COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/lp_base.h @ 2364:3a5e67bd42d2

Last change on this file since 2364:3a5e67bd42d2 was 2364:3a5e67bd42d2, checked in by Balazs Dezso, 13 years ago

Lp row and col getter function
lp section reader and writer for lemon IO

File size: 45.7 KB
Line 
1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_LP_BASE_H
20#define LEMON_LP_BASE_H
21
22#include<iostream>
23
24
25#include<vector>
26#include<map>
27#include<limits>
28#include<cmath>
29
30#include<lemon/error.h>
31#include<lemon/bits/invalid.h>
32#include<lemon/bits/utility.h>
33#include<lemon/bits/lp_id.h>
34
35///\file
36///\brief The interface of the LP solver interface.
37///\ingroup gen_opt_group
38namespace lemon {
39
40  ///Common base class for LP solvers
41 
42  ///\todo Much more docs
43  ///\ingroup gen_opt_group
44  class LpSolverBase {
45
46  protected:
47
48    _lp_bits::LpId rows;
49    _lp_bits::LpId cols;
50   
51  public:
52   
53    ///Possible outcomes of an LP solving procedure
54    enum SolveExitStatus {
55      ///This means that the problem has been successfully solved: either
56      ///an optimal solution has been found or infeasibility/unboundedness
57      ///has been proved.
58      SOLVED = 0,
59      ///Any other case (including the case when some user specified
60      ///limit has been exceeded)
61      UNSOLVED = 1
62    };
63     
64      ///\e
65    enum SolutionStatus {
66      ///Feasible solution hasn't been found (but may exist).
67
68      ///\todo NOTFOUND might be a better name.
69      ///
70      UNDEFINED = 0,
71      ///The problem has no feasible solution
72      INFEASIBLE = 1,
73      ///Feasible solution found
74      FEASIBLE = 2,
75      ///Optimal solution exists and found
76      OPTIMAL = 3,
77      ///The cost function is unbounded
78
79      ///\todo Give a feasible solution and an infinite ray (and the
80      ///corresponding bases)
81      INFINITE = 4
82    };
83
84    ///\e The type of the investigated LP problem
85    enum ProblemTypes {
86      ///Primal-dual feasible
87      PRIMAL_DUAL_FEASIBLE = 0,
88      ///Primal feasible dual infeasible
89      PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
90      ///Primal infeasible dual feasible
91      PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
92      ///Primal-dual infeasible
93      PRIMAL_DUAL_INFEASIBLE = 3,
94      ///Could not determine so far
95      UNKNOWN = 4
96    };
97
98    ///The floating point type used by the solver
99    typedef double Value;
100    ///The infinity constant
101    static const Value INF;
102    ///The not a number constant
103    static const Value NaN;
104
105    static inline bool isNaN(const Value& v) { return v!=v; }
106   
107    friend class Col;
108    friend class ColIt;
109    friend class Row;
110   
111    ///Refer to a column of the LP.
112
113    ///This type is used to refer to a column of the LP.
114    ///
115    ///Its value remains valid and correct even after the addition or erase of
116    ///other columns.
117    ///
118    ///\todo Document what can one do with a Col (INVALID, comparing,
119    ///it is similar to Node/Edge)
120    class Col {
121    protected:
122      int id;
123      friend class LpSolverBase;
124      friend class MipSolverBase;
125      explicit Col(int _id) : id(_id) {}
126    public:
127      typedef Value ExprValue;
128      typedef True LpSolverCol;
129      Col() {}
130      Col(const Invalid&) : id(-1) {}
131      bool operator< (Col c) const  {return id< c.id;}
132      bool operator> (Col c) const  {return id> c.id;}
133      bool operator==(Col c) const  {return id==c.id;}
134      bool operator!=(Col c) const  {return id!=c.id;}
135    };
136
137    class ColIt : public Col {
138      LpSolverBase *_lp;
139    public:
140      ColIt() {}
141      ColIt(LpSolverBase &lp) : _lp(&lp)
142      {
143        _lp->cols.firstFix(id);
144      }
145      ColIt(const Invalid&) : Col(INVALID) {}
146      ColIt &operator++()
147      {
148        _lp->cols.nextFix(id);
149        return *this;
150      }
151    };
152
153    static int id(const Col& col) { return col.id; }
154 
155     
156    ///Refer to a row of the LP.
157
158    ///This type is used to refer to a row of the LP.
159    ///
160    ///Its value remains valid and correct even after the addition or erase of
161    ///other rows.
162    ///
163    ///\todo Document what can one do with a Row (INVALID, comparing,
164    ///it is similar to Node/Edge)
165    class Row {
166    protected:
167      int id;
168      friend class LpSolverBase;
169      explicit Row(int _id) : id(_id) {}
170    public:
171      typedef Value ExprValue;
172      typedef True LpSolverRow;
173      Row() {}
174      Row(const Invalid&) : id(-1) {}
175
176      bool operator< (Row c) const  {return id< c.id;}
177      bool operator> (Row c) const  {return id> c.id;}
178      bool operator==(Row c) const  {return id==c.id;}
179      bool operator!=(Row c) const  {return id!=c.id;}
180    };
181
182    class RowIt : public Row {
183      LpSolverBase *_lp;
184    public:
185      RowIt() {}
186      RowIt(LpSolverBase &lp) : _lp(&lp)
187      {
188        _lp->rows.firstFix(id);
189      }
190      RowIt(const Invalid&) : Row(INVALID) {}
191      RowIt &operator++()
192      {
193        _lp->rows.nextFix(id);
194        return *this;
195      }
196    };
197
198    static int id(const Row& row) { return row.id; }
199
200  protected:
201
202    int _lpId(const Col& col) const {
203      return cols.floatingId(id(col));
204    }
205
206    int _lpId(const Row& row) const {
207      return rows.floatingId(id(row));
208    }
209
210    Col _item(int id, Col) const {
211      return Col(cols.fixId(id));
212    }
213
214    Row _item(int id, Row) const {
215      return Row(rows.fixId(id));
216    }
217
218
219  public:
220   
221    ///Linear expression of variables and a constant component
222   
223    ///This data structure stores a linear expression of the variables
224    ///(\ref Col "Col"s) and also has a constant component.
225    ///
226    ///There are several ways to access and modify the contents of this
227    ///container.
228    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
229    ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
230    ///read and modify the coefficients like
231    ///these.
232    ///\code
233    ///e[v]=5;
234    ///e[v]+=12;
235    ///e.erase(v);
236    ///\endcode
237    ///or you can also iterate through its elements.
