1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2007 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAPS_H |
---|
20 | #define LEMON_MAPS_H |
---|
21 | |
---|
22 | #include <iterator> |
---|
23 | #include <functional> |
---|
24 | |
---|
25 | #include <lemon/bits/utility.h> |
---|
26 | #include <lemon/bits/traits.h> |
---|
27 | |
---|
28 | ///\file |
---|
29 | ///\ingroup maps |
---|
30 | ///\brief Miscellaneous property maps |
---|
31 | /// |
---|
32 | ///\todo This file has the same name as the concept file in concepts/, |
---|
33 | /// and this is not easily detectable in docs... |
---|
34 | |
---|
35 | #include <map> |
---|
36 | |
---|
37 | namespace lemon { |
---|
38 | |
---|
39 | /// \addtogroup maps |
---|
40 | /// @{ |
---|
41 | |
---|
42 | /// Base class of maps. |
---|
43 | |
---|
44 | /// Base class of maps. |
---|
45 | /// It provides the necessary <tt>typedef</tt>s required by the map concept. |
---|
46 | template<typename K, typename T> |
---|
47 | class MapBase { |
---|
48 | public: |
---|
49 | ///\e |
---|
50 | typedef K Key; |
---|
51 | ///\e |
---|
52 | typedef T Value; |
---|
53 | }; |
---|
54 | |
---|
55 | /// Null map. (a.k.a. DoNothingMap) |
---|
56 | |
---|
57 | /// If you have to provide a map only for its type definitions, |
---|
58 | /// or if you have to provide a writable map, but |
---|
59 | /// data written to it will sent to <tt>/dev/null</tt>... |
---|
60 | template<typename K, typename T> |
---|
61 | class NullMap : public MapBase<K, T> { |
---|
62 | public: |
---|
63 | typedef MapBase<K, T> Parent; |
---|
64 | typedef typename Parent::Key Key; |
---|
65 | typedef typename Parent::Value Value; |
---|
66 | |
---|
67 | /// Gives back a default constructed element. |
---|
68 | T operator[](const K&) const { return T(); } |
---|
69 | /// Absorbs the value. |
---|
70 | void set(const K&, const T&) {} |
---|
71 | }; |
---|
72 | |
---|
73 | template <typename K, typename V> |
---|
74 | NullMap<K, V> nullMap() { |
---|
75 | return NullMap<K, V>(); |
---|
76 | } |
---|
77 | |
---|
78 | |
---|
79 | /// Constant map. |
---|
80 | |
---|
81 | /// This is a readable map which assigns a specified value to each key. |
---|
82 | /// In other aspects it is equivalent to the \ref NullMap. |
---|
83 | /// \todo set could be used to set the value. |
---|
84 | template<typename K, typename T> |
---|
85 | class ConstMap : public MapBase<K, T> { |
---|
86 | private: |
---|
87 | T v; |
---|
88 | public: |
---|
89 | |
---|
90 | typedef MapBase<K, T> Parent; |
---|
91 | typedef typename Parent::Key Key; |
---|
92 | typedef typename Parent::Value Value; |
---|
93 | |
---|
94 | /// Default constructor |
---|
95 | |
---|
96 | /// The value of the map will be uninitialized. |
---|
97 | /// (More exactly it will be default constructed.) |
---|
98 | ConstMap() {} |
---|
99 | ///\e |
---|
100 | |
---|
101 | /// \param _v The initial value of the map. |
---|
102 | /// |
---|
103 | ConstMap(const T &_v) : v(_v) {} |
---|
104 | |
---|
105 | T operator[](const K&) const { return v; } |
---|
106 | void set(const K&, const T&) {} |
---|
107 | |
---|
108 | template<typename T1> |
---|
109 | struct rebind { |
---|
110 | typedef ConstMap<K, T1> other; |
---|
111 | }; |
---|
112 | |
---|
113 | template<typename T1> |
---|
114 | ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {} |
---|
115 | }; |
---|
116 | |
---|
117 | ///Returns a \ref ConstMap class |
---|
118 | |
---|
119 | ///This function just returns a \ref ConstMap class. |
---|
120 | ///\relates ConstMap |
---|
121 | template<typename K, typename V> |
---|
122 | inline ConstMap<K, V> constMap(const V &v) { |
---|
123 | return ConstMap<K, V>(v); |
---|
124 | } |
---|
125 | |
---|
126 | |
---|
127 | //\todo to document later |
---|
128 | template<typename T, T v> |
---|
129 | struct Const { }; |
---|
130 | |
---|
131 | //\todo to document later |
---|
132 | template<typename K, typename V, V v> |
---|
133 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
---|
134 | public: |
---|
135 | typedef MapBase<K, V> Parent; |
---|
136 | typedef typename Parent::Key Key; |
---|
137 | typedef typename Parent::Value Value; |
---|
138 | |
---|
139 | ConstMap() { } |
---|
140 | V operator[](const K&) const { return v; } |
---|
141 | void set(const K&, const V&) { } |
---|
142 | }; |
---|
143 | |
---|
144 | ///Returns a \ref ConstMap class |
---|
145 | |
---|
146 | ///This function just returns a \ref ConstMap class. |
---|
147 | ///\relates ConstMap |
---|
148 | template<typename K, typename V, V v> |
---|
149 | inline ConstMap<K, Const<V, v> > constMap() { |
---|
150 | return ConstMap<K, Const<V, v> >(); |
---|
151 | } |
---|
152 | |
---|
153 | /// \c std::map wrapper |
---|
154 | |
---|
155 | /// This is essentially a wrapper for \c std::map. With addition that |
---|
156 | /// you can specify a default value different from \c Value() . |
---|
157 | /// |
---|
158 | /// \todo Provide allocator parameter... |
---|
159 | template <typename K, typename T, typename Compare = std::less<K> > |
---|
160 | class StdMap : public std::map<K, T, Compare> { |
---|
