } }; typedef GraphExtender ExtendedListGraphBase; /// \ingroup graphs ///A list graph class. ///This is a simple and fast erasable graph implementation. /// ///It conforms to the \ref concept::Graph "Graph" concept and it ///also provides several additional useful extra functionalities. ///The most of the member functions and nested classes are ///documented only in the concept class. ///\sa concept::Graph. class ListGraph : public ExtendedListGraphBase { public: typedef ExtendedListGraphBase Parent; ///Add a new node to the graph. /// \return the new node. /// Node addNode() { return Parent::addNode(); } ///Add a new edge to the graph. ///Add a new edge to the graph with source node \c s ///and target node \c t. ///\return the new edge. Edge addEdge(const Node& s, const Node& t) { return Parent::addEdge(s, t); } /// Changes the target of \c e to \c n /// Changes the target of \c e to \c n /// ///\note The Edges and OutEdgeIts referencing ///the changed edge remain valid. However InEdgeIts are ///invalidated. void changeTarget(Edge e, Node n) { Parent::changeTarget(e,n); } /// Changes the source of \c e to \c n /// Changes the source of \c e to \c n /// ///\note The Edges and InEdgeIts referencing ///the changed edge remain valid. However OutEdgeIts are ///invalidated. void changeSource(Edge e, Node n) { Parent::changeSource(e,n); } /// Invert the direction of an edge. ///\note The Edges referencing the changed edge remain ///valid. However OutEdgeIts and InEdgeIts are ///invalidated. void reverseEdge(Edge e) { Node t=target(e); changeTarget(e,source(e)); changeSource(e,t); } /// \brief Using this it is possible to avoid the superfluous memory /// allocation. ///Using this it is possible to avoid the superfluous memory ///allocation: if you know that the graph you want to build will ///contain at least 10 million nodes then it is worth to reserve ///space for this amount before starting to build the graph. void reserveNode(int n) { nodes.reserve(n); }; /// \brief Using this it is possible to avoid the superfluous memory /// allocation. ///Using this it is possible to avoid the superfluous memory ///allocation: see the \ref reserveNode function. void reserveEdge(int n) { edges.reserve(n); }; ///Contract two nodes. ///This function contracts two nodes. /// ///Node \p b will be removed but instead of deleting ///incident edges, they will be joined to \p a. ///The last parameter \p r controls whether to remove loops. \c true ///means that loops will be removed. /// ///\note The Edges ///referencing a moved edge remain ///valid. However InEdges and OutEdges ///may be invalidated. void contract(Node a, Node b, bool r = true) { for(OutEdgeIt e(*this,b);e!=INVALID;) { OutEdgeIt f=e; ++f; if(r && target(e)==a) erase(e); else changeSource(e,a); e=f; } for(InEdgeIt e(*this,b);e!=INVALID;) { InEdgeIt f=e; ++f; if(r && source(e)==a) erase(e); else changeTarget(e,a); e=f; } erase(b); } ///Split a node. ///This function splits a node. First a new node is added to the graph, ///then the source of each outgoing edge of \c n is moved to this new node. ///If \c connect is \c true (this is the default value), then a new edge ///from \c n to the newly created node is also added. ///\return The newly created node. /// ///\note The Edges ///referencing a moved edge remain ///valid. However InEdges and OutEdges ///may be invalidated. ///\warning This functionality cannot be used together with the Snapshot ///feature. ///\todo It could be implemented in a bit faster way. Node split(Node n, bool connect = true) { Node b = addNode(); for(OutEdgeIt e(*this,n);e!=INVALID;) { OutEdgeIt f=e; ++f; changeSource(e,b); e=f; } if (connect) addEdge(n,b); return b; } ///Split an edge. ///This function splits an edge. First a new node \c b is added to ///the graph, then the original edge is re-targeted to \c ///b. Finally an edge from \c b to the original target is added. ///\return The newly created node. ///\warning This functionality ///cannot be used together with the Snapshot feature. Node split(Edge e) { Node b = addNode(); addEdge(b,target(e)); changeTarget(e,b); return b; } /// \brief Class to make a snapshot of the graph and restore /// to it later. /// /// Class to make a snapshot of the graph and to restore it /// later. /// /// The newly added nodes and edges can be removed using the /// restore() function. /// /// \warning Edge and node deletions cannot be restored. class Snapshot { public: class UnsupportedOperation : public LogicError { public: virtual const char* exceptionName() const { return "lemon::ListGraph::Snapshot::UnsupportedOperation"; } }; protected: typedef