238    ///\code
239    ///double s=0;
240    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
241    ///  s+=i->second;
242    ///\endcode
243    ///(This code computes the sum of all coefficients).
244    ///- Numbers (<tt>double</tt>'s)
245    ///and variables (\ref Col "Col"s) directly convert to an
246    ///\ref Expr and the usual linear operations are defined, so 
247    ///\code
248    ///v+w
249    ///2*v-3.12*(v-w/2)+2
250    ///v*2.1+(3*v+(v*12+w+6)*3)/2
251    ///\endcode
252    ///are valid \ref Expr "Expr"essions.
253    ///The usual assignment operations are also defined.
254    ///\code
255    ///e=v+w;
256    ///e+=2*v-3.12*(v-w/2)+2;
257    ///e*=3.4;
258    ///e/=5;
259    ///\endcode
260    ///- The constant member can be set and read by \ref constComp()
261    ///\code
262    ///e.constComp()=12;
263    ///double c=e.constComp();
264    ///\endcode
265    ///
266    ///\note \ref clear() not only sets all coefficients to 0 but also
267    ///clears the constant components.
268    ///
269    ///\sa Constr
270    ///
271    class Expr : public std::map<Col,Value>
272    {
273    public:
274      typedef LpSolverBase::Col Key;
275      typedef LpSolverBase::Value Value;
276     
277    protected:
278      typedef std::map<Col,Value> Base;
279     
280      Value const_comp;
281    public:
282      typedef True IsLinExpression;
283      ///\e
284      Expr() : Base(), const_comp(0) { }
285      ///\e
286      Expr(const Key &v) : const_comp(0) {
287        Base::insert(std::make_pair(v, 1));
288      }
289      ///\e
290      Expr(const Value &v) : const_comp(v) {}
291      ///\e
292      void set(const Key &v,const Value &c) {
293        Base::insert(std::make_pair(v, c));
294      }
295      ///\e
296      Value &constComp() { return const_comp; }
297      ///\e
298      const Value &constComp() const { return const_comp; }
299     
300      ///Removes the components with zero coefficient.
301      void simplify() {
302        for (Base::iterator i=Base::begin(); i!=Base::end();) {
303          Base::iterator j=i;
304          ++j;
305          if ((*i).second==0) Base::erase(i);
306          i=j;
307        }
308      }
309
310      void simplify() const {
311        const_cast<Expr*>(this)->simplify();
312      }
313
314      ///Removes the coefficients closer to zero than \c tolerance.
315      void simplify(double &tolerance) {
316        for (Base::iterator i=Base::begin(); i!=Base::end();) {
317          Base::iterator j=i;
318          ++j;
319          if (std::fabs((*i).second)<tolerance) Base::erase(i);
320          i=j;
321        }
322      }
323
324      ///Sets all coefficients and the constant component to 0.
325      void clear() {
326        Base::clear();
327        const_comp=0;
328      }
329
330      ///\e
331      Expr &operator+=(const Expr &e) {
332        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
333          (*this)[j->first]+=j->second;
334        const_comp+=e.const_comp;
335        return *this;
336      }
337      ///\e
338      Expr &operator-=(const Expr &e) {
339        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
340          (*this)[j->first]-=j->second;
341        const_comp-=e.const_comp;
342        return *this;
343      }
344      ///\e
345      Expr &operator*=(const Value &c) {
346        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
347          j->second*=c;
348        const_comp*=c;
349        return *this;
350      }
351      ///\e
352      Expr &operator/=(const Value &c) {
353        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
354          j->second/=c;
355        const_comp/=c;
356        return *this;
357      }
358
359      //std::ostream &
360      void prettyPrint(std::ostream &os) {
361        //std::fmtflags os.flags();
362        //os.setf(std::ios::showpos);
363        Base::iterator j=Base::begin();
364        if (j!=Base::end())
365          os<<j->second<<"*x["<<id(j->first)<<"]";
366        ++j;
367        for (; j!=Base::end(); ++j){
368          if (j->second>=0)
369            os<<"+";
370          os<<j->second<<"*x["<<id(j->first)<<"]";
371        }
372        //Nem valami korrekt, de nem talaltam meg, hogy kell
373        //os.unsetf(std::ios::showpos);
374
375        //return os;
376      }
377
378    };
379   
380    ///Linear constraint
381
382    ///This data stucture represents a linear constraint in the LP.
383    ///Basically it is a linear expression with a lower or an upper bound
384    ///(or both). These parts of the constraint can be obtained by the member
385    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
386    ///respectively.
387    ///There are two ways to construct a constraint.
388    ///- You can set the linear expression and the bounds directly
389    ///  by the functions above.
390    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
391    ///  are defined between expressions, or even between constraints whenever
392    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
393    ///  \c s and \c t are numbers, then the followings are valid expressions
394    ///  and thus they can be used directly e.g. in \ref addRow() whenever
395    ///  it makes sense.
396    ///\code
397    ///  e<=s
398    ///  e<=f
399    ///  e==f
400    ///  s<=e<=t
401    ///  e>=t
402    ///\endcode
403    ///\warning The validity of a constraint is checked only at run time, so
404    ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
405    ///\ref LogicError exception.
406    class Constr
407    {
408    public:
409      typedef LpSolverBase::Expr Expr;
410      typedef Expr::Key Key;
411      typedef Expr::Value Value;
412     
413    protected:
414      Expr _expr;
415      Value _lb,_ub;
416    public:
417      ///\e
418      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
419      ///\e
420      Constr(Value lb,const Expr &e,Value ub) :
421        _expr(e), _lb(lb), _ub(ub) {}
422      ///\e
423      Constr(const Expr &e,Value ub) :
424        _expr(e), _lb(NaN), _ub(ub) {}
425      ///\e
426      Constr(Value lb,const Expr &e) :
427        _expr(e), _lb(lb), _ub(NaN) {}
428      ///\e
429      Constr(const Expr &e) :
430        _expr(e), _lb(NaN), _ub(NaN) {}
431      ///\e
432      void clear()
433      {
434        _expr.clear();
435        _lb=_ub=NaN;
436      }
437
438      ///Reference to the linear expression
439      Expr &expr() { return _expr; }
440      ///Cont reference to the linear expression
441      const Expr &expr() const { return _expr; }
442      ///Reference to the lower bound.
443
444      ///\return
445      ///- \ref INF "INF": the constraint is lower unbounded.