161 | typedef std::map<K, T, Compare> parent; |
---|
162 | T v; |
---|
163 | typedef typename parent::value_type PairType; |
---|
164 | |
---|
165 | public: |
---|
166 | ///\e |
---|
167 | typedef K Key; |
---|
168 | ///\e |
---|
169 | typedef T Value; |
---|
170 | ///\e |
---|
171 | typedef T& Reference; |
---|
172 | ///\e |
---|
173 | typedef const T& ConstReference; |
---|
174 | |
---|
175 | |
---|
176 | StdMap() : v() {} |
---|
177 | /// Constructor with specified default value |
---|
178 | StdMap(const T& _v) : v(_v) {} |
---|
179 | |
---|
180 | /// \brief Constructs the map from an appropriate std::map. |
---|
181 | /// |
---|
182 | /// \warning Inefficient: copies the content of \c m ! |
---|
183 | StdMap(const parent &m) : parent(m) {} |
---|
184 | /// \brief Constructs the map from an appropriate std::map, and explicitly |
---|
185 | /// specifies a default value. |
---|
186 | /// |
---|
187 | /// \warning Inefficient: copies the content of \c m ! |
---|
188 | StdMap(const parent &m, const T& _v) : parent(m), v(_v) {} |
---|
189 | |
---|
190 | template<typename T1, typename Comp1> |
---|
191 | StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) { |
---|
192 | //FIXME; |
---|
193 | } |
---|
194 | |
---|
195 | Reference operator[](const Key &k) { |
---|
196 | return insert(PairType(k,v)).first -> second; |
---|
197 | } |
---|
198 | |
---|
199 | ConstReference operator[](const Key &k) const { |
---|
200 | typename parent::iterator i = lower_bound(k); |
---|
201 | if (i == parent::end() || parent::key_comp()(k, (*i).first)) |
---|
202 | return v; |
---|
203 | return (*i).second; |
---|
204 | } |
---|
205 | void set(const Key &k, const T &t) { |
---|
206 | parent::operator[](k) = t; |
---|
207 | } |
---|
208 | |
---|
209 | /// Changes the default value of the map. |
---|
210 | /// \return Returns the previous default value. |
---|
211 | /// |
---|
212 | /// \warning The value of some keys (which has already been queried, but |
---|
213 | /// the value has been unchanged from the default) may change! |
---|
214 | T setDefault(const T &_v) { T old=v; v=_v; return old; } |
---|
215 | |
---|
216 | template<typename T1> |
---|
217 | struct rebind { |
---|
218 | typedef StdMap<Key, T1,Compare> other; |
---|
219 | }; |
---|
220 | }; |
---|
221 | |
---|
222 | /// @} |
---|
223 | |
---|
224 | /// \addtogroup map_adaptors |
---|
225 | /// @{ |
---|
226 | |
---|
227 | /// \brief Identity mapping. |
---|
228 | /// |
---|
229 | /// This mapping gives back the given key as value without any |
---|
230 | /// modification. |
---|
231 | template <typename T> |
---|
232 | class IdentityMap : public MapBase<T, T> { |
---|
233 | public: |
---|
234 | typedef MapBase<T, T> Parent; |
---|
235 | typedef typename Parent::Key Key; |
---|
236 | typedef typename Parent::Value Value; |
---|
237 | |
---|
238 | const T& operator[](const T& t) const { |
---|
239 | return t; |
---|
240 | } |
---|
241 | }; |
---|
242 | |
---|
243 | ///Returns an \ref IdentityMap class |
---|
244 | |
---|
245 | ///This function just returns an \ref IdentityMap class. |
---|
246 | ///\relates IdentityMap |
---|
247 | template<typename T> |
---|
248 | inline IdentityMap<T> identityMap() { |
---|
249 | return IdentityMap<T>(); |
---|
250 | } |
---|
251 | |
---|
252 | |
---|
253 | ///Convert the \c Value of a map to another type. |
---|
254 | |
---|
255 | ///This \ref concepts::ReadMap "read only map" |
---|
256 | ///converts the \c Value of a maps to type \c T. |
---|
257 | ///Its \c Key is inherited from \c M. |
---|
258 | template <typename M, typename T> |
---|
259 | class ConvertMap : public MapBase<typename M::Key, T> { |
---|
260 | const M& m; |
---|
261 | public: |
---|
262 | typedef MapBase<typename M::Key, T> Parent; |
---|
263 | typedef typename Parent::Key Key; |
---|
264 | typedef typename Parent::Value Value; |
---|
265 | |
---|
266 | ///Constructor |
---|
267 | |
---|
268 | ///Constructor |
---|
269 | ///\param _m is the underlying map |
---|
270 | ConvertMap(const M &_m) : m(_m) {}; |
---|
271 | |
---|
272 | /// \brief The subscript operator. |
---|
273 | /// |
---|
274 | /// The subscript operator. |
---|
275 | /// \param k The key |
---|
276 | /// \return The target of the edge |
---|
277 | Value operator[](const Key& k) const {return m[k];} |
---|
278 | }; |
---|
279 | |
---|
280 | ///Returns an \ref ConvertMap class |
---|
281 | |
---|
282 | ///This function just returns an \ref ConvertMap class. |
---|
283 | ///\relates ConvertMap |
---|
284 | ///\todo The order of the template parameters are changed. |
---|
285 | template<typename T, typename M> |
---|
286 | inline ConvertMap<M, T> convertMap(const M &m) { |
---|
287 | return ConvertMap<M, T>(m); |
---|
288 | } |
---|
289 | |
---|
290 | ///Simple wrapping of the map |
---|
291 | |
---|
292 | ///This \ref concepts::ReadMap "read only map" returns the simple |
---|
293 | ///wrapping of the given map. Sometimes the reference maps cannot be |
---|
294 | ///combined with simple read maps. This map adaptor wraps the given |
---|
295 | ///map to simple read map. |
---|
296 | template<typename M> |
