/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_LP_BASE_H #define LEMON_LP_BASE_H #include #include #include #include #include #include #include #include #include ///\file ///\brief The interface of the LP solver interface. ///\ingroup lp_group namespace lemon { /// Function to decide whether a floating point value is finite or not. /// Retruns true if the argument is not infinity, minus infinity or NaN. /// It does the same as the isfinite() function defined by C99. template bool isFinite(T value) { typedef std::numeric_limits Lim; if (Lim::has_infinity && (value == Lim::infinity() || value == -Lim::infinity()) || (Lim::has_quiet_NaN || Lim::has_signaling_NaN) && value != value) { return false; } return true; } ///Common base class for LP solvers ///\todo Much more docs ///\ingroup lp_group class LpSolverBase { protected: _lp_bits::LpId rows; _lp_bits::LpId cols; public: ///Possible outcomes of an LP solving procedure enum SolveExitStatus { ///This means that the problem has been successfully solved: either ///an optimal solution has been found or infeasibility/unboundedness ///has been proved. SOLVED = 0, ///Any other case (including the case when some user specified ///limit has been exceeded) UNSOLVED = 1 }; ///\e enum SolutionStatus { ///Feasible solution hasn't been found (but may exist). ///\todo NOTFOUND might be a better name. /// UNDEFINED = 0, ///The problem has no feasible solution INFEASIBLE = 1, ///Feasible solution found FEASIBLE = 2, ///Optimal solution exists and found OPTIMAL = 3, ///The cost function is unbounded ///\todo Give a feasible solution and an infinite ray (and the ///corresponding bases) INFINITE = 4 }; ///\e The type of the investigated LP problem enum ProblemTypes { ///Primal-dual feasible PRIMAL_DUAL_FEASIBLE = 0, ///Primal feasible dual infeasible PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1, ///Primal infeasible dual feasible PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2, ///Primal-dual infeasible PRIMAL_DUAL_INFEASIBLE = 3, ///Could not determine so far UNKNOWN = 4 }; ///The floating point type used by the solver typedef double Value; ///The infinity constant static const Value INF; ///The not a number constant static const Value NaN; static inline bool isNaN(const Value& v) { return v!=v; } friend class Col; friend class ColIt; friend class Row; ///Refer to a column of the LP. ///This type is used to refer to a column of the LP. /// ///Its value remains valid and correct even after the addition or erase of ///other columns. /// ///\todo Document what can one do with a Col (INVALID, comparing, ///it is similar to Node/Edge) class Col { protected: int id; friend class LpSolverBase; friend class MipSolverBase; explicit Col(int _id) : id(_id) {} public: typedef Value ExprValue; typedef True LpSolverCol; Col() {} Col(const Invalid&) : id(-1) {} bool operator< (Col c) const {return id< c.id;} bool operator> (Col c) const {return id> c.id;} bool operator==(Col c) const {return id==c.id;} bool operator!=(Col c) const {return id!=c.id;} }; class ColIt : public Col { const LpSolverBase *_lp; public: ColIt() {} ColIt(const LpSolverBase &lp) : _lp(&lp) { _lp->cols.firstFix(id); } ColIt(const Invalid&) : Col(INVALID) {} ColIt &operator++() { _lp->cols.nextFix(id); return *this; } }; static int id(const Col& col) { return col.id; } ///Refer to a row of the LP. ///This type is used to refer to a row of the LP. /// ///Its value remains valid and correct even after the addition or erase of ///other rows. /// ///\todo Document what can one do with a Row (INVALID, comparing, ///it is similar to Node/Edge) class Row { protected: int id; friend class LpSolverBase; explicit Row(int _id) : id(_id) {} public: typedef Value ExprValue; typedef True LpSolverRow; Row() {} Row(const Invalid&) : id(-1) {} bool operator< (Row c) const {return id< c.id;} bool operator> (Row c) const {return id> c.id;} bool operator==(Row c) const {return id==c.id;} bool operator!=(Row c) const {return id!