446      ///- \ref NaN "NaN": lower bound has not been set.
447      ///- finite number: the lower bound
448      Value &lowerBound() { return _lb; }
449      ///The const version of \ref lowerBound()
450      const Value &lowerBound() const { return _lb; }
451      ///Reference to the upper bound.
452
453      ///\return
454      ///- \ref INF "INF": the constraint is upper unbounded.
455      ///- \ref NaN "NaN": upper bound has not been set.
456      ///- finite number: the upper bound
457      Value &upperBound() { return _ub; }
458      ///The const version of \ref upperBound()
459      const Value &upperBound() const { return _ub; }
460      ///Is the constraint lower bounded?
461      bool lowerBounded() const {
462        using namespace std;
463        return finite(_lb);
464      }
465      ///Is the constraint upper bounded?
466      bool upperBounded() const {
467        using namespace std;
468        return finite(_ub);
469      }
470
471      void prettyPrint(std::ostream &os) {
472        if (_lb==-LpSolverBase::INF||isNaN(_lb))
473          os<<"-infty<=";
474        else
475          os<<_lb<<"<=";
476        _expr.prettyPrint(os);
477        if (_ub==LpSolverBase::INF)
478          os<<"<=infty";
479        else
480          os<<"<="<<_ub;
481        //return os;
482      }
483
484    };
485   
486    ///Linear expression of rows
487   
488    ///This data structure represents a column of the matrix,
489    ///thas is it strores a linear expression of the dual variables
490    ///(\ref Row "Row"s).
491    ///
492    ///There are several ways to access and modify the contents of this
493    ///container.
494    ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
495    ///if \c e is an DualExpr and \c v
496    ///and \c w are of type \ref Row, then you can
497    ///read and modify the coefficients like
498    ///these.
499    ///\code
500    ///e[v]=5;
501    ///e[v]+=12;
502    ///e.erase(v);
503    ///\endcode
504    ///or you can also iterate through its elements.
505    ///\code
506    ///double s=0;
507    ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
508    ///  s+=i->second;
509    ///\endcode
510    ///(This code computes the sum of all coefficients).
511    ///- Numbers (<tt>double</tt>'s)
512    ///and variables (\ref Row "Row"s) directly convert to an
513    ///\ref DualExpr and the usual linear operations are defined, so
514    ///\code
515    ///v+w
516    ///2*v-3.12*(v-w/2)
517    ///v*2.1+(3*v+(v*12+w)*3)/2
518    ///\endcode
519    ///are valid \ref DualExpr "DualExpr"essions.
520    ///The usual assignment operations are also defined.
521    ///\code
522    ///e=v+w;
523    ///e+=2*v-3.12*(v-w/2);
524    ///e*=3.4;
525    ///e/=5;
526    ///\endcode
527    ///
528    ///\sa Expr
529    ///
530    class DualExpr : public std::map<Row,Value>
531    {
532    public:
533      typedef LpSolverBase::Row Key;
534      typedef LpSolverBase::Value Value;
535     
536    protected:
537      typedef std::map<Row,Value> Base;
538     
539    public:
540      typedef True IsLinExpression;
541      ///\e
542      DualExpr() : Base() { }
543      ///\e
544      DualExpr(const Key &v) {
545        Base::insert(std::make_pair(v, 1));
546      }
547      ///\e
548      void set(const Key &v,const Value &c) {
549        Base::insert(std::make_pair(v, c));
550      }
551     
552      ///Removes the components with zero coefficient.
553      void simplify() {
554        for (Base::iterator i=Base::begin(); i!=Base::end();) {
555          Base::iterator j=i;
556          ++j;
557          if ((*i).second==0) Base::erase(i);
558          i=j;
559        }
560      }
561
562      void simplify() const {
563        const_cast<DualExpr*>(this)->simplify();
564      }
565
566      ///Removes the coefficients closer to zero than \c tolerance.
567      void simplify(double &tolerance) {
568        for (Base::iterator i=Base::begin(); i!=Base::end();) {
569          Base::iterator j=i;
570          ++j;
571          if (std::fabs((*i).second)<tolerance) Base::erase(i);
572          i=j;
573        }
574      }
575
576      ///Sets all coefficients to 0.
577      void clear() {
578        Base::clear();
579      }
580
581      ///\e
582      DualExpr &operator+=(const DualExpr &e) {
583        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
584          (*this)[j->first]+=j->second;
585        return *this;
586      }
587      ///\e
588      DualExpr &operator-=(const DualExpr &e) {
589        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
590          (*this)[j->first]-=j->second;
591        return *this;
592      }
593      ///\e
594      DualExpr &operator*=(const Value &c) {
595        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
596          j->second*=c;
597        return *this;
598      }
599      ///\e
600      DualExpr &operator/=(const Value &c) {
601        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
602          j->second/=c;
603        return *this;
604      }
605    };
606   
607
608  private:
609
610    template <typename _Expr>
611    class MappedOutputIterator {
612    public:
613
614      typedef std::insert_iterator<_Expr> Base;
615
616      typedef std::output_iterator_tag iterator_category;
617      typedef void difference_type;
618      typedef void value_type;
619      typedef void reference;
620      typedef void pointer;
621     
622      MappedOutputIterator(const Base& _base, const LpSolverBase& _lp)
623        : base(_base), lp(_lp) {}
624
625      MappedOutputIterator& operator*() {
626        return *this;
627      }
628
629      MappedOutputIterator& operator=(const std::pair<int, Value>& value) {
630        *base = std::make_pair(lp._item(value.first, typename _Expr::Key()),
631                               value.second);
632        return *this;
633      }
634
635      MappedOutputIterator& operator++() {
636        ++base;
637        return *this;
638      }
639
640      MappedOutputIterator operator++(int) {
641        MappedOutputIterator tmp(*this);
642        ++base;
643        return tmp;
644      }
645
646      bool operator==(const MappedOutputIterator& it) const {
647        return base == it.base;
648      }
649
650      bool operator!=(const MappedOutputIterator& it) const {
651        return base != it.base;
652      }
653
654    private:
655      Base base;
656      const LpSolverBase& lp;
657    };
658
659    template <typename Expr>
660    class MappedInputIterator {
661    public:
662
663      typedef typename Expr::const_iterator Base;
664
665      typedef typename Base::iterator_category iterator_category;
666      typedef typename Base::difference_type difference_type;
667      typedef const std::pair<int, Value> value_type;
668      typedef value_type reference;
669      class pointer {
670      public:
671        pointer(value_type& _value) : value(_value) {}
672        value_type* operator->() { return &value; }
673      private:
674        value_type value;
675      };
676
677      MappedInputIterator(const Base& _base, const LpSolverBase& _lp)
678        : base(_base), lp(_lp) {}
679
680      reference operator*() {
681        return std::make_pair(lp._lpId(base->first), base->second);
682      }
683
684      pointer operator->() {
685        return pointer(operator*());
686      }
687
688      MappedInputIterator& operator++() {
689        ++base;
690        return *this;
691      }
692
693      MappedInputIterator operator++(int) {
694        MappedInputIterator tmp(*this);
695        ++base;
696        return tmp;
697      }
698
699      bool operator==(const MappedInputIterator& it) const {
700        return base == it.base;
701      }
702
703      bool operator!=(const MappedInputIterator& it) const {
704        return base != it.base;
705      }
706
707    private:
708      Base base;
709      const LpSolverBase& lp;
710    };
711
712  protected:
713
714    /// STL compatible iterator for lp col
715    typedef MappedInputIterator<Expr> ConstRowIterator;
716    /// STL compatible iterator for lp row
717    typedef MappedInputIterator<DualExpr> ConstColIterator;
718
719    /// STL compatible iterator for lp col
720    typedef MappedOutputIterator<Expr> RowIterator;
721    /// STL compatible iterator for lp row
722    typedef MappedOutputIterator<DualExpr> ColIterator;
723
724    //Abstract virtual functions
725    virtual LpSolverBase &_newLp() = 0;
726    virtual LpSolverBase &_copyLp(){
727      ///\todo This should be implemented here, too, when we have
728      ///problem retrieving routines. It can be overriden.