---|
297 | class SimpleMap : public MapBase<typename M::Key, typename M::Value> { |
---|
298 | const M& m; |
---|
299 | |
---|
300 | public: |
---|
301 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
302 | typedef typename Parent::Key Key; |
---|
303 | typedef typename Parent::Value Value; |
---|
304 | |
---|
305 | ///Constructor |
---|
306 | SimpleMap(const M &_m) : m(_m) {}; |
---|
307 | Value operator[](Key k) const {return m[k];} |
---|
308 | }; |
---|
309 | |
---|
310 | ///Simple writeable wrapping of the map |
---|
311 | |
---|
312 | ///This \ref concepts::ReadMap "read only map" returns the simple |
---|
313 | ///wrapping of the given map. Sometimes the reference maps cannot be |
---|
314 | ///combined with simple read-write maps. This map adaptor wraps the |
---|
315 | ///given map to simple read-write map. |
---|
316 | template<typename M> |
---|
317 | class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
318 | M& m; |
---|
319 | |
---|
320 | public: |
---|
321 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
322 | typedef typename Parent::Key Key; |
---|
323 | typedef typename Parent::Value Value; |
---|
324 | |
---|
325 | ///Constructor |
---|
326 | SimpleWriteMap(M &_m) : m(_m) {}; |
---|
327 | Value operator[](Key k) const {return m[k];} |
---|
328 | void set(Key k, const Value& c) { m.set(k, c); } |
---|
329 | }; |
---|
330 | |
---|
331 | ///Sum of two maps |
---|
332 | |
---|
333 | ///This \ref concepts::ReadMap "read only map" returns the sum of the two |
---|
334 | ///given maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
335 | ///The \c Key and \c Value of M2 must be convertible to those of \c M1. |
---|
336 | |
---|
337 | template<typename M1, typename M2> |
---|
338 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
339 | const M1& m1; |
---|
340 | const M2& m2; |
---|
341 | |
---|
342 | public: |
---|
343 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
344 | typedef typename Parent::Key Key; |
---|
345 | typedef typename Parent::Value Value; |
---|
346 | |
---|
347 | ///Constructor |
---|
348 | AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
349 | Value operator[](Key k) const {return m1[k]+m2[k];} |
---|
350 | }; |
---|
351 | |
---|
352 | ///Returns an \ref AddMap class |
---|
353 | |
---|
354 | ///This function just returns an \ref AddMap class. |
---|
355 | ///\todo How to call these type of functions? |
---|
356 | /// |
---|
357 | ///\relates AddMap |
---|
358 | ///\todo Wrong scope in Doxygen when \c \\relates is used |
---|
359 | template<typename M1, typename M2> |
---|
360 | inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) { |
---|
361 | return AddMap<M1, M2>(m1,m2); |
---|
362 | } |
---|
363 | |
---|
364 | ///Shift a map with a constant. |
---|
365 | |
---|
366 | ///This \ref concepts::ReadMap "read only map" returns the sum of the |
---|
367 | ///given map and a constant value. |
---|
368 | ///Its \c Key and \c Value is inherited from \c M. |
---|
369 | /// |
---|
370 | ///Actually, |
---|
371 | ///\code |
---|
372 | /// ShiftMap<X> sh(x,v); |
---|
373 | ///\endcode |
---|
374 | ///is equivalent with |
---|
375 | ///\code |
---|
376 | /// ConstMap<X::Key, X::Value> c_tmp(v); |
---|
377 | /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
---|
378 | ///\endcode |
---|
379 | template<typename M, typename C = typename M::Value> |
---|
380 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
---|
381 | const M& m; |
---|
382 | C v; |
---|
383 | public: |
---|
384 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
385 | typedef typename Parent::Key Key; |
---|
386 | typedef typename Parent::Value Value; |
---|
387 | |
---|
388 | ///Constructor |
---|
389 | |
---|
390 | ///Constructor |
---|
391 | ///\param _m is the undelying map |
---|
392 | ///\param _v is the shift value |
---|
393 | ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {}; |
---|
394 | Value operator[](Key k) const {return m[k] + v;} |
---|
395 | }; |
---|
396 | |
---|
397 | ///Shift a map with a constant. |
---|
398 | |
---|
399 | ///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the |
---|
400 | ///given map and a constant value. It makes also possible to write the map. |
---|
401 | ///Its \c Key and \c Value is inherited from \c M. |
---|
402 | /// |
---|
403 | ///Actually, |
---|
404 | ///\code |
---|
405 | /// ShiftMap<X> sh(x,v); |
---|
406 | ///\endcode |
---|
407 | ///is equivalent with |
---|
408 | ///\code |
---|
409 | /// ConstMap<X::Key, X::Value> c_tmp(v); |
---|
410 | /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
---|
411 | ///\endcode |
---|
412 | template<typename M, typename C = typename M::Value> |
---|
413 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
414 | M& m; |
---|
415 | C v; |
---|
416 | public: |
---|
417 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
418 | typedef typename Parent::Key Key; |
---|
419 | typedef typename Parent::Value Value; |
---|
420 | |
---|
421 | ///Constructor |
---|
422 | |
---|
423 | ///Constructor |
---|
424 | ///\param _m is the undelying map |
---|
425 | ///\param _v is the shift value |