=c.id;} }; class RowIt : public Row { const LpSolverBase *_lp; public: RowIt() {} RowIt(const LpSolverBase &lp) : _lp(&lp) { _lp->rows.firstFix(id); } RowIt(const Invalid&) : Row(INVALID) {} RowIt &operator++() { _lp->rows.nextFix(id); return *this; } }; static int id(const Row& row) { return row.id; } protected: int _lpId(const Col& c) const { return cols.floatingId(id(c)); } int _lpId(const Row& r) const { return rows.floatingId(id(r)); } Col _item(int i, Col) const { return Col(cols.fixId(i)); } Row _item(int i, Row) const { return Row(rows.fixId(i)); } public: ///Linear expression of variables and a constant component ///This data structure stores a linear expression of the variables ///(\ref Col "Col"s) and also has a constant component. /// ///There are several ways to access and modify the contents of this ///container. ///- Its it fully compatible with \c std::map, so for expamle ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can ///read and modify the coefficients like ///these. ///\code ///e[v]=5; ///e[v]+=12; ///e.erase(v); ///\endcode ///or you can also iterate through its elements. ///\code ///double s=0; ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i) /// s+=i->second; ///\endcode ///(This code computes the sum of all coefficients). ///- Numbers (double's) ///and variables (\ref Col "Col"s) directly convert to an ///\ref Expr and the usual linear operations are defined, so ///\code ///v+w ///2*v-3.12*(v-w/2)+2 ///v*2.1+(3*v+(v*12+w+6)*3)/2 ///\endcode ///are valid \ref Expr "Expr"essions. ///The usual assignment operations are also defined. ///\code ///e=v+w; ///e+=2*v-3.12*(v-w/2)+2; ///e*=3.4; ///e/=5; ///\endcode ///- The constant member can be set and read by \ref constComp() ///\code ///e.constComp()=12; ///double c=e.constComp(); ///\endcode /// ///\note \ref clear() not only sets all coefficients to 0 but also ///clears the constant components. /// ///\sa Constr /// class Expr : public std::map { public: typedef LpSolverBase::Col Key; typedef LpSolverBase::Value Value; protected: typedef std::map Base; Value const_comp; public: typedef True IsLinExpression; ///\e Expr() : Base(), const_comp(0) { } ///\e Expr(const Key &v) : const_comp(0) { Base::insert(std::make_pair(v, 1)); } ///\e Expr(const Value &v) : const_comp(v) {} ///\e void set(const Key &v,const Value &c) { Base::insert(std::make_pair(v, c)); } ///\e Value &constComp() { return const_comp; } ///\e const Value &constComp() const { return const_comp; } ///Removes the components with zero coefficient. void simplify() { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if ((*i).second==0) Base::erase(i); i=j; } } void simplify() const { const_cast(this)->simplify(); } ///Removes the coefficients closer to zero than \c tolerance. void simplify(double &tolerance) { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if (std::fabs((*i).second)first]+=j->second; const_comp+=e.const_comp; return *this; } ///\e Expr &operator-=(const Expr &e) { for (Base::const_iterator j=e.begin(); j!=e.end(); ++j) (*this)[j->first]-=j->second; const_comp-=e.const_comp; return *this; } ///\e Expr &operator*=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second*=c; const_comp*=c; return *this; } ///\e Expr &operator/=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second/=c; const_comp/=c; return *this; } //std::ostream & void prettyPrint(std::ostream &os) { //std::fmtflags os.flags(); //os.setf(std::ios::showpos); Base::iterator j=Base::begin(); if (j!=Base::end()) os<second<<"*x["<first)<<"]"; ++j; for (; j!=Base::end(); ++j){ if (j->second>=0) os<<"+"; os<second<<"*x["<first)<<"]"; } //Nem valami korrekt, de nem talaltam meg, hogy kell //os.unsetf(std::ios::showpos); //return os; } }; ///Linear constraint ///This data stucture represents a linear constraint in the LP. ///Basically it is a linear expression with a lower or an upper bound ///(or both). These parts of the constraint can be obtained by the member ///functions \ref expr(), \ref lowerBound() and \ref upperBound(), ///respectively. ///There are two ways to construct a constraint. ///- You can set the linear expression and the bounds directly /// by the functions above. ///- The operators \<=, == and \>= /// are defined between expressions, or even between constraints whenever /// it makes sense. Therefore if \c e and \c f are linear expressions and /// \c s and \c t are numbers, then the followings are valid expressions /// and thus they can be used directly e.g. in \ref addRow() whenever /// it makes sense. ///\code /// e<=s /// e<=f /// e==f /// s<=e<=t /// e>=t ///\endcode ///\warning The validity of a constraint is checked only at run time, so ///e.g. \ref addRow(x[1]\<=x[2]<=5) will compile, but will throw a ///\ref LogicError exception. class Constr { public: typedef LpSolverBase::Expr Expr; typedef Expr::Key Key; typedef Expr::Value Value; protected: Expr _expr; Value _lb,_ub; public: ///\e Constr() : _expr(), _lb(NaN), _ub(NaN) {} ///\e Constr(Value lb,const Expr &e,Value ub) : _expr(e), _lb(lb), _ub(ub) {} ///\e Constr(const Expr &e,Value ub) : _expr(e), _lb(NaN), _ub(ub) {} ///\e Constr(Value lb,const Expr &e) : _expr(e), _lb(lb), _ub(NaN) {} ///\e Constr(const Expr &e) : _expr(e), _lb(NaN), _ub(NaN) {} ///\e void clear() { _expr.clear(); _lb=_ub=NaN; } ///Reference to the linear expression Expr &expr() { return _expr; } ///Cont reference to the linear expression const Expr &expr() const { return _expr; } ///Reference to the lower bound. ///\return ///- \ref INF "INF": the constraint is lower unbounded. ///- \ref NaN "NaN": lower bound has not been set. ///- finite number: the lower bound Value &lowerBound() { return _lb; } ///The const version of \ref lowerBound() const Value &lowerBound() const { return _lb; } ///Reference to the upper bound. ///\return ///- \ref INF "INF": the constraint is upper unbounded. ///- \ref NaN "NaN": upper bound has not been set. ///- finite number: the upper bound Value &upperBound() { return _ub; } ///The const version of \ref upperBound() const Value &upperBound() const { return _ub; } ///Is the constraint lower bounded? bool lowerBounded() const { return isFinite(_lb); } ///Is the constraint upper bounded? bool upperBounded() const { return isFinite(_ub); } void prettyPrint(std::ostream &os) { if (_lb==-LpSolverBase::INF||isNaN(_lb)) os<<"-infty<="; else os<<_lb<<"<="; _expr.prettyPrint(os); if (_ub==LpSolverBase::INF) os<<"<=infty"; else os<<"<="<<_ub; //return os; } }; ///Linear expression of rows ///This data structure represents a column of the matrix, ///thas is it strores a linear expression of the dual variables ///(\ref Row "Row"s). /// ///There are several ways to access and modify the contents of this ///container. ///- Its it fully compatible with \c std::map, so for expamle ///if \c e is an DualExpr and \c v ///and \c w are of type \ref Row, then you can ///read and modify the coefficients like ///these. ///\code ///e[v]=5; ///e[v]+=12; ///e.erase(v); ///\endcode ///or you can also iterate through its elements. ///\code ///double s=0; ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i) /// s+=i->second; ///\endcode ///(This code computes the sum of all coefficients). ///- Numbers (double's) ///and variables (\ref Row "Row"s) directly convert to an ///\ref DualExpr and the usual linear operations are defined, so ///\code ///v+w ///2*v-3.12*(v-w/2) ///v*2.1+(3*v+(v*12+w)*3)/2 ///\endcode ///are valid \ref DualExpr "DualExpr"essions. ///The usual assignment operations are also defined. ///\code ///e=v+w; ///e+=2*v-3.12*(v-w/2); ///e*=3.4; ///e/=5; ///\endcode /// ///\sa Expr /// class DualExpr : public std::map { public: typedef LpSolverBase::Row Key; typedef LpSolverBase::Value Value; protected: typedef std::map Base; public: typedef True IsLinExpression; ///\e DualExpr() : Base() { } ///\e DualExpr(const Key &v) { Base::insert(std::make_pair(v, 1)); } ///\e void set(const Key &v,const Value &c) { Base::insert(std::make_pair(v, c)); } ///Removes the components with zero coefficient. void simplify() { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if ((*i).second==0) Base::erase(i); i=j; } } void simplify() const { const_cast(this)->simplify(); } ///Removes the coefficients closer to zero than \c tolerance. void simplify(double &tolerance) { for (Base::iterator i=Base::begin(); i!=Base::end();) { Base::iterator j=i; ++j; if (std::fabs((*i).second)first]+=j->second; return *this; } ///\e DualExpr &operator-=(const DualExpr &e) { for (Base::const_iterator j=e.begin(); j!=e.end(); ++j) (*this)[j->first]-=j->second; return *this; } ///\e DualExpr &operator*=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second*=c; return *this; } ///\e DualExpr &operator/=(const Value &c) { for (Base::iterator j=Base::begin(); j!=Base::end(); ++j) j->second/=c; return *this; } }; private: template class MappedOutputIterator { public: typedef std::insert_iterator<_Expr> Base; typedef std::output_iterator_tag iterator_category; typedef void difference_type; typedef void value_type; typedef void reference; typedef void pointer; MappedOutputIterator(const Base& _base, const LpSolverBase& _lp) : base(_base), lp(_lp) {} MappedOutputIterator& operator*() { return *this; } MappedOutputIterator& operator=(const std::pair& value) { *base = std::make_pair(lp._item(value.first, typename _Expr::Key()), value.second); return *this; } MappedOutputIterator& operator++() { ++base; return *this; } MappedOutputIterator operator++(int) { MappedOutputIterator tmp(*this); ++base; return tmp; } bool operator==(const MappedOutputIterator& it) const { return base == it.base; } bool operator!