729
730      //Starting:
731      LpSolverBase & newlp(_newLp());
732      return newlp;
733      //return *(LpSolverBase*)0;
734    };
735
736    virtual int _addCol() = 0;
737    virtual int _addRow() = 0;
738    virtual void _eraseCol(int col) = 0;
739    virtual void _eraseRow(int row) = 0;
740    virtual void _getColName(int col, std::string & name) = 0;
741    virtual void _setColName(int col, const std::string & name) = 0;
742    virtual void _setRowCoeffs(int i, ConstRowIterator b,
743                               ConstRowIterator e) = 0;
744    virtual void _getRowCoeffs(int i, RowIterator b) = 0;
745    virtual void _setColCoeffs(int i, ConstColIterator b,
746                               ConstColIterator e) = 0;
747    virtual void _getColCoeffs(int i, ColIterator b) = 0;
748    virtual void _setCoeff(int row, int col, Value value) = 0;
749    virtual Value _getCoeff(int row, int col) = 0;
750    virtual void _setColLowerBound(int i, Value value) = 0;
751    virtual Value _getColLowerBound(int i) = 0;
752    virtual void _setColUpperBound(int i, Value value) = 0;
753    virtual Value _getColUpperBound(int i) = 0;
754    virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
755    virtual void _getRowBounds(int i, Value &lower, Value &upper)=0;
756
757    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
758    virtual Value _getObjCoeff(int i) = 0;
759    virtual void _clearObj()=0;
760
761    virtual SolveExitStatus _solve() = 0;
762    virtual Value _getPrimal(int i) = 0;
763    virtual Value _getDual(int i) = 0;
764    virtual Value _getPrimalValue() = 0;
765    virtual bool _isBasicCol(int i) = 0;
766    virtual SolutionStatus _getPrimalStatus() = 0;
767    virtual SolutionStatus _getDualStatus() = 0;
768    ///\todo This could be implemented here, too, using _getPrimalStatus() and
769    ///_getDualStatus()
770    virtual ProblemTypes _getProblemType() = 0;
771
772    virtual void _setMax() = 0;
773    virtual void _setMin() = 0;
774   
775
776    virtual bool _isMax() = 0;
777
778    //Own protected stuff
779   
780    //Constant component of the objective function
781    Value obj_const_comp;
782       
783  public:
784
785    ///\e
786    LpSolverBase() : obj_const_comp(0) {}
787
788    ///\e
789    virtual ~LpSolverBase() {}
790
791    ///Creates a new LP problem
792    LpSolverBase &newLp() {return _newLp();}
793    ///Makes a copy of the LP problem
794    LpSolverBase &copyLp() {return _copyLp();}
795   
796    ///\name Build up and modify the LP
797
798    ///@{
799
800    ///Add a new empty column (i.e a new variable) to the LP
801    Col addCol() { Col c; _addCol(); c.id = cols.addId(); return c;}
802
803    ///\brief Adds several new columns
804    ///(i.e a variables) at once
805    ///
806    ///This magic function takes a container as its argument
807    ///and fills its elements
808    ///with new columns (i.e. variables)
809    ///\param t can be
810    ///- a standard STL compatible iterable container with
811    ///\ref Col as its \c values_type
812    ///like
813    ///\code
814    ///std::vector<LpSolverBase::Col>
815    ///std::list<LpSolverBase::Col>
816    ///\endcode
817    ///- a standard STL compatible iterable container with
818    ///\ref Col as its \c mapped_type
819    ///like
820    ///\code
821    ///std::map<AnyType,LpSolverBase::Col>
822    ///\endcode
823    ///- an iterable lemon \ref concepts::WriteMap "write map" like
824    ///\code
825    ///ListGraph::NodeMap<LpSolverBase::Col>
826    ///ListGraph::EdgeMap<LpSolverBase::Col>
827    ///\endcode
828    ///\return The number of the created column.
829#ifdef DOXYGEN
830    template<class T>
831    int addColSet(T &t) { return 0;}
832#else
833    template<class T>
834    typename enable_if<typename T::value_type::LpSolverCol,int>::type
835    addColSet(T &t,dummy<0> = 0) {
836      int s=0;
837      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
838      return s;
839    }
840    template<class T>
841    typename enable_if<typename T::value_type::second_type::LpSolverCol,
842                       int>::type
843    addColSet(T &t,dummy<1> = 1) {
844      int s=0;
845      for(typename T::iterator i=t.begin();i!=t.end();++i) {
846        i->second=addCol();
847        s++;
848      }
849      return s;
850    }
851    template<class T>
852    typename enable_if<typename T::MapIt::Value::LpSolverCol,
853                       int>::type
854    addColSet(T &t,dummy<2> = 2) {
855      int s=0;
856      for(typename T::MapIt i(t); i!=INVALID; ++i)
857        {
858          i.set(addCol());
859          s++;
860        }
861      return s;
862    }
863#endif
864
865    ///Set a column (i.e a dual constraint) of the LP
866
867    ///\param c is the column to be modified
868    ///\param e is a dual linear expression (see \ref DualExpr)
869    ///a better one.