---|
426 | ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {}; |
---|
427 | Value operator[](Key k) const {return m[k] + v;} |
---|
428 | void set(Key k, const Value& c) { m.set(k, c - v); } |
---|
429 | }; |
---|
430 | |
---|
431 | ///Returns an \ref ShiftMap class |
---|
432 | |
---|
433 | ///This function just returns an \ref ShiftMap class. |
---|
434 | ///\relates ShiftMap |
---|
435 | ///\todo A better name is required. |
---|
436 | template<typename M, typename C> |
---|
437 | inline ShiftMap<M, C> shiftMap(const M &m,const C &v) { |
---|
438 | return ShiftMap<M, C>(m,v); |
---|
439 | } |
---|
440 | |
---|
441 | template<typename M, typename C> |
---|
442 | inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) { |
---|
443 | return ShiftWriteMap<M, C>(m,v); |
---|
444 | } |
---|
445 | |
---|
446 | ///Difference of two maps |
---|
447 | |
---|
448 | ///This \ref concepts::ReadMap "read only map" returns the difference |
---|
449 | ///of the values of the two |
---|
450 | ///given maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
451 | ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
---|
452 | |
---|
453 | template<typename M1, typename M2> |
---|
454 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
455 | const M1& m1; |
---|
456 | const M2& m2; |
---|
457 | public: |
---|
458 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
459 | typedef typename Parent::Key Key; |
---|
460 | typedef typename Parent::Value Value; |
---|
461 | |
---|
462 | ///Constructor |
---|
463 | SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
464 | Value operator[](Key k) const {return m1[k]-m2[k];} |
---|
465 | }; |
---|
466 | |
---|
467 | ///Returns a \ref SubMap class |
---|
468 | |
---|
469 | ///This function just returns a \ref SubMap class. |
---|
470 | /// |
---|
471 | ///\relates SubMap |
---|
472 | template<typename M1, typename M2> |
---|
473 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
---|
474 | return SubMap<M1, M2>(m1, m2); |
---|
475 | } |
---|
476 | |
---|
477 | ///Product of two maps |
---|
478 | |
---|
479 | ///This \ref concepts::ReadMap "read only map" returns the product of the |
---|
480 | ///values of the two |
---|
481 | ///given |
---|
482 | ///maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
483 | ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
---|
484 | |
---|
485 | template<typename M1, typename M2> |
---|
486 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
487 | const M1& m1; |
---|
488 | const M2& m2; |
---|
489 | public: |
---|
490 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
491 | typedef typename Parent::Key Key; |
---|
492 | typedef typename Parent::Value Value; |
---|
493 | |
---|
494 | ///Constructor |
---|
495 | MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
496 | Value operator[](Key k) const {return m1[k]*m2[k];} |
---|
497 | }; |
---|
498 | |
---|
499 | ///Returns a \ref MulMap class |
---|
500 | |
---|
501 | ///This function just returns a \ref MulMap class. |
---|
502 | ///\relates MulMap |
---|
503 | template<typename M1, typename M2> |
---|
504 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
---|
505 | return MulMap<M1, M2>(m1,m2); |
---|
506 | } |
---|
507 | |
---|
508 | ///Scales a maps with a constant. |
---|
509 | |
---|
510 | ///This \ref concepts::ReadMap "read only map" returns the value of the |
---|
511 | ///given map multiplied from the left side with a constant value. |
---|
512 | ///Its \c Key and \c Value is inherited from \c M. |
---|
513 | /// |
---|
514 | ///Actually, |
---|
515 | ///\code |
---|
516 | /// ScaleMap<X> sc(x,v); |
---|
517 | ///\endcode |
---|
518 | ///is equivalent with |
---|
519 | ///\code |
---|
520 | /// ConstMap<X::Key, X::Value> c_tmp(v); |
---|
521 | /// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v); |
---|
522 | ///\endcode |
---|
523 | template<typename M, typename C = typename M::Value> |
---|
524 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
---|
525 | const M& m; |
---|
526 | C v; |
---|
527 | public: |
---|
528 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
529 | typedef typename Parent::Key Key; |
---|
530 | typedef typename Parent::Value Value; |
---|
531 | |
---|
532 | ///Constructor |
---|
533 | |
---|
534 | ///Constructor |
---|
535 | ///\param _m is the undelying map |
---|
536 | ///\param _v is the scaling value |
---|
537 | ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {}; |
---|
538 | Value operator[](Key k) const {return v * m[k];} |
---|
539 | }; |
---|
540 | |
---|
541 | ///Scales a maps with a constant. |
---|
542 | |
---|
543 | ///This \ref concepts::ReadWriteMap "read-write map" returns the value of the |
---|
544 | ///given map multiplied from the left side with a constant value. It can |
---|
545 | ///be used as write map also if the given multiplier is not zero. |
---|
546 | ///Its \c Key and \c Value is inherited from \c M. |
---|
547 | template<typename M, typename C = typename M::Value> |
---|
548 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
549 | M& m; |
---|
550 | C v; |
---|