=(const MappedOutputIterator& it) const { return base != it.base; } private: Base base; const LpSolverBase& lp; }; template class MappedInputIterator { public: typedef typename Expr::const_iterator Base; typedef typename Base::iterator_category iterator_category; typedef typename Base::difference_type difference_type; typedef const std::pair value_type; typedef value_type reference; class pointer { public: pointer(value_type& _value) : value(_value) {} value_type* operator->() { return &value; } private: value_type value; }; MappedInputIterator(const Base& _base, const LpSolverBase& _lp) : base(_base), lp(_lp) {} reference operator*() { return std::make_pair(lp._lpId(base->first), base->second); } pointer operator->() { return pointer(operator*()); } MappedInputIterator& operator++() { ++base; return *this; } MappedInputIterator operator++(int) { MappedInputIterator tmp(*this); ++base; return tmp; } bool operator==(const MappedInputIterator& it) const { return base == it.base; } bool operator!=(const MappedInputIterator& it) const { return base != it.base; } private: Base base; const LpSolverBase& lp; }; protected: /// STL compatible iterator for lp col typedef MappedInputIterator ConstRowIterator; /// STL compatible iterator for lp row typedef MappedInputIterator ConstColIterator; /// STL compatible iterator for lp col typedef MappedOutputIterator RowIterator; /// STL compatible iterator for lp row typedef MappedOutputIterator ColIterator; //Abstract virtual functions virtual LpSolverBase &_newLp() = 0; virtual LpSolverBase &_copyLp(){ ///\todo This should be implemented here, too, when we have ///problem retrieving routines. It can be overriden. //Starting: LpSolverBase & newlp(_newLp()); return newlp; //return *(LpSolverBase*)0; }; virtual int _addCol() = 0; virtual int _addRow() = 0; virtual void _eraseCol(int col) = 0; virtual void _eraseRow(int row) = 0; virtual void _getColName(int col, std::string & name) const = 0; virtual void _setColName(int col, const std::string & name) = 0; virtual int _colByName(const std::string& name) const = 0; virtual void _setRowCoeffs(int i, ConstRowIterator b, ConstRowIterator e) = 0; virtual void _getRowCoeffs(int i, RowIterator b) const = 0; virtual void _setColCoeffs(int i, ConstColIterator b, ConstColIterator e) = 0; virtual void _getColCoeffs(int i, ColIterator b) const = 0; virtual void _setCoeff(int row, int col, Value value) = 0; virtual Value _getCoeff(int row, int col) const = 0; virtual void _setColLowerBound(int i, Value value) = 0; virtual Value _getColLowerBound(int i) const = 0; virtual void _setColUpperBound(int i, Value value) = 0; virtual Value _getColUpperBound(int i) const = 0; virtual void _setRowBounds(int i, Value lower, Value upper) = 0; virtual void _getRowBounds(int i, Value &lower, Value &upper) const = 0; virtual void _setObjCoeff(int i, Value obj_coef) = 0; virtual Value _getObjCoeff(int i) const = 0; virtual void _clearObj()=0; virtual SolveExitStatus _solve() = 0; virtual Value _getPrimal(int i) const = 0; virtual Value _getDual(int i) const = 0; virtual Value _getPrimalValue() const = 0; virtual bool _isBasicCol(int i) const = 0; virtual SolutionStatus _getPrimalStatus() const = 0; virtual SolutionStatus _getDualStatus() const = 0; virtual ProblemTypes _getProblemType() const = 0; virtual void _setMax() = 0; virtual void _setMin() = 0; virtual bool _isMax() const = 0; //Own protected stuff //Constant component of the objective function Value obj_const_comp; public: ///\e LpSolverBase() : obj_const_comp(0) {} ///\e virtual ~LpSolverBase() {} ///Creates a new LP problem LpSolverBase &newLp() {return _newLp();} ///Makes a copy of the LP problem LpSolverBase ©Lp() {return _copyLp();} ///\name Build up and modify the LP ///@{ ///Add a new empty column (i.e a new variable) to the LP Col addCol() { Col c; _addCol(); c.id = cols.addId(); return c;} ///\brief Adds several new columns ///(i.e a variables) at once /// ///This magic function takes a container as its argument ///and fills its elements ///with new columns (i.e. variables) ///\param t can be ///- a standard STL compatible iterable container with ///\ref Col as its \c values_type ///like ///\code ///std::vector ///std::list ///\endcode ///- a standard STL compatible iterable container with ///\ref Col as its \c mapped_type ///like ///\code ///std::map ///\endcode ///- an iterable lemon \ref concepts::WriteMap "write map" like ///\code ///ListGraph::NodeMap ///ListGraph::EdgeMap ///\endcode ///\return The number of the created column. #ifdef DOXYGEN template int addColSet(T &t) { return 0;} #else template typename enable_if::type addColSet(T &t,dummy<0> = 0) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} return s; } template typename enable_if::type addColSet(T &t,dummy<1> = 1) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) { i->second=addCol(); s++; } return s; } template typename enable_if::type addColSet(T &t,dummy<2> = 2) { int s=0; for(typename T::MapIt i(t); i!