870    void col(Col c,const DualExpr &e) {
871      e.simplify();
872      _setColCoeffs(_lpId(c), ConstColIterator(e.begin(), *this),
873                    ConstColIterator(e.end(), *this));
874    }
875
876    ///Get a column (i.e a dual constraint) of the LP
877
878    ///\param r is the column to get
879    ///\return the dual expression associated to the column
880    DualExpr col(Col c) {
881      DualExpr e;
882      _getColCoeffs(_lpId(c), ColIterator(std::inserter(e, e.end()), *this));
883      return e;
884    }
885
886    ///Add a new column to the LP
887
888    ///\param e is a dual linear expression (see \ref DualExpr)
889    ///\param obj is the corresponding component of the objective
890    ///function. It is 0 by default.
891    ///\return The created column.
892    Col addCol(const DualExpr &e, Value obj=0) {
893      Col c=addCol();
894      col(c,e);
895      objCoeff(c,obj);
896      return c;
897    }
898
899    ///Add a new empty row (i.e a new constraint) to the LP
900
901    ///This function adds a new empty row (i.e a new constraint) to the LP.
902    ///\return The created row
903    Row addRow() { Row r; _addRow(); r.id = rows.addId(); return r;}
904
905    ///\brief Add several new rows
906    ///(i.e a constraints) at once
907    ///
908    ///This magic function takes a container as its argument
909    ///and fills its elements
910    ///with new row (i.e. variables)
911    ///\param t can be
912    ///- a standard STL compatible iterable container with
913    ///\ref Row as its \c values_type
914    ///like
915    ///\code
916    ///std::vector<LpSolverBase::Row>
917    ///std::list<LpSolverBase::Row>
918    ///\endcode
919    ///- a standard STL compatible iterable container with
920    ///\ref Row as its \c mapped_type
921    ///like
922    ///\code
923    ///std::map<AnyType,LpSolverBase::Row>
924    ///\endcode
925    ///- an iterable lemon \ref concepts::WriteMap "write map" like
926    ///\code
927    ///ListGraph::NodeMap<LpSolverBase::Row>
928    ///ListGraph::EdgeMap<LpSolverBase::Row>
929    ///\endcode
930    ///\return The number of rows created.
931#ifdef DOXYGEN
932    template<class T>
933    int addRowSet(T &t) { return 0;}
934#else
935    template<class T>
936    typename enable_if<typename T::value_type::LpSolverRow,int>::type
937    addRowSet(T &t,dummy<0> = 0) {
938      int s=0;
939      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
940      return s;
941    }
942    template<class T>
943    typename enable_if<typename T::value_type::second_type::LpSolverRow,
944                       int>::type
945    addRowSet(T &t,dummy<1> = 1) {
946      int s=0;
947      for(typename T::iterator i=t.begin();i!=t.end();++i) {
948        i->second=addRow();
949        s++;
950      }
951      return s;
952    }
953    template<class T>
954    typename enable_if<typename T::MapIt::Value::LpSolverRow,
955                       int>::type
956    addRowSet(T &t,dummy<2> = 2) {
957      int s=0;
958      for(typename T::MapIt i(t); i!=INVALID; ++i)
959        {
960          i.set(addRow());
961          s++;
962        }
963      return s;
964    }
965#endif
966
967    ///Set a row (i.e a constraint) of the LP
968
969    ///\param r is the row to be modified
970    ///\param l is lower bound (-\ref INF means no bound)
971    ///\param e is a linear expression (see \ref Expr)
972    ///\param u is the upper bound (\ref INF means no bound)
973    ///\bug This is a temportary function. The interface will change to
974    ///a better one.
975    ///\todo Option to control whether a constraint with a single variable is
976    ///added or not.
977    void row(Row r, Value l,const Expr &e, Value u) {
978      e.simplify();
979      _setRowCoeffs(_lpId(r), ConstRowIterator(e.begin(), *this),
980                    ConstRowIterator(e.end(), *this));
981      _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp());
982    }
983
984    ///Set a row (i.e a constraint) of the LP
985
986    ///\param r is the row to be modified
987    ///\param c is a linear expression (see \ref Constr)
988    void row(Row r, const Constr &c) {
989      row(r, c.lowerBounded()?c.lowerBound():-INF,
990          c.expr(), c.upperBounded()?c.upperBound():INF);
991    }
992
993   
994    ///Get a row (i.e a constraint) of the LP
995
996    ///\param r is the row to get
997    ///\return the expression associated to the row
998    Expr row(Row r) {
999      Expr e;
1000      _getRowCoeffs(_lpId(r), RowIterator(std::inserter(e, e.end()), *this));
1001      return e;
1002    }
1003
1004    ///Add a new row (i.e a new constraint) to the LP
1005
1006    ///\param l is the lower bound (-\ref INF means no bound)
1007    ///\param e is a linear expression (see \ref Expr)
1008    ///\param u is the upper bound (\ref INF means no bound)
1009    ///\return The created row.
1010    ///\bug This is a temportary function. The interface will change to
1011    ///a better one.
1012    Row addRow(Value l,const Expr &e, Value u) {
1013      Row r=addRow();
1014      row(r,l,e,u);
1015      return r;
1016    }
1017
1018    ///Add a new row (i.e a new constraint) to the LP
1019
1020    ///\param c is a linear expression (see \ref Constr)
1021    ///\return The created row.