551 | public: |
---|
552 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
553 | typedef typename Parent::Key Key; |
---|
554 | typedef typename Parent::Value Value; |
---|
555 | |
---|
556 | ///Constructor |
---|
557 | |
---|
558 | ///Constructor |
---|
559 | ///\param _m is the undelying map |
---|
560 | ///\param _v is the scaling value |
---|
561 | ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {}; |
---|
562 | Value operator[](Key k) const {return v * m[k];} |
---|
563 | void set(Key k, const Value& c) { m.set(k, c / v);} |
---|
564 | }; |
---|
565 | |
---|
566 | ///Returns an \ref ScaleMap class |
---|
567 | |
---|
568 | ///This function just returns an \ref ScaleMap class. |
---|
569 | ///\relates ScaleMap |
---|
570 | ///\todo A better name is required. |
---|
571 | template<typename M, typename C> |
---|
572 | inline ScaleMap<M, C> scaleMap(const M &m,const C &v) { |
---|
573 | return ScaleMap<M, C>(m,v); |
---|
574 | } |
---|
575 | |
---|
576 | template<typename M, typename C> |
---|
577 | inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) { |
---|
578 | return ScaleWriteMap<M, C>(m,v); |
---|
579 | } |
---|
580 | |
---|
581 | ///Quotient of two maps |
---|
582 | |
---|
583 | ///This \ref concepts::ReadMap "read only map" returns the quotient of the |
---|
584 | ///values of the two |
---|
585 | ///given maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
586 | ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
---|
587 | |
---|
588 | template<typename M1, typename M2> |
---|
589 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
590 | const M1& m1; |
---|
591 | const M2& m2; |
---|
592 | public: |
---|
593 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
594 | typedef typename Parent::Key Key; |
---|
595 | typedef typename Parent::Value Value; |
---|
596 | |
---|
597 | ///Constructor |
---|
598 | DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
599 | Value operator[](Key k) const {return m1[k]/m2[k];} |
---|
600 | }; |
---|
601 | |
---|
602 | ///Returns a \ref DivMap class |
---|
603 | |
---|
604 | ///This function just returns a \ref DivMap class. |
---|
605 | ///\relates DivMap |
---|
606 | template<typename M1, typename M2> |
---|
607 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
---|
608 | return DivMap<M1, M2>(m1,m2); |
---|
609 | } |
---|
610 | |
---|
611 | ///Composition of two maps |
---|
612 | |
---|
613 | ///This \ref concepts::ReadMap "read only map" returns the composition of |
---|
614 | ///two |
---|
615 | ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is |
---|
616 | ///of \c M2, |
---|
617 | ///then for |
---|
618 | ///\code |
---|
619 | /// ComposeMap<M1, M2> cm(m1,m2); |
---|
620 | ///\endcode |
---|
621 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt> |
---|
622 | /// |
---|
623 | ///Its \c Key is inherited from \c M2 and its \c Value is from |
---|
624 | ///\c M1. |
---|
625 | ///The \c M2::Value must be convertible to \c M1::Key. |
---|
626 | ///\todo Check the requirements. |
---|
627 | |
---|
628 | template <typename M1, typename M2> |
---|
629 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
---|
630 | const M1& m1; |
---|
631 | const M2& m2; |
---|
632 | public: |
---|
633 | typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
---|
634 | typedef typename Parent::Key Key; |
---|
635 | typedef typename Parent::Value Value; |
---|
636 | |
---|
637 | ///Constructor |
---|
638 | ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
639 | |
---|
640 | typename MapTraits<M1>::ConstReturnValue |
---|
641 | operator[](Key k) const {return m1[m2[k]];} |
---|
642 | }; |
---|
643 | ///Returns a \ref ComposeMap class |
---|
644 | |
---|
645 | ///This function just returns a \ref ComposeMap class. |
---|
646 | /// |
---|
647 | ///\relates ComposeMap |
---|
648 | template <typename M1, typename M2> |
---|
649 | inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) { |
---|
650 | return ComposeMap<M1, M2>(m1,m2); |
---|
651 | } |
---|
652 | |
---|
653 | ///Combines of two maps using an STL (binary) functor. |
---|
654 | |
---|
655 | ///Combines of two maps using an STL (binary) functor. |
---|
656 | /// |
---|
657 | /// |
---|
658 | ///This \ref concepts::ReadMap "read only map" takes two maps and a |
---|
659 | ///binary functor and returns the composition of |
---|
660 | ///the two |
---|
661 | ///given maps unsing the functor. |
---|
662 | ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2 |
---|
663 | ///and \c f is of \c F, |
---|
664 | ///then for |
---|
665 | ///\code |
---|
666 | /// CombineMap<M1, M2,F,V> cm(m1,m2,f); |
---|
667 | ///\endcode |
---|
668 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt> |
---|
669 | /// |
---|
670 | ///Its \c Key is inherited from \c M1 and its \c Value is \c V. |
---|
671 | ///The \c M2::Value and \c M1::Value must be convertible to the corresponding |
---|
672 | ///input parameter of \c F and the return type of \c F must be convertible |
---|
673 | ///to \c V. |
---|
674 | ///\todo Check the requirements. |
---|
675 | |
---|
676 | template<typename M1, typename M2, typename F, |