=INVALID; ++i) { i.set(addCol()); s++; } return s; } #endif ///Set a column (i.e a dual constraint) of the LP ///\param c is the column to be modified ///\param e is a dual linear expression (see \ref DualExpr) ///a better one. void col(Col c,const DualExpr &e) { e.simplify(); _setColCoeffs(_lpId(c), ConstColIterator(e.begin(), *this), ConstColIterator(e.end(), *this)); } ///Get a column (i.e a dual constraint) of the LP ///\param r is the column to get ///\return the dual expression associated to the column DualExpr col(Col c) const { DualExpr e; _getColCoeffs(_lpId(c), ColIterator(std::inserter(e, e.end()), *this)); return e; } ///Add a new column to the LP ///\param e is a dual linear expression (see \ref DualExpr) ///\param obj is the corresponding component of the objective ///function. It is 0 by default. ///\return The created column. Col addCol(const DualExpr &e, Value o = 0) { Col c=addCol(); col(c,e); objCoeff(c,o); return c; } ///Add a new empty row (i.e a new constraint) to the LP ///This function adds a new empty row (i.e a new constraint) to the LP. ///\return The created row Row addRow() { Row r; _addRow(); r.id = rows.addId(); return r;} ///\brief Add several new rows ///(i.e a constraints) at once /// ///This magic function takes a container as its argument ///and fills its elements ///with new row (i.e. variables) ///\param t can be ///- a standard STL compatible iterable container with ///\ref Row as its \c values_type ///like ///\code ///std::vector ///std::list ///\endcode ///- a standard STL compatible iterable container with ///\ref Row as its \c mapped_type ///like ///\code ///std::map ///\endcode ///- an iterable lemon \ref concepts::WriteMap "write map" like ///\code ///ListGraph::NodeMap ///ListGraph::EdgeMap ///\endcode ///\return The number of rows created. #ifdef DOXYGEN template int addRowSet(T &t) { return 0;} #else template typename enable_if::type addRowSet(T &t,dummy<0> = 0) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} return s; } template typename enable_if::type addRowSet(T &t,dummy<1> = 1) { int s=0; for(typename T::iterator i=t.begin();i!=t.end();++i) { i->second=addRow(); s++; } return s; } template typename enable_if::type addRowSet(T &t,dummy<2> = 2) { int s=0; for(typename T::MapIt i(t); i!=INVALID; ++i) { i.set(addRow()); s++; } return s; } #endif ///Set a row (i.e a constraint) of the LP ///\param r is the row to be modified ///\param l is lower bound (-\ref INF means no bound) ///\param e is a linear expression (see \ref Expr) ///\param u is the upper bound (\ref INF means no bound) ///\bug This is a temporary function. The interface will change to ///a better one. ///\todo Option to control whether a constraint with a single variable is ///added or not. void row(Row r, Value l, const Expr &e, Value u) { e.simplify(); _setRowCoeffs(_lpId(r), ConstRowIterator(e.begin(), *this), ConstRowIterator(e.end(), *this)); _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp()); } ///Set a row (i.e a constraint) of the LP ///\param r is the row to be modified ///\param c is a linear expression (see \ref Constr) void row(Row r, const Constr &c) { row(r, c.lowerBounded()?c.lowerBound():-INF, c.expr(), c.upperBounded()?c.upperBound():INF); } ///Get a row (i.e a constraint) of the LP ///\param r is the row to get ///\return the expression associated to the row Expr row(Row r) const { Expr e; _getRowCoeffs(_lpId(r), RowIterator(std::inserter(e, e.end()), *this)); return e; } ///Add a new row (i.e a new constraint) to the LP ///\param l is the lower bound (-\ref INF means no bound) ///\param e is a linear expression (see \ref Expr) ///\param u is the upper bound (\ref INF means no bound) ///\return The created row. ///\bug This is a temporary function. The interface will change to ///a better one. Row addRow(Value l,const Expr &e, Value u) { Row r=addRow(); row(r,l,e,u); return r; } ///Add a new row (i.e a new constraint) to the LP ///\param c is a linear expression (see \ref Constr) ///\return The created row. Row addRow(const Constr &c) { Row r=addRow(); row(r,c); return r; } ///Erase a coloumn (i.e a variable) from the LP ///\param c is the coloumn to be deleted ///\todo Please check this void eraseCol(Col c) { _eraseCol(_lpId(c)); cols.eraseId(c.id); } ///Erase