1022    Row addRow(const Constr &c) {
1023      Row r=addRow();
1024      row(r,c);
1025      return r;
1026    }
1027    ///Erase a coloumn (i.e a variable) from the LP
1028
1029    ///\param c is the coloumn to be deleted
1030    ///\todo Please check this
1031    void eraseCol(Col c) {
1032      _eraseCol(_lpId(c));
1033      cols.eraseId(c.id);
1034    }
1035    ///Erase a  row (i.e a constraint) from the LP
1036
1037    ///\param r is the row to be deleted
1038    ///\todo Please check this
1039    void eraseRow(Row r) {
1040      _eraseRow(_lpId(r));
1041      rows.eraseId(r.id);
1042    }
1043
1044    /// Get the name of a column
1045   
1046    ///\param c is the coresponding coloumn
1047    ///\return The name of the colunm
1048    std::string colName(Col c){
1049      std::string name;
1050      _getColName(_lpId(c), name);
1051      return name;
1052    }
1053   
1054    /// Set the name of a column
1055   
1056    ///\param c is the coresponding coloumn
1057    ///\param name The name to be given
1058    void colName(Col c, const std::string& name){
1059      _setColName(_lpId(c), name);
1060    }
1061   
1062    /// Set an element of the coefficient matrix of the LP
1063
1064    ///\param r is the row of the element to be modified
1065    ///\param c is the coloumn of the element to be modified
1066    ///\param val is the new value of the coefficient
1067
1068    void coeff(Row r, Col c, Value val){
1069      _setCoeff(_lpId(r),_lpId(c), val);
1070    }
1071
1072    /// Get an element of the coefficient matrix of the LP
1073
1074    ///\param r is the row of the element in question
1075    ///\param c is the coloumn of the element in question
1076    ///\return the corresponding coefficient
1077
1078    Value coeff(Row r, Col c){
1079      return _getCoeff(_lpId(r),_lpId(c));
1080    }
1081
1082    /// Set the lower bound of a column (i.e a variable)
1083
1084    /// The lower bound of a variable (column) has to be given by an
1085    /// extended number of type Value, i.e. a finite number of type
1086    /// Value or -\ref INF.
1087    void colLowerBound(Col c, Value value) {
1088      _setColLowerBound(_lpId(c),value);
1089    }
1090
1091    /// Get the lower bound of a column (i.e a variable)
1092
1093    /// This function returns the lower bound for column (variable) \t c
1094    /// (this might be -\ref INF as well). 
1095    ///\return The lower bound for coloumn \t c
1096    Value colLowerBound(Col c) {
1097      return _getColLowerBound(_lpId(c));
1098    }
1099   
1100    ///\brief Set the lower bound of  several columns
1101    ///(i.e a variables) at once
1102    ///
1103    ///This magic function takes a container as its argument
1104    ///and applies the function on all of its elements.
1105    /// The lower bound of a variable (column) has to be given by an
1106    /// extended number of type Value, i.e. a finite number of type
1107    /// Value or -\ref INF.
1108#ifdef DOXYGEN
1109    template<class T>
1110    void colLowerBound(T &t, Value value) { return 0;}
1111#else
1112    template<class T>
1113    typename enable_if<typename T::value_type::LpSolverCol,void>::type
1114    colLowerBound(T &t, Value value,dummy<0> = 0) {
1115      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1116        colLowerBound(*i, value);
1117      }
1118    }
1119    template<class T>
1120    typename enable_if<typename T::value_type::second_type::LpSolverCol,
1121                       void>::type
1122    colLowerBound(T &t, Value value,dummy<1> = 1) {
1123      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1124        colLowerBound(i->second, value);
1125      }
1126    }
1127    template<class T>
1128    typename enable_if<typename T::MapIt::Value::LpSolverCol,
1129                       void>::type
1130    colLowerBound(T &t, Value value,dummy<2> = 2) {
1131      for(typename T::MapIt i(t); i!=INVALID; ++i){
1132        colLowerBound(*i, value);
1133      }
1134    }
1135#endif
1136   
1137    /// Set the upper bound of a column (i.e a variable)
1138
1139    /// The upper bound of a variable (column) has to be given by an
1140    /// extended number of type Value, i.e. a finite number of type
1141    /// Value or \ref INF.
1142    void colUpperBound(Col c, Value value) {
1143      _setColUpperBound(_lpId(c),value);
1144    };
1145
1146    /// Get the upper bound of a column (i.e a variable)
1147
1148    /// This function returns the upper bound for column (variable) \t c
1149    /// (this might be \ref INF as well). 
1150    ///\return The upper bound for coloumn \t c
1151    Value colUpperBound(Col c) {
1152      return _getColUpperBound(_lpId(c));
1153    }
1154
1155    ///\brief Set the upper bound of  several columns
1156    ///(i.e a variables) at once
1157    ///
1158    ///This magic function takes a container as its argument
1159    ///and applies the function on all of its elements.
1160    /// The upper bound of a variable (column) has to be given by an
1161    /// extended number of type Value, i.e. a finite number of type
1162    /// Value or \ref INF.
1163#ifdef DOXYGEN
1164    template<class T>
1165    void colUpperBound(T &t, Value value) { return 0;}
1166#else
1167    template<class T>
1168    typename enable_if<typename T::value_type::LpSolverCol,void>::type
1169    colUpperBound(T &t, Value value,dummy<0> = 0) {
1170      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1171        colUpperBound(*i, value);
1172      }
1173    }
1174    template<class T>
1175    typename enable_if<typename T::value_type::second_type::LpSolverCol,
1176                       void>::type
1177    colUpperBound(T &t, Value value,dummy<1> = 1) {
1178      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1179        colUpperBound(i->second, value);
1180      }
1181    }
1182    template<class T>
1183    typename enable_if<typename T::MapIt::Value::LpSolverCol,
1184                       void>::type
1185    colUpperBound(T &t, Value value,dummy<2> = 2) {
1186      for(typename T::MapIt i(t); i!=INVALID; ++i){
1187        colUpperBound(*i, value);
1188      }
1189    }
1190#endif
1191
1192    /// Set the lower and the upper bounds of a column (i.e a variable)
1193
1194    /// The lower and the upper bounds of
1195    /// a variable (column) have to be given by an
1196    /// extended number of type Value, i.e. a finite number of type
1197    /// Value, -\ref INF or \ref INF.
1198    void colBounds(Col c, Value lower, Value upper) {
1199      _setColLowerBound(_lpId(c),lower);
1200      _setColUpperBound(_lpId(c),upper);
1201    }
1202   
1203    ///\brief Set the lower and the upper bound of several columns
1204    ///(i.e a variables) at once
1205    ///
1206    ///This magic function takes a container as its argument
1207    ///and applies the function on all of its elements.
1208    /// The lower and the upper bounds of
1209    /// a variable (column) have to be given by an
1210    /// extended number of type Value, i.e. a finite number of type
1211    /// Value, -\ref INF or \ref INF.
