/* -*- C++ -*- * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_LP_BASE_H #define LEMON_LP_BASE_H #include #include #include #include #include #include #include ///\file ///\brief The interface of the LP solver interface. ///\ingroup gen_opt_group namespace lemon { ///Internal data structure to convert floating id's to fix one's ///\todo This might be implemented to be also usable in other places. class _FixId { protected: std::vector index; std::vector cross; int first_free; public: _FixId() : first_free(-1) {}; ///Convert a floating id to a fix one ///\param n is a floating id ///\return the corresponding fix id int fixId(int n) const {return cross[n];} ///Convert a fix id to a floating one ///\param n is a fix id ///\return the corresponding floating id int floatingId(int n) const { return index[n];} ///Add a new floating id. ///\param n is a floating id ///\return the fix id of the new value ///\todo Multiple additions should also be handled. int insert(int n) { if(n>=int(cross.size())) { cross.resize(n+1); if(first_free==-1) { cross[n]=index.size(); index.push_back(n); } else { cross[n]=first_free; int next=index[first_free]; index[first_free]=n; first_free=next; } return cross[n]; } ///\todo Create an own exception type. else throw LogicError(); //floatingId-s must form a continuous range; } ///Remove a fix id. ///\param n is a fix id /// void erase(int n) { int fl=index[n]; index[n]=first_free; first_free=n; for(int i=fl+1;i, so for expamle ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can ///read and modify the coefficients like ///these. ///\code ///e[v]=5; ///e[v]+=12; ///e.erase(v); ///\endcode ///or you can also iterate through its elements. ///\code ///double s=0; ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i) /// s+=i->second; ///\endcode ///(This code computes the sum of all coefficients). ///- Numbers (double's) ///and variables (\ref Col "Col"s) directly convert to an ///\ref Expr and the usual linear operations are defined so ///\code ///v+w ///2*v-3.12*(v-w/2)+2 ///v*2.1+(3*v+(v*12+w+6)*3)/2 ///\endcode ///are valid \ref Expr "Expr"essions. ///The usual assignment operations are also defined. ///\code ///e=v+w; ///e+=2*v-3.12*(v-w/2)+2; ///e*=3.4; ///e/=5; ///\endcode ///- The constant member can be set and read by \ref constComp() ///\code ///e.constComp()=12; ///double c=e.constComp(); ///\endcode /// ///\note \ref clear() not only sets all coefficients to 0 but also ///clears the constant components. /// ///\sa Constr /// class Expr : public std::map { public: typedef LpSolverBase::Col Key; typedef LpSolverBase::Value Value; protected: typedef std::map Base; Value const_comp; public: typedef True IsLinExpression; ///\e Expr() : Base(), const_comp(0) { } ///\e Expr(const Key &v) : const_comp(0) { Base::insert(std::make_pair(v, 1)); } ///\e Expr(const Value &v) : const_comp(v) {} ///\e void set(const Key &v,const Value &c) { Base::insert(std::make_pair(v, c)); } ///\e Value &constComp() { return const_comp; } ///\e const Value &constComp() const { return const_comp; } ///Removes the components with zero coefficient. void simplify() { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if ((*i).second==0) Base::erase(i); j=i; } } ///Removes the coefficients closer to zero than \c tolerance. void simplify(double &tolerance) { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if (std::fabs((*i).second)first]+=j->second; const_comp+=e.const_comp; return *this; } ///\e Expr &operator-=(const Expr &e) { for (Base::const_iterator j=e.begin(); j!=e.end(); ++j) (*this)[j->first]-=j->second; const_comp-=e.const_comp; return *this; } ///\e Expr &operator*=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second*=c; const_comp*=c; return *this; } ///\e Expr &operator/=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second/=c; const_comp/=c; return *this; } }; ///Linear constraint ///This data stucture represents a linear constraint in the LP. ///Basically it is a linear expression with a lower or an upper bound ///(or both). These parts of the constraint can be obtained by the member ///functions \ref expr(), \ref lowerBound() and \ref upperBound(), ///respectively. ///There are two ways to construct a constraint. ///- You can set the linear expression and the bounds directly /// by the functions above. ///- The operators \<=, == and \>= /// are defined between expressions, or even between constraints whenever /// it makes sense. Therefore if \c e and \c f are linear expressions and /// \c s and \c t are numbers, then the followings are valid expressions /// and thus they can be used directly e.g. in \ref addRow() whenever /// it makes sense. /// \code /// e<=s /// e<=f /// s<=e<=t /// e>=t /// \endcode ///\warning The validity of a constraint is checked only at run time, so ///e.g. \ref addRow(x[1]\<=x[2]<=5) will compile, but will throw a ///\ref LogicError exception. class Constr { public: typedef LpSolverBase::Expr Expr; typedef Expr::Key Key; typedef Expr::Value Value; // static const Value INF; // static const Value NaN; protected: Expr _expr; Value _lb,_ub; public: ///\e Constr() : _expr(), _lb(NaN), _ub(NaN) {} ///\e Constr(Value lb,const Expr &e,Value ub) : _expr(e), _lb(lb), _ub(ub) {} ///\e Constr(const Expr &e,Value ub) : _expr(e), _lb(NaN), _ub(ub) {} ///\e Constr(Value lb,const Expr &e) : _expr(e), _lb(lb), _ub(NaN) {} ///\e Constr(const Expr &e) : _expr(e), _lb(NaN), _ub(NaN) {} ///\e void clear() { _expr.clear(); _lb=_ub=NaN; } ///Reference to the linear expression Expr &expr() { return _expr; } ///Cont reference to the linear expression const Expr &expr() const { return _expr; } ///Reference to the lower bound. ///\return ///- \ref INF "INF": the constraint is lower unbounded. ///- \ref NaN "NaN": lower bound has not been set. ///- finite number: the lower bound Value &lowerBound() { return _lb; } ///The const version of \ref lowerBound() const Value &lowerBound() const { return _lb; } ///Reference to the upper bound. ///\return ///- \ref INF "INF": the constraint is upper unbounded. ///- \ref NaN "NaN": upper bound has not been set. ///- finite number: the upper bound Value &upperBound() { return _ub; } ///The const version of \ref upperBound() const Value &upperBound() const { return _ub; } ///Is the constraint lower bounded? bool lowerBounded() const { using namespace std; return finite(_lb); } ///Is the constraint upper bounded? bool upperBounded() const { using namespace std; return finite(_ub); } }; ///Linear expression of rows ///This data structure represents a column of the matrix, ///thas is it strores a linear expression of the dual variables ///(\ref Row "Row"s). /// ///There are several ways to access and modify the contents of this ///container. ///- Its it fully compatible with \c std::map, so for expamle ///if \c e is an DualExpr and \c v ///and \c w are of type \ref Row, then you can ///read and modify the coefficients like ///these. ///\code ///e[v]=5; ///e[v]+=12; ///e.erase(v); ///\endcode ///or you can also iterate through its elements. ///\code ///double s=0; ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i) /// s+=i->second; ///\endcode ///(This code computes the sum of all coefficients). ///- Numbers (double's) ///and variables (\ref Row "Row"s) directly convert to an ///\ref DualExpr and the usual linear operations are defined so ///\code ///v+w ///2*v-3.12*(v-w/2) ///v*2.1+(3*v+(v*12+w)*3)/2 ///\endcode ///are valid \ref DualExpr "DualExpr"essions. ///The usual assignment operations are also defined. ///\code ///e=v+w; ///e+=2*v-3.12*(v-w/2); ///e*=3.4; ///e/=5; ///\endcode /// ///\sa Expr /// class DualExpr : public std::map { public: typedef LpSolverBase::Row Key; typedef LpSolverBase::Value Value; protected: typedef std::map Base; public: typedef True IsLinExpression; ///\e DualExpr() : Base() { } ///\e DualExpr(const Key &v) { Base::insert(std::make_pair(v, 1)); } ///\e void set(const Key &v,const Value &c) { Base::insert(std::make_pair(v, c)); } ///Removes the components with zero coefficient. void simplify() { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if ((*i).second==0) Base::erase(i); j=i; } } ///Removes the coefficients closer to zero than \c tolerance. void simplify(double &tolerance) { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if (std::fabs((*i).second)first]+=j->second; return *this; } ///\e DualExpr &operator-=(const DualExpr &e) { for (Base::const_iterator j=e.begin(); j!=e.end(); ++j) (*this)[j->first]-=j->second; return *this; } ///\e DualExpr &operator*=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second*=c; return *this; } ///\e DualExpr &operator/=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second/=c; return *this; } }; protected: _FixId rows; _FixId cols; //Abstract virtual functions virtual LpSolverBase &_newLp() = 0; virtual LpSolverBase &_copyLp(){ ///\todo This should be implemented here, too, when we have problem retrieving routines. It can be overriden. //Starting: LpSolverBase & newlp(_newLp()); return newlp; //return *(LpSolverBase*)0; }; virtual int _addCol() = 0; virtual int _addRow() = 0; virtual void _eraseCol(int col) = 0; virtual void _eraseRow(int row) = 0; virtual void _setRowCoeffs(int i, int length, int const * indices, Value const * values ) = 0; virtual void _setColCoeffs(int i, int length, int const * indices, Value const * values ) = 0; virtual void _setCoeff(int row, int col, Value value) = 0; virtual void _setColLowerBound(int i, Value value) = 0; virtual void _setColUpperBound(int i, Value value) = 0; // virtual void _setRowLowerBound(int i, Value value) = 0; // virtual void _setRowUpperBound(int i, Value value) = 0; virtual void _setRowBounds(int i, Value lower, Value upper) = 0; virtual void _setObjCoeff(int i, Value obj_coef) = 0; virtual void _clearObj()=0; // virtual void _setObj(int length, // int const * indices, // Value const * values ) = 0; virtual SolveExitStatus _solve() = 0; virtual Value _getPrimal(int i) = 0; virtual Value _getDual(int i) = 0; virtual Value _getPrimalValue() = 0; virtual bool _isBasicCol(int i) = 0; virtual SolutionStatus _getPrimalStatus() = 0; virtual SolutionStatus _getDualStatus() = 0; ///\todo This could be implemented here, too, using _getPrimalStatus() and ///_getDualStatus() virtual ProblemTypes _getProblemType() = 0; virtual void _setMax() = 0; virtual void _setMin() = 0; //Own protected stuff //Constant component of the objective function Value obj_const_comp; public: ///\e LpSolverBase() : obj_const_comp(0) {} ///\e virtual ~LpSolverBase() {} ///Creates a new LP problem LpSolverBase &newLp() {return _newLp();} ///Makes a copy of the LP problem LpSolverBase ©Lp() {return _copyLp();} ///\name Build up and modify the LP ///@{ ///Add a new empty column (i.e a new variable) to the LP Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;} ///\brief Adds several new columns ///(i.e a variables) at once /// ///This magic function takes a container as its argument ///and fills its elements ///with new columns (i.e. variables) ///\param t can be ///- a standard STL compatible iterable container with ///\ref Col as its \c values_type ///like ///\code ///std::vector ///std::list ///\endcode ///- a standard STL compatible iterable container with ///\ref Col as its \c mapped_type ///like ///\code ///std::map ///\endcode ///- an iterable lemon \ref concept::WriteMap "write map" like ///\code ///ListGraph::NodeMap ///ListGraph::EdgeMap ///\endcode ///\return The number of the created column. #ifdef DOXYGEN template int addColSet(T &t) { return 0;} #else template typename enable_if::type addColSet(T &t,dummy<0> = 0) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} return s; } template typename enable_if::type addColSet(T &t,dummy<1> = 1) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) { i->second=addCol(); s++; } return s; } template typename enable_if::type addColSet(T &t,dummy<2> = 2) { int s=0; for(typename T::MapIt i(t); i!=INVALID; ++i) { i.set(addCol()); s++; } return s; } #endif ///Set a column (i.e a dual constraint) of the LP ///\param c is the column to be modified ///\param e is a dual linear expression (see \ref DualExpr) ///\bug This is a temporary function. The interface will change to ///a better one. void setCol(Col c,const DualExpr &e) { std::vector indices; std::vector values; indices.push_back(0); values.push_back(0); for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i) if((*i).second!=0) { ///\bug EPSILON would be necessary here!!! indices.push_back(rows.floatingId((*i).first.id)); values.push_back((*i).second); } _setColCoeffs(cols.floatingId(c.id),indices.size()-1, &indices[0],&values[0]); } ///Add a new column to the LP ///\param e is a dual linear expression (see \ref DualExpr) ///\param obj is the corresponding component of the objective ///function. It is 0 by default. ///\return The created column. ///\bug This is a temportary function. The interface will change to ///a better one. Col addCol(const DualExpr &e, Value obj=0) { Col c=addCol(); setCol(c,e); objCoeff(c,obj); return c; } ///Add a new empty row (i.e a new constraint) to the LP ///This function adds a new empty row (i.e a new constraint) to the LP. ///\return The created row Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;} ///\brief Add several new rows ///(i.e a constraints) at once /// ///This magic function takes a container as its argument ///and fills its elements ///with new row (i.e. variables) ///\param t can be ///- a standard STL compatible iterable container with ///\ref Row as its \c values_type ///like ///\code ///std::vector ///std::list ///\endcode ///- a standard STL compatible iterable container with ///\ref Row as its \c mapped_type ///like ///\code ///std::map ///\endcode ///- an iterable lemon \ref concept::WriteMap "write map" like ///\code ///ListGraph::NodeMap ///ListGraph::EdgeMap ///\endcode ///\return The number of rows created. #ifdef DOXYGEN template int addRowSet(T &t) { return 0;} #else template typename enable_if::type addRowSet(T &t,dummy<0> = 0) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} return s; } template typename enable_if::type addRowSet(T &t,dummy<1> = 1) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) { i->second=addRow(); s++; } return s; } template typename enable_if::type addRowSet(T &t,dummy<2> = 2) { int s=0; for(typename T::MapIt i(t); i!