a row (i.e a constraint) from the LP ///\param r is the row to be deleted ///\todo Please check this void eraseRow(Row r) { _eraseRow(_lpId(r)); rows.eraseId(r.id); } /// Get the name of a column ///\param c is the coresponding coloumn ///\return The name of the colunm std::string colName(Col c) const { std::string name; _getColName(_lpId(c), name); return name; } /// Set the name of a column ///\param c is the coresponding coloumn ///\param name The name to be given void colName(Col c, const std::string& name) { _setColName(_lpId(c), name); } /// Get the column by its name ///\param name The name of the column ///\return the proper column or \c INVALID Col colByName(const std::string& name) const { int k = _colByName(name); return k != -1 ? Col(cols.fixId(k)) : Col(INVALID); } /// Set an element of the coefficient matrix of the LP ///\param r is the row of the element to be modified ///\param c is the coloumn of the element to be modified ///\param val is the new value of the coefficient void coeff(Row r, Col c, Value val) { _setCoeff(_lpId(r),_lpId(c), val); } /// Get an element of the coefficient matrix of the LP ///\param r is the row of the element in question ///\param c is the coloumn of the element in question ///\return the corresponding coefficient Value coeff(Row r, Col c) const { return _getCoeff(_lpId(r),_lpId(c)); } /// Set the lower bound of a column (i.e a variable) /// The lower bound of a variable (column) has to be given by an /// extended number of type Value, i.e. a finite number of type /// Value or -\ref INF. void colLowerBound(Col c, Value value) { _setColLowerBound(_lpId(c),value); } /// Get the lower bound of a column (i.e a variable) /// This function returns the lower bound for column (variable) \t c /// (this might be -\ref INF as well). ///\return The lower bound for coloumn \t c Value colLowerBound(Col c) const { return _getColLowerBound(_lpId(c)); } ///\brief Set the lower bound of several columns ///(i.e a variables) at once /// ///This magic function takes a container as its argument ///and applies the function on all of its elements. /// The lower bound of a variable (column) has to be given by an /// extended number of type Value, i.e. a finite number of type /// Value or -\ref INF. #ifdef DOXYGEN template void colLowerBound(T &t, Value value) { return 0;} #else template typename enable_if::type colLowerBound(T &t, Value value,dummy<0> = 0) { for(typename T::iterator i=t.begin();i!=t.end();++i) { colLowerBound(*i, value); } } template typename enable_if::type colLowerBound(T &t, Value value,dummy<1> = 1) { for(typename T::iterator i=t.begin();i!=t.end();++i) { colLowerBound(i->second, value); } } template typename enable_if::type colLowerBound(T &t, Value value,dummy<2> = 2) { for(typename T::MapIt i(t); i!=INVALID; ++i){ colLowerBound(*i, value); } } #endif /// Set the upper bound of a column (i.e a variable) /// The upper bound of a variable (column) has to be given by an /// extended number of type Value, i.e. a finite number of type /// Value or \ref INF. void colUpperBound(Col c, Value value) { _setColUpperBound(_lpId(c),value); }; /// Get the upper bound of a column (i.e a variable) /// This function returns the upper bound for column (variable) \t c /// (this might be \ref INF as well). ///\return The upper bound for coloumn \t c Value colUpperBound(Col c) const { return _getColUpperBound(_lpId(c)); } ///\brief Set the upper bound of several columns ///(i.e a variables) at once /// ///This magic function takes a container as its argument ///and applies the function on all of its elements. /// The upper bound of a variable (column) has to be given by an /// extended number of type Value, i.e. a finite number of type /// Value or \ref INF. #ifdef DOXYGEN template void colUpperBound(T &t, Value value) { return 0;} #else template typename enable_if::type colUpperBound(T &t, Value value,dummy<0> = 0) { for(typename T::iterator i=t.begin();i!=t.end();++i) { colUpperBound(*i, value); } } template typename enable_if::type colUpperBound(T &t, Value value,dummy<1> = 1) { for(typename T::iterator i=t.begin();i!=t.end();++i) { colUpperBound(i->second, value); } } template typename enable_if::type colUpperBound(T &t, Value value,dummy<2> = 2) { for(typename T::MapIt i(t); i!