1212#ifdef DOXYGEN
1213    template<class T>
1214    void colBounds(T &t, Value lower, Value upper) { return 0;}
1215#else
1216    template<class T>
1217    typename enable_if<typename T::value_type::LpSolverCol,void>::type
1218    colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
1219      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1220        colBounds(*i, lower, upper);
1221      }
1222    }
1223    template<class T>
1224    typename enable_if<typename T::value_type::second_type::LpSolverCol,
1225                       void>::type
1226    colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
1227      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1228        colBounds(i->second, lower, upper);
1229      }
1230    }
1231    template<class T>
1232    typename enable_if<typename T::MapIt::Value::LpSolverCol,
1233                       void>::type
1234    colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
1235      for(typename T::MapIt i(t); i!=INVALID; ++i){
1236        colBounds(*i, lower, upper);
1237      }
1238    }
1239#endif
1240   
1241
1242    /// Set the lower and the upper bounds of a row (i.e a constraint)
1243
1244    /// The lower and the upper bound of a constraint (row) have to be
1245    /// given by an extended number of type Value, i.e. a finite
1246    /// number of type Value, -\ref INF or \ref INF. There is no
1247    /// separate function for the lower and the upper bound because
1248    /// that would have been hard to implement for CPLEX.
1249    void rowBounds(Row c, Value lower, Value upper) {
1250      _setRowBounds(_lpId(c),lower, upper);
1251    }
1252   
1253    /// Get the lower and the upper bounds of a row (i.e a constraint)
1254
1255    /// The lower and the upper bound of
1256    /// a constraint (row) are 
1257    /// extended numbers of type Value, i.e.  finite numbers of type
1258    /// Value, -\ref INF or \ref INF.
1259    /// \todo There is no separate function for the
1260    /// lower and the upper bound because we had problems with the
1261    /// implementation of the setting functions for CPLEX: 
1262    /// check out whether this can be done for these functions.
1263    void getRowBounds(Row c, Value &lower, Value &upper) {
1264      _getRowBounds(_lpId(c),lower, upper);
1265    }
1266
1267    ///Set an element of the objective function
1268    void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); };
1269
1270    ///Get an element of the objective function
1271    Value objCoeff(Col c) {return _getObjCoeff(_lpId(c)); };
1272
1273    ///Set the objective function
1274
1275    ///\param e is a linear expression of type \ref Expr.
1276    ///\bug Is should be called obj()
1277    void setObj(Expr e) {
1278      _clearObj();
1279      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
1280        objCoeff((*i).first,(*i).second);
1281      obj_const_comp=e.constComp();
1282    }
1283
1284    ///Get the objective function
1285
1286    ///\return the objective function as a linear expression of type \ref Expr.
1287    Expr obj() {
1288      Expr e;
1289      for (ColIt it(*this); it != INVALID; ++it) {
1290        double c = objCoeff(it);
1291        if (c != 0.0) {
1292          e.insert(std::make_pair(it, c));
1293        }
1294      }
1295      return e;
1296    }
1297   
1298
1299    ///Maximize
1300    void max() { _setMax(); }
1301    ///Minimize
1302    void min() { _setMin(); }
1303
1304    ///Query function: is this a maximization problem?
1305    bool is_max() {return _isMax(); }
1306
1307    ///Query function: is this a minimization problem?
1308    bool is_min() {return !is_max(); }
1309   
1310    ///@}
1311
1312
1313    ///\name Solve the LP
1314
1315    ///@{
1316
1317    ///\e Solve the LP problem at hand
1318    ///
1319    ///\return The result of the optimization procedure. Possible
1320    ///values and their meanings can be found in the documentation of
1321    ///\ref SolveExitStatus.
1322    ///
1323    ///\todo Which method is used to solve the problem
1324    SolveExitStatus solve() { return _solve(); }
1325   
1326    ///@}
1327   
1328    ///\name Obtain the solution
1329
1330    ///@{
1331
1332    /// The status of the primal problem (the original LP problem)
1333    SolutionStatus primalStatus() {
1334      return _getPrimalStatus();
1335    }
1336
1337    /// The status of the dual (of the original LP) problem
1338    SolutionStatus dualStatus() {
1339      return _getDualStatus();
1340    }
1341
1342    ///The type of the original LP problem
1343    ProblemTypes problemType() {
1344      return _getProblemType();
1345    }
1346
1347    ///\e
1348    Value primal(Col c) { return _getPrimal(_lpId(c)); }
1349
1350    ///\e
1351    Value dual(Row r) { return _getDual(_lpId(r)); }
1352
1353    ///\e
1354    bool isBasicCol(Col c) { return _isBasicCol(_lpId(c)); }
1355
1356    ///\e
1357
1358    ///\return
1359    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
1360    /// of the primal problem, depending on whether we minimize or maximize.
1361    ///- \ref NaN if no primal solution is found.
1362    ///- The (finite) objective value if an optimal solution is found.
1363    Value primalValue() { return _getPrimalValue()+obj_const_comp;}
1364    ///@}
1365   
1366  }; 
1367
1368
1369  ///Common base class for MIP solvers
1370  ///\todo Much more docs
1371  ///\ingroup gen_opt_group
1372  class MipSolverBase : virtual public LpSolverBase{
1373  public:
1374
1375    ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
1376    enum ColTypes {
1377      ///Continuous variable
1378      REAL = 0,
1379      ///Integer variable
1380
1381      ///Unfortunately, cplex 7.5 somewhere writes something like
1382      ///#define INTEGER 'I'
1383      INT = 1
1384      ///\todo No support for other types yet.
1385    };
1386
1387    ///Sets the type of the given coloumn to the given type
1388    ///
1389    ///Sets the type of the given coloumn to the given type.
1390    void colType(Col c, ColTypes col_type) {
1391      _colType(_lpId(c),col_type);
1392    }
1393
1394    ///Gives back the type of the column.
1395    ///
1396    ///Gives back the type of the column.
1397    ColTypes colType(Col c){
1398      return _colType(_lpId(c));
1399    }
1400
1401    ///Sets the type of the given Col to integer or remove that property.
1402    ///
1403    ///Sets the type of the given Col to integer or remove that property.
1404    void integer(Col c, bool enable) {
1405      if (enable)
1406        colType(c,INT);
1407      else
1408        colType(c,REAL);
1409    }
1410
1411    ///Gives back whether the type of the column is integer or not.
1412    ///
1413    ///Gives back the type of the column.
1414    ///\return true if the column has integer type and false if not.