---|
677 | typename V = typename F::result_type, |
---|
678 | typename NC = False> |
---|
679 | class CombineMap : public MapBase<typename M1::Key, V> { |
---|
680 | const M1& m1; |
---|
681 | const M2& m2; |
---|
682 | F f; |
---|
683 | public: |
---|
684 | typedef MapBase<typename M1::Key, V> Parent; |
---|
685 | typedef typename Parent::Key Key; |
---|
686 | typedef typename Parent::Value Value; |
---|
687 | |
---|
688 | ///Constructor |
---|
689 | CombineMap(const M1 &_m1,const M2 &_m2,const F &_f) |
---|
690 | : m1(_m1), m2(_m2), f(_f) {}; |
---|
691 | Value operator[](Key k) const {return f(m1[k],m2[k]);} |
---|
692 | }; |
---|
693 | |
---|
694 | ///Returns a \ref CombineMap class |
---|
695 | |
---|
696 | ///This function just returns a \ref CombineMap class. |
---|
697 | /// |
---|
698 | ///Only the first template parameter (the value type) must be given. |
---|
699 | /// |
---|
700 | ///For example if \c m1 and \c m2 are both \c double valued maps, then |
---|
701 | ///\code |
---|
702 | ///combineMap<double>(m1,m2,std::plus<double>) |
---|
703 | ///\endcode |
---|
704 | ///is equivalent with |
---|
705 | ///\code |
---|
706 | ///addMap(m1,m2) |
---|
707 | ///\endcode |
---|
708 | /// |
---|
709 | ///\relates CombineMap |
---|
710 | template<typename M1, typename M2, typename F, typename V> |
---|
711 | inline CombineMap<M1, M2, F, V> |
---|
712 | combineMap(const M1& m1,const M2& m2, const F& f) { |
---|
713 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
---|
714 | } |
---|
715 | |
---|
716 | template<typename M1, typename M2, typename F> |
---|
717 | inline CombineMap<M1, M2, F, typename F::result_type> |
---|
718 | combineMap(const M1& m1, const M2& m2, const F& f) { |
---|
719 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
---|
720 | } |
---|
721 | |
---|
722 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
---|
723 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
---|
724 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
---|
725 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
---|
726 | } |
---|
727 | |
---|
728 | ///Negative value of a map |
---|
729 | |
---|
730 | ///This \ref concepts::ReadMap "read only map" returns the negative |
---|
731 | ///value of the |
---|
732 | ///value returned by the |
---|
733 | ///given map. Its \c Key and \c Value will be inherited from \c M. |
---|
734 | ///The unary \c - operator must be defined for \c Value, of course. |
---|
735 | |
---|
736 | template<typename M> |
---|
737 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
---|
738 | const M& m; |
---|
739 | public: |
---|
740 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
741 | typedef typename Parent::Key Key; |
---|
742 | typedef typename Parent::Value Value; |
---|
743 | |
---|
744 | ///Constructor |
---|
745 | NegMap(const M &_m) : m(_m) {}; |
---|
746 | Value operator[](Key k) const {return -m[k];} |
---|
747 | }; |
---|
748 | |
---|
749 | ///Negative value of a map |
---|
750 | |
---|
751 | ///This \ref concepts::ReadWriteMap "read-write map" returns the negative |
---|
752 | ///value of the value returned by the |
---|
753 | ///given map. Its \c Key and \c Value will be inherited from \c M. |
---|
754 | ///The unary \c - operator must be defined for \c Value, of course. |
---|
755 | |
---|
756 | template<typename M> |
---|
757 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
758 | M& m; |
---|
759 | public: |
---|
760 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
761 | typedef typename Parent::Key Key; |
---|
762 | typedef typename Parent::Value Value; |
---|
763 | |
---|
764 | ///Constructor |
---|
765 | NegWriteMap(M &_m) : m(_m) {}; |
---|
766 | Value operator[](Key k) const {return -m[k];} |
---|
767 | void set(Key k, const Value& v) { m.set(k, -v); } |
---|
768 | }; |
---|
769 | |
---|
770 | ///Returns a \ref NegMap class |
---|
771 | |
---|
772 | ///This function just returns a \ref NegMap class. |
---|
773 | ///\relates NegMap |
---|
774 | template <typename M> |
---|
775 | inline NegMap<M> negMap(const M &m) { |
---|
776 | return NegMap<M>(m); |
---|
777 | } |
---|
778 | |
---|
779 | template <typename M> |
---|
780 | inline NegWriteMap<M> negMap(M &m) { |
---|
781 | return NegWriteMap<M>(m); |
---|
782 | } |
---|
783 | |
---|
784 | ///Absolute value of a map |
---|
785 | |
---|
786 | ///This \ref concepts::ReadMap "read only map" returns the absolute value |
---|
787 | ///of the |
---|
788 | ///value returned by the |
---|
789 | ///given map. Its \c Key and \c Value will be inherited |
---|
790 | ///from <tt>M</tt>. <tt>Value</tt> |
---|
791 | ///must be comparable to <tt>0</tt> and the unary <tt>-</tt> |
---|
792 | ///operator must be defined for it, of course. |
---|
793 | /// |
---|
794 | ///\bug We need a unified way to handle the situation below: |
---|
795 | ///\code |
---|
796 | /// struct _UnConvertible {}; |
---|
797 | /// template<class A> inline A t_abs(A a) {return _UnConvertible();} |
---|
798 | /// template<> inline int t_abs<>(int n) {return abs(n);} |
---|
799 | /// template<> inline long int t_abs<>(long int n) {return labs(n);} |