=INVALID; ++i){ colUpperBound(*i, value); } } #endif /// Set the lower and the upper bounds of a column (i.e a variable) /// The lower and the upper bounds of /// a variable (column) have to be given by an /// extended number of type Value, i.e. a finite number of type /// Value, -\ref INF or \ref INF. void colBounds(Col c, Value lower, Value upper) { _setColLowerBound(_lpId(c),lower); _setColUpperBound(_lpId(c),upper); } ///\brief Set the lower and the upper bound of several columns ///(i.e a variables) at once /// ///This magic function takes a container as its argument ///and applies the function on all of its elements. /// The lower and the upper bounds of /// a variable (column) have to be given by an /// extended number of type Value, i.e. a finite number of type /// Value, -\ref INF or \ref INF. #ifdef DOXYGEN template void colBounds(T &t, Value lower, Value upper) { return 0;} #else template typename enable_if::type colBounds(T &t, Value lower, Value upper,dummy<0> = 0) { for(typename T::iterator i=t.begin();i!=t.end();++i) { colBounds(*i, lower, upper); } } template typename enable_if::type colBounds(T &t, Value lower, Value upper,dummy<1> = 1) { for(typename T::iterator i=t.begin();i!=t.end();++i) { colBounds(i->second, lower, upper); } } template typename enable_if::type colBounds(T &t, Value lower, Value upper,dummy<2> = 2) { for(typename T::MapIt i(t); i!=INVALID; ++i){ colBounds(*i, lower, upper); } } #endif /// Set the lower and the upper bounds of a row (i.e a constraint) /// The lower and the upper bound of a constraint (row) have to be /// given by an extended number of type Value, i.e. a finite /// number of type Value, -\ref INF or \ref INF. There is no /// separate function for the lower and the upper bound because /// that would have been hard to implement for CPLEX. void rowBounds(Row c, Value lower, Value upper) { _setRowBounds(_lpId(c),lower, upper); } /// Get the lower and the upper bounds of a row (i.e a constraint) /// The lower and the upper bound of /// a constraint (row) are /// extended numbers of type Value, i.e. finite numbers of type /// Value, -\ref INF or \ref INF. /// \todo There is no separate function for the /// lower and the upper bound because we had problems with the /// implementation of the setting functions for CPLEX: /// check out whether this can be done for these functions. void getRowBounds(Row c, Value &lower, Value &upper) const { _getRowBounds(_lpId(c),lower, upper); } ///Set an element of the objective function void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); }; ///Get an element of the objective function Value objCoeff(Col c) const { return _getObjCoeff(_lpId(c)); }; ///Set the objective function ///\param e is a linear expression of type \ref Expr. void obj(Expr e) { _clearObj(); for (Expr::iterator i=e.begin(); i!=e.end(); ++i) objCoeff((*i).first,(*i).second); obj_const_comp=e.constComp(); } ///Get the objective function ///\return the objective function as a linear expression of type \ref Expr. Expr obj() const { Expr e; for (ColIt it(*this); it != INVALID; ++it) { double c = objCoeff(it); if (c != 0.0) { e.insert(std::make_pair(it, c)); } } return e; } ///Maximize void max() { _setMax(); } ///Minimize void min() { _setMin(); } ///Query function: is this a maximization problem? bool isMax() const {return _isMax(); } ///Query function: is this a minimization problem? bool isMin() const {return !isMax(); } ///@} ///\name Solve the LP ///@{ ///\e Solve the LP problem at hand /// ///\return The result of the optimization procedure. Possible ///values and their meanings can be found in the documentation of ///\ref SolveExitStatus. /// ///\todo Which method is used to solve the problem SolveExitStatus solve() { return _solve(); } ///@} ///\name Obtain the solution ///@{ /// The status of the primal problem (the original LP problem) SolutionStatus primalStatus() const { return _getPrimalStatus(); } /// The status of the dual (of the original LP) problem SolutionStatus dualStatus() const { return _getDualStatus(); } ///The type of the original LP problem ProblemTypes problemType() const { return _getProblemType(); } ///\e Value primal(Col c) const { return _getPrimal(_lpId(c)); } ///\e Value primal(const Expr& e) const { double res = e.constComp(); for (std::map::const_iterator it = e.begin(); it != e.end(); ++it) { res += _getPrimal(_lpId(it->first)) * it->second; } return res; } ///\e Value dual(Row r) const { return _getDual(_lpId(r)); } ///\e Value dual(const DualExpr& e) const { double res = 0.0; for (std::map::const_iterator it = e.begin(); it != e.end(); ++it) { res += _getPrimal(_lpId(it->first)) * it->second; } return res; } ///\e bool isBasicCol(Col c) const { return _isBasicCol(_lpId(c)); } ///\e ///\return ///- \ref INF or -\ref INF means either infeasibility or unboundedness /// of the primal