1415    bool integer(Col c){
1416      return (colType(c)==INT);
1417    }
1418
1419    /// The status of the MIP problem
1420    SolutionStatus mipStatus() {
1421      return _getMipStatus();
1422    }
1423
1424  protected:
1425
1426    virtual ColTypes _colType(int col) = 0;
1427    virtual void _colType(int col, ColTypes col_type) = 0;
1428    virtual SolutionStatus _getMipStatus()=0;
1429
1430  };
1431 
1432  ///\relates LpSolverBase::Expr
1433  ///
1434  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
1435                                      const LpSolverBase::Expr &b)
1436  {
1437    LpSolverBase::Expr tmp(a);
1438    tmp+=b;
1439    return tmp;
1440  }
1441  ///\e
1442 
1443  ///\relates LpSolverBase::Expr
1444  ///
1445  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
1446                                      const LpSolverBase::Expr &b)
1447  {
1448    LpSolverBase::Expr tmp(a);
1449    tmp-=b;
1450    return tmp;
1451  }
1452  ///\e
1453 
1454  ///\relates LpSolverBase::Expr
1455  ///
1456  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
1457                                      const LpSolverBase::Value &b)
1458  {
1459    LpSolverBase::Expr tmp(a);
1460    tmp*=b;
1461    return tmp;
1462  }
1463 
1464  ///\e
1465 
1466  ///\relates LpSolverBase::Expr
1467  ///
1468  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
1469                                      const LpSolverBase::Expr &b)
1470  {
1471    LpSolverBase::Expr tmp(b);
1472    tmp*=a;
1473    return tmp;
1474  }
1475  ///\e
1476 
1477  ///\relates LpSolverBase::Expr
1478  ///
1479  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
1480                                      const LpSolverBase::Value &b)
1481  {
1482    LpSolverBase::Expr tmp(a);
1483    tmp/=b;
1484    return tmp;
1485  }
1486 
1487  ///\e
1488 
1489  ///\relates LpSolverBase::Constr
1490  ///
1491  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1492                                         const LpSolverBase::Expr &f)
1493  {
1494    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
1495  }
1496
1497  ///\e
1498 
1499  ///\relates LpSolverBase::Constr
1500  ///
1501  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
1502                                         const LpSolverBase::Expr &f)
1503  {
1504    return LpSolverBase::Constr(e,f);
1505  }
1506
1507  ///\e
1508 
1509  ///\relates LpSolverBase::Constr
1510  ///
1511  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1512                                         const LpSolverBase::Value &f)
1513  {
1514    return LpSolverBase::Constr(e,f);
1515  }
1516
1517  ///\e
1518 
1519  ///\relates LpSolverBase::Constr
1520  ///
1521  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1522                                         const LpSolverBase::Expr &f)
1523  {
1524    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
1525  }
1526
1527
1528  ///\e
1529 
1530  ///\relates LpSolverBase::Constr
1531  ///
1532  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
1533                                         const LpSolverBase::Expr &f)
1534  {
1535    return LpSolverBase::Constr(f,e);
1536  }
1537
1538
1539  ///\e
1540 
1541  ///\relates LpSolverBase::Constr
1542  ///
1543  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1544                                         const LpSolverBase::Value &f)
1545  {
1546    return LpSolverBase::Constr(f,e);
1547  }
1548
1549  ///\e
1550
1551  ///\relates LpSolverBase::Constr
1552  ///
1553  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
1554                                         const LpSolverBase::Value &f)
1555  {
1556    return LpSolverBase::Constr(f,e,f);
1557  }
1558
1559  ///\e
1560 
1561  ///\relates LpSolverBase::Constr
1562  ///
1563  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
1564                                         const LpSolverBase::Expr &f)
1565  {
1566    return LpSolverBase::Constr(0,e-f,0);
1567  }
1568
1569  ///\e
1570 
1571  ///\relates LpSolverBase::Constr
1572  ///
1573  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
1574                                         const LpSolverBase::Constr&c)
1575  {
1576    LpSolverBase::Constr tmp(c);
1577    ///\todo Create an own exception type.
1578    if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
1579    else tmp.lowerBound()=n;
1580    return tmp;
1581  }
1582  ///\e
1583 
1584  ///\relates LpSolverBase::Constr
1585  ///
1586  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
1587                                         const LpSolverBase::Value &n)
1588  {
1589    LpSolverBase::Constr tmp(c);
1590    ///\todo Create an own exception type.
1591    if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
1592    else tmp.upperBound()=n;
1593    return tmp;
1594  }
1595
1596  ///\e
1597 
1598  ///\relates LpSolverBase::Constr
1599  ///
1600  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
1601                                         const LpSolverBase::Constr&c)
1602  {
1603    LpSolverBase::Constr tmp(c);
1604    ///\todo Create an own exception type.
1605    if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
1606    else tmp.upperBound()=n;
1607    return tmp;
1608  }
1609  ///\e
1610 
1611  ///\relates LpSolverBase::Constr
1612  ///
1613  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
1614                                         const LpSolverBase::Value &n)
1615  {
1616    LpSolverBase::Constr tmp(c);
1617    ///\todo Create an own exception type.
1618    if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
1619    else tmp.lowerBound()=n;
1620    return tmp;
1621  }
1622
1623  ///\e
1624 
1625  ///\relates LpSolverBase::DualExpr
1626  ///
1627  inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
1628                                          const LpSolverBase::DualExpr &b)
1629  {
1630    LpSolverBase::DualExpr tmp(a);
1631    tmp+=b;
1632    return tmp;
1633  }
1634  ///\e
1635 
1636  ///\relates LpSolverBase::DualExpr
1637  ///
1638  inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
1639                                          const LpSolverBase::DualExpr &b)
1640  {
1641    LpSolverBase::DualExpr tmp(a);
1642    tmp-=b;
1643    return tmp;
1644  }
1645  ///\e
1646 
1647  ///\relates LpSolverBase::DualExpr
1648  ///
1649  inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
1650                                          const LpSolverBase::Value &b)
1651  {
1652    LpSolverBase::DualExpr tmp(a);
1653    tmp*=b;
1654    return tmp;
1655  }
1656 
1657  ///\e
1658 
1659  ///\relates LpSolverBase::DualExpr
1660  ///
1661  inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
1662                                          const LpSolverBase::DualExpr &b)
1663  {
1664    LpSolverBase::DualExpr tmp(b);
1665    tmp*=a;
1666    return tmp;
1667  }
1668  ///\e
1669 
1670  ///\relates LpSolverBase::DualExpr
1671  ///
1672  inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
1673                                          const LpSolverBase::Value &b)
1674  {
1675    LpSolverBase::DualExpr tmp(a);
1676    tmp/=b;
1677    return tmp;
1678  }
1679 
1680
1681} //namespace lemon
1682
1683#endif //LEMON_LP_BASE_H
Note: See TracBrowser for help on using the repository browser.