---|
800 | /// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);} |
---|
801 | /// template<> inline float t_abs<>(float n) {return fabsf(n);} |
---|
802 | /// template<> inline double t_abs<>(double n) {return fabs(n);} |
---|
803 | /// template<> inline long double t_abs<>(long double n) {return fabsl(n);} |
---|
804 | ///\endcode |
---|
805 | |
---|
806 | |
---|
807 | template<typename M> |
---|
808 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
---|
809 | const M& m; |
---|
810 | public: |
---|
811 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
812 | typedef typename Parent::Key Key; |
---|
813 | typedef typename Parent::Value Value; |
---|
814 | |
---|
815 | ///Constructor |
---|
816 | AbsMap(const M &_m) : m(_m) {}; |
---|
817 | Value operator[](Key k) const { |
---|
818 | Value tmp = m[k]; |
---|
819 | return tmp >= 0 ? tmp : -tmp; |
---|
820 | } |
---|
821 | |
---|
822 | }; |
---|
823 | |
---|
824 | ///Returns a \ref AbsMap class |
---|
825 | |
---|
826 | ///This function just returns a \ref AbsMap class. |
---|
827 | ///\relates AbsMap |
---|
828 | template<typename M> |
---|
829 | inline AbsMap<M> absMap(const M &m) { |
---|
830 | return AbsMap<M>(m); |
---|
831 | } |
---|
832 | |
---|
833 | ///Converts an STL style functor to a map |
---|
834 | |
---|
835 | ///This \ref concepts::ReadMap "read only map" returns the value |
---|
836 | ///of a |
---|
837 | ///given map. |
---|
838 | /// |
---|
839 | ///Template parameters \c K and \c V will become its |
---|
840 | ///\c Key and \c Value. They must be given explicitely |
---|
841 | ///because a functor does not provide such typedefs. |
---|
842 | /// |
---|
843 | ///Parameter \c F is the type of the used functor. |
---|
844 | |
---|
845 | |
---|
846 | template<typename F, |
---|
847 | typename K = typename F::argument_type, |
---|
848 | typename V = typename F::result_type, |
---|
849 | typename NC = False> |
---|
850 | class FunctorMap : public MapBase<K, V> { |
---|
851 | F f; |
---|
852 | public: |
---|
853 | typedef MapBase<K, V> Parent; |
---|
854 | typedef typename Parent::Key Key; |
---|
855 | typedef typename Parent::Value Value; |
---|
856 | |
---|
857 | ///Constructor |
---|
858 | FunctorMap(const F &_f) : f(_f) {} |
---|
859 | |
---|
860 | Value operator[](Key k) const { return f(k);} |
---|
861 | }; |
---|
862 | |
---|
863 | ///Returns a \ref FunctorMap class |
---|
864 | |
---|
865 | ///This function just returns a \ref FunctorMap class. |
---|
866 | /// |
---|
867 | ///The third template parameter isn't necessary to be given. |
---|
868 | ///\relates FunctorMap |
---|
869 | template<typename K, typename V, typename F> inline |
---|
870 | FunctorMap<F, K, V> functorMap(const F &f) { |
---|
871 | return FunctorMap<F, K, V>(f); |
---|
872 | } |
---|
873 | |
---|
874 | template <typename F> inline |
---|
875 | FunctorMap<F, typename F::argument_type, typename F::result_type> |
---|
876 | functorMap(const F &f) { |
---|
877 | return FunctorMap<F, typename F::argument_type, |
---|
878 | typename F::result_type>(f); |
---|
879 | } |
---|
880 | |
---|
881 | template <typename K, typename V> inline |
---|
882 | FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) { |
---|
883 | return FunctorMap<V (*)(K), K, V>(f); |
---|
884 | } |
---|
885 | |
---|
886 | |
---|
887 | ///Converts a map to an STL style (unary) functor |
---|
888 | |
---|
889 | ///This class Converts a map to an STL style (unary) functor. |
---|
890 | ///that is it provides an <tt>operator()</tt> to read its values. |
---|
891 | /// |
---|
892 | ///For the sake of convenience it also works as |
---|
893 | ///a ususal \ref concepts::ReadMap "readable map", |
---|
894 | ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist. |
---|
895 | |
---|
896 | template <typename M> |
---|
897 | class MapFunctor : public MapBase<typename M::Key, typename M::Value> { |
---|
898 | const M& m; |
---|
899 | public: |
---|
900 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
901 | typedef typename Parent::Key Key; |
---|
902 | typedef typename Parent::Value Value; |
---|
903 | |
---|
904 | ///\e |
---|
905 | typedef typename M::Key argument_type; |
---|
906 | ///\e |
---|
907 | typedef typename M::Value result_type; |
---|
908 | |
---|
909 | ///Constructor |
---|
910 | MapFunctor(const M &_m) : m(_m) {}; |
---|
911 | ///Returns a value of the map |
---|
912 | Value operator()(Key k) const {return m[k];} |
---|
913 | ///\e |
---|
914 | Value operator[](Key k) const {return m[k];} |
---|
915 | }; |
---|
916 | |
---|
917 | ///Returns a \ref MapFunctor class |
---|
918 | |
---|
919 | ///This function just returns a \ref MapFunctor class. |
---|
920 | ///\relates MapFunctor |
---|
921 | template<typename M> |
---|
922 | inline MapFunctor<M> mapFunctor(const M &m) { |
---|
923 | return MapFunctor<M>(m); |
---|
924 | } |
---|
925 | |
---|
926 | ///Applies all map setting operations to two maps |
---|
927 | |
---|
928 | ///This map has two \ref concepts::ReadMap "readable map" |
---|
929 | ///parameters and each read request will be passed just to the |
---|