problem, depending on whether we minimize or maximize. ///- \ref NaN if no primal solution is found. ///- The (finite) objective value if an optimal solution is found. Value primalValue() const { return _getPrimalValue()+obj_const_comp;} ///@} }; /// \ingroup lp_group /// /// \brief Common base class for MIP solvers /// \todo Much more docs class MipSolverBase : virtual public LpSolverBase{ public: ///Possible variable (coloumn) types (e.g. real, integer, binary etc.) enum ColTypes { ///Continuous variable REAL = 0, ///Integer variable ///Unfortunately, cplex 7.5 somewhere writes something like ///#define INTEGER 'I' INT = 1 ///\todo No support for other types yet. }; ///Sets the type of the given coloumn to the given type /// ///Sets the type of the given coloumn to the given type. void colType(Col c, ColTypes col_type) { _colType(_lpId(c),col_type); } ///Gives back the type of the column. /// ///Gives back the type of the column. ColTypes colType(Col c) const { return _colType(_lpId(c)); } ///Sets the type of the given Col to integer or remove that property. /// ///Sets the type of the given Col to integer or remove that property. void integer(Col c, bool enable) { if (enable) colType(c,INT); else colType(c,REAL); } ///Gives back whether the type of the column is integer or not. /// ///Gives back the type of the column. ///\return true if the column has integer type and false if not. bool integer(Col c) const { return (colType(c)==INT); } /// The status of the MIP problem SolutionStatus mipStatus() const { return _getMipStatus(); } protected: virtual ColTypes _colType(int col) const = 0; virtual void _colType(int col, ColTypes col_type) = 0; virtual SolutionStatus _getMipStatus() const = 0; }; ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a, const LpSolverBase::Expr &b) { LpSolverBase::Expr tmp(a); tmp+=b; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a, const LpSolverBase::Expr &b) { LpSolverBase::Expr tmp(a); tmp-=b; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a, const LpSolverBase::Value &b) { LpSolverBase::Expr tmp(a); tmp*=b; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a, const LpSolverBase::Expr &b) { LpSolverBase::Expr tmp(b); tmp*=a; return tmp; } ///\e ///\relates LpSolverBase::Expr /// inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a, const LpSolverBase::Value &b) { LpSolverBase::Expr tmp(a); tmp/=b; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(e,f); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e, const LpSolverBase::Value &f) { return LpSolverBase::Constr(e,f); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(f,e); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e, const LpSolverBase::Value &f) { return LpSolverBase::Constr(f,e); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e, const LpSolverBase::Value &f) { return LpSolverBase::Constr(f,e,f); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e, const LpSolverBase::Expr &f) { return LpSolverBase::Constr(0,e-f,0); } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n, const LpSolverBase::Constr&c) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError(); else tmp.lowerBound()=n; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c, const LpSolverBase::Value &n) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError(); else tmp.upperBound()=n; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n, const LpSolverBase::Constr&c) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError(); else tmp.upperBound()=n; return tmp; } ///\e ///\relates LpSolverBase::Constr /// inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c, const LpSolverBase::Value &n) { LpSolverBase::Constr tmp(c); ///\todo Create an own exception type. if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError(); else tmp.lowerBound()=n; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a, const LpSolverBase::DualExpr &b) { LpSolverBase::DualExpr tmp(a); tmp+=b; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a, const LpSolverBase::DualExpr &b) { LpSolverBase::DualExpr tmp(a); tmp-=b; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a, const LpSolverBase::Value &b) { LpSolverBase::DualExpr tmp(a); tmp*=b; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a, const LpSolverBase::DualExpr &b) { LpSolverBase::DualExpr tmp(b); tmp*=a; return tmp; } ///\e ///\relates LpSolverBase::DualExpr /// inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a, const LpSolverBase::Value &b) { LpSolverBase::DualExpr tmp(a); tmp/=b; return tmp; } } //namespace lemon #endif //LEMON_LP_BASE_H