Parent::NodeNotifier NodeNotifier; class NodeObserverProxy : public NodeNotifier::ObserverBase { public: NodeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using NodeNotifier::ObserverBase::attach; using NodeNotifier::ObserverBase::detach; using NodeNotifier::ObserverBase::attached; protected: virtual void add(const Node& node) { snapshot.addNode(node); } virtual void add(const std::vector& nodes) { for (int i = nodes.size() - 1; i >= 0; ++i) { snapshot.addNode(nodes[i]); } } virtual void erase(const Node& node) { snapshot.eraseNode(node); } virtual void erase(const std::vector& nodes) { for (int i = 0; i < (int)nodes.size(); ++i) { if (!snapshot.eraseNode(nodes[i])) break; } } virtual void build() { NodeNotifier* notifier = getNotifier(); Node node; std::vector nodes; for (notifier->first(node); node != INVALID; notifier->next(node)) { nodes.push_back(node); } for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } virtual void clear() { NodeNotifier* notifier = getNotifier(); Node node; for (notifier->first(node); node != INVALID; notifier->next(node)) { if (!snapshot.eraseNode(node)) break; } } Snapshot& snapshot; }; class EdgeObserverProxy : public EdgeNotifier::ObserverBase { public: EdgeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using EdgeNotifier::ObserverBase::attach; using EdgeNotifier::ObserverBase::detach; using EdgeNotifier::ObserverBase::attached; protected: virtual void add(const Edge& edge) { snapshot.addEdge(edge); } virtual void add(const std::vector& edges) { for (int i = edges.size() - 1; i >= 0; ++i) { snapshot.addEdge(edges[i]); } } virtual void erase(const Edge& edge) { snapshot.eraseEdge(edge); } virtual void erase(const std::vector& edges) { for (int i = 0; i < (int)edges.size(); ++i) { if (!snapshot.eraseEdge(edges[i])) break; } } virtual void build() { EdgeNotifier* notifier = getNotifier(); Edge edge; std::vector edges; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { edges.push_back(edge); } for (int i = edges.size() - 1; i >= 0; --i) { snapshot.addEdge(edges[i]); } } virtual void clear() { EdgeNotifier* notifier = getNotifier(); Edge edge; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { if (!snapshot.eraseEdge(edge)) break; } } Snapshot& snapshot; }; ListGraph *graph; NodeObserverProxy node_observer_proxy; EdgeObserverProxy edge_observer_proxy; std::list added_nodes; std::list added_edges; void addNode(const Node& node) { added_nodes.push_front(node); } bool eraseNode(const Node& node) { std::list::iterator it = std::find(added_nodes.begin(), added_nodes.end(), node); if (it == added_nodes.end()) { clear(); return false; } else { added_nodes.erase(it); return true; } } void addEdge(const Edge& edge) { added_edges.push_front(edge); } bool eraseEdge(const Edge& edge) { std::list::iterator it = std::find(added_edges.begin(), added_edges.end(), edge); if (it == added_edges.end()) { clear(); return false; } else { added_edges.erase(it); return true; } } void attach(ListGraph &_graph) { graph = &_graph; node_observer_proxy.attach(graph->getNotifier(Node())); edge_observer_proxy.attach(graph->getNotifier(Edge())); } void detach() { node_observer_proxy.detach(); edge_observer_proxy.detach(); } void clear() { detach(); added_nodes.clear(); added_edges.clear(); } public: /// \brief Default constructur. /// /// Default constructor. /// To actually make a snapshot you must call save(). Snapshot() : graph(0), node_observer_proxy(*this), edge_observer_proxy(*this) {} /// \brief Constructor that immediately makes a snapshot. /// /// This constructor immediately makes a snapshot of the graph. /// \param _graph The graph we make a snapshot of. Snapshot(ListGraph &_graph) : node_observer_proxy(*this), edge_observer_proxy(*this) { attach(_graph); } /// \brief Make a snapshot. /// /// Make a snapshot of the graph. /// /// This function can be called more than once. In case of a repeated /// call, the previous snapshot gets lost. /// \param _graph The graph we make the snapshot of. void save(ListGraph &_graph) { clear(); attach(_graph); } /// \brief Undo the changes until the last snapshot. // /// Undo the changes until last snapshot created by save(). /// /// \todo This function might be called undo(). void restore() { detach(); while(!added_edges.empty()) { graph->erase(added_edges.front()); added_edges.pop_front(); } while(!added_nodes.empty()) { graph->erase(added_nodes.front()); added_nodes.pop_front(); } } /// \brief Gives back true when the snapshot is valid. /// /// Gives back true when the snapshot is valid. bool valid() const { return node_observer_proxy.attached(); } }; }; } //namespace lemon #endif