=INVALID; ++i) { i.set(addRow()); s++; } return s; } #endif ///Set a row (i.e a constraint) of the LP ///\param r is the row to be modified ///\param l is lower bound (-\ref INF means no bound) ///\param e is a linear expression (see \ref Expr) ///\param u is the upper bound (\ref INF means no bound) ///\bug This is a temportary function. The interface will change to ///a better one. ///\todo Option to control whether a constraint with a single variable is ///added or not. void setRow(Row r, Value l,const Expr &e, Value u) { std::vector indices; std::vector values; indices.push_back(0); values.push_back(0); for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i) if((*i).second!=0) { ///\bug EPSILON would be necessary here!!! indices.push_back(cols.floatingId((*i).first.id)); values.push_back((*i).second); } _setRowCoeffs(rows.floatingId(r.id),indices.size()-1, &indices[0],&values[0]); // _setRowLowerBound(rows.floatingId(r.id),l-e.constComp()); // _setRowUpperBound(rows.floatingId(r.id),u-e.constComp()); _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp()); } ///Set a row (i.e a constraint) of the LP ///\param r is the row to be modified ///\param c is a linear expression (see \ref Constr) void setRow(Row r, const Constr &c) { setRow(r, c.lowerBounded()?c.lowerBound():-INF, c.expr(), c.upperBounded()?c.upperBound():INF); } ///Add a new row (i.e a new constraint) to the LP ///\param l is the lower bound (-\ref INF means no bound) ///\param e is a linear expression (see \ref Expr) ///\param u is the upper bound (\ref INF means no bound) ///\return The created row. ///\bug This is a temportary function. The interface will change to ///a better one. Row addRow(Value l,const Expr &e, Value u) { Row r=addRow(); setRow(r,l,e,u); return r; } ///Add a new row (i.e a new constraint) to the LP ///\param c is a linear expression (see \ref Constr) ///\return The created row. Row addRow(const Constr &c) { Row r=addRow(); setRow(r,c); return r; } ///Erase a coloumn (i.e a variable) from the LP ///\param c is the coloumn to be deleted ///\todo Please check this void eraseCol(Col c) { _eraseCol(cols.floatingId(c.id)); cols.erase(c.id); } ///Erase a row (i.e a constraint) from the LP ///\param r is the row to be deleted ///\todo Please check this void eraseRow(Row r) { _eraseRow(rows.floatingId(r.id)); rows.erase(r.id); } ///Set an element of the coefficient matrix of the LP ///\param r is the row of the element to be modified ///\param c is the coloumn of the element to be modified ///\param val is the new value of the coefficient void setCoeff(Row r, Col c, Value val){ _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val); } /// Set the lower bound of a column (i.e a variable) /// The upper bound of a variable (column) has to be given by an /// extended number of type Value, i.e. a finite number of type /// Value or -\ref INF. void colLowerBound(Col c, Value value) { _setColLowerBound(cols.floatingId(c.id),value); } /// Set the upper bound of a column (i.e a variable) /// The upper bound of a variable (column) has to be given by an /// extended number of type Value, i.e. a finite number of type /// Value or \ref INF. void colUpperBound(Col c, Value value) { _setColUpperBound(cols.floatingId(c.id),value); }; /// Set the lower and the upper bounds of a column (i.e a variable) /// The lower and the upper bounds of /// a variable (column) have to be given by an /// extended number of type Value, i.e. a finite number of type /// Value, -\ref INF or \ref INF. void colBounds(Col c, Value lower, Value upper) { _setColLowerBound(cols.floatingId(c.id),lower); _setColUpperBound(cols.floatingId(c.id),upper); } // /// Set the lower bound of a row (i.e a constraint) // /// The lower bound of a linear expression (row) has to be given by an // /// extended number of type Value, i.e. a finite number of type // /// Value or -\ref INF. // void rowLowerBound(Row r, Value value) { // _setRowLowerBound(rows.floatingId(r.id),value); // }; // /// Set the upper bound of a row (i.e a constraint) // /// The upper bound of a linear expression (row) has to be given by an // /// extended number of type Value, i.e. a finite number of type // /// Value or \ref INF. // void rowUpperBound(Row r, Value value) { // _setRowUpperBound(rows.floatingId(r.id),value); // }; /// Set the lower and the upper bounds of a row (i.e a constraint) /// The lower and the upper bounds of /// a constraint (row) have to be given by an /// extended number of type Value, i.e. a finite number of type /// Value, -\ref INF or \ref INF. void rowBounds(Row c, Value lower, Value upper) { _setRowBounds(rows.floatingId(c.id),lower, upper); // _setRowUpperBound(rows.floatingId(c.id),upper); } ///Set an element of the objective function void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); }; ///Set the objective function ///\param e is a linear expression of type \ref Expr. ///\bug The previous objective function is not cleared! void setObj(Expr e) { _clearObj(); for (Expr::iterator i=e.begin(); i!=e.end(); ++i) objCoeff((*i).first,(*i).second); obj_const_comp=e.constComp(); } ///Maximize void max() { _setMax(); } ///Minimize void min() { _setMin(); } ///@} ///\name Solve the LP ///@{ ///\e Solve the LP problem at hand /// ///\return The result of the optimization procedure. Possible values and their meanings can be found in the documentation of \ref SolveExitStatus. /// ///\todo Which method is used to solve the problem SolveExitStatus solve() { return _solve(); } ///@} ///\name Obtain the solution ///@{ /// The status of the primal problem (the original LP problem) SolutionStatus primalStatus() { return _getPrimalStatus(); } /// The status of the dual (of the original LP) problem SolutionStatus dualStatus() { return _getDualStatus(); } ///The type of the original LP problem ProblemTypes problemType() { return _getProblemType(); } ///\e Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); } ///\e Value dual(Row r) { return _getDual(rows.floatingId(r.id)); } ///\e bool isBasicCol(Col c) { return _isBasicCol(cols.floatingId(c.id)); } ///\e ///\return ///- \ref INF or -\ref INF means either infeasibility or unboundedness /// of the primal problem, depending on whether we minimize or maximize. ///- \ref NaN if no primal solution is found. ///- The (finite) objective value if an optimal solution is found. Value primalValue() { return _getPrimalValue()+obj_const_comp;} ///@} }; ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a, const LpSolverBase::Expr &b) { LpSolverBase::Expr tmp(a); tmp+=b; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a, const LpSolverBase::Expr &b) { LpSolverBase::Expr tmp(a); tmp-=b; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a, const LpSolverBase::Value &b) { LpSolverBase::Expr tmp(a); tmp*=b; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a, const LpSolverBase::Expr &b) { LpSolverBase::Expr tmp(b); tmp*=a; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a, const LpSolverBase::Value &b) { LpSolverBase::Expr tmp(a); tmp/=b; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(e,f); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e, const LpSolverBase::Value &f) { return LpSolverBase::Constr(e,f); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(f,e); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e, const LpSolverBase::Value &f) { return LpSolverBase::Constr(f,e); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(0,e-f,0); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n, const LpSolverBase::Constr&c) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!isnan(tmp.lowerBound())) throw LogicError(); else tmp.lowerBound()=n; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c, const LpSolverBase::Value &n) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!isnan(tmp.upperBound())) throw LogicError(); else tmp.upperBound()=n; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n, const LpSolverBase::Constr&c) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!isnan(tmp.upperBound())) throw LogicError(); else tmp.upperBound()=n; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c, const LpSolverBase::Value &n) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!isnan(tmp.lowerBound())) throw LogicError(); else tmp.lowerBound()=n; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a, const LpSolverBase::DualExpr &b) { LpSolverBase::DualExpr tmp(a); tmp+=b; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a, const LpSolverBase::DualExpr &b) { LpSolverBase::DualExpr tmp(a); tmp-=b; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a, const LpSolverBase::Value &b) { LpSolverBase::DualExpr tmp(a); tmp*=b; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a, const LpSolverBase::DualExpr &b) { LpSolverBase::DualExpr tmp(b); tmp*=a; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a, const LpSolverBase::Value &b) { LpSolverBase::DualExpr tmp(a); tmp/=b; return tmp; } } //namespace lemon #endif //LEMON_LP_BASE_H