930 | ///first map. This class is the just readable map type of the ForkWriteMap. |
---|
931 | /// |
---|
932 | ///The \c Key and \c Value will be inherited from \c M1. |
---|
933 | ///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
---|
934 | |
---|
935 | template<typename M1, typename M2> |
---|
936 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
937 | const M1& m1; |
---|
938 | const M2& m2; |
---|
939 | public: |
---|
940 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
941 | typedef typename Parent::Key Key; |
---|
942 | typedef typename Parent::Value Value; |
---|
943 | |
---|
944 | ///Constructor |
---|
945 | ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
946 | Value operator[](Key k) const {return m1[k];} |
---|
947 | }; |
---|
948 | |
---|
949 | |
---|
950 | ///Applies all map setting operations to two maps |
---|
951 | |
---|
952 | ///This map has two \ref concepts::WriteMap "writable map" |
---|
953 | ///parameters and each write request will be passed to both of them. |
---|
954 | ///If \c M1 is also \ref concepts::ReadMap "readable", |
---|
955 | ///then the read operations will return the |
---|
956 | ///corresponding values of \c M1. |
---|
957 | /// |
---|
958 | ///The \c Key and \c Value will be inherited from \c M1. |
---|
959 | ///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
---|
960 | |
---|
961 | template<typename M1, typename M2> |
---|
962 | class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
963 | M1& m1; |
---|
964 | M2& m2; |
---|
965 | public: |
---|
966 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
967 | typedef typename Parent::Key Key; |
---|
968 | typedef typename Parent::Value Value; |
---|
969 | |
---|
970 | ///Constructor |
---|
971 | ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
972 | Value operator[](Key k) const {return m1[k];} |
---|
973 | void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);} |
---|
974 | }; |
---|
975 | |
---|
976 | ///Returns an \ref ForkMap class |
---|
977 | |
---|
978 | ///This function just returns an \ref ForkMap class. |
---|
979 | ///\todo How to call these type of functions? |
---|
980 | /// |
---|
981 | ///\relates ForkMap |
---|
982 | ///\todo Wrong scope in Doxygen when \c \\relates is used |
---|
983 | template <typename M1, typename M2> |
---|
984 | inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) { |
---|
985 | return ForkMap<M1, M2>(m1,m2); |
---|
986 | } |
---|
987 | |
---|
988 | template <typename M1, typename M2> |
---|
989 | inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) { |
---|
990 | return ForkWriteMap<M1, M2>(m1,m2); |
---|
991 | } |
---|
992 | |
---|
993 | |
---|
994 | |
---|
995 | /* ************* BOOL MAPS ******************* */ |
---|
996 | |
---|
997 | ///Logical 'not' of a map |
---|
998 | |
---|
999 | ///This bool \ref concepts::ReadMap "read only map" returns the |
---|
1000 | ///logical negation of |
---|
1001 | ///value returned by the |
---|
1002 | ///given map. Its \c Key and will be inherited from \c M, |
---|
1003 | ///its Value is <tt>bool</tt>. |
---|
1004 | |
---|
1005 | template <typename M> |
---|
1006 | class NotMap : public MapBase<typename M::Key, bool> { |
---|
1007 | const M& m; |
---|
1008 | public: |
---|
1009 | typedef MapBase<typename M::Key, bool> Parent; |
---|
1010 | typedef typename Parent::Key Key; |
---|
1011 | typedef typename Parent::Value Value; |
---|
1012 | |
---|
1013 | /// Constructor |
---|
1014 | NotMap(const M &_m) : m(_m) {}; |
---|
1015 | Value operator[](Key k) const {return !m[k];} |
---|
1016 | }; |
---|
1017 | |
---|
1018 | ///Logical 'not' of a map with writing possibility |
---|
1019 | |
---|
1020 | ///This bool \ref concepts::ReadWriteMap "read-write map" returns the |
---|
1021 | ///logical negation of value returned by the given map. When it is set, |
---|
1022 | ///the opposite value is set to the original map. |
---|
1023 | ///Its \c Key and will be inherited from \c M, |
---|
1024 | ///its Value is <tt>bool</tt>. |
---|
1025 | template <typename M> |
---|
1026 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
---|
1027 | M& m; |
---|
1028 | public: |
---|
1029 | typedef MapBase<typename M::Key, bool> Parent; |
---|
1030 | typedef typename Parent::Key Key; |
---|
1031 | typedef typename Parent::Value Value; |
---|
1032 | |
---|
1033 | /// Constructor |
---|
1034 | NotWriteMap(M &_m) : m(_m) {}; |
---|
1035 | Value operator[](Key k) const {return !m[k];} |
---|
1036 | void set(Key k, bool v) { m.set(k, !v); } |
---|
1037 | }; |
---|
1038 | |
---|
1039 | ///Returns a \ref NotMap class |
---|
1040 | |
---|
1041 | ///This function just returns a \ref NotMap class. |
---|
1042 | ///\relates NotMap |
---|
1043 | template <typename M> |
---|
1044 | inline NotMap<M> notMap(const M &m) { |
---|
1045 | return NotMap<M>(m); |
---|
1046 | } |
---|
1047 | |
---|
1048 | template <typename M> |
---|
1049 | inline NotWriteMap<M> notMap(M &m) { |
---|
1050 | return NotWriteMap<M>(m); |
---|
1051 | } |
---|
1052 | |
---|
1053 | namespace _maps_bits { |
---|
1054 | |
---|
1055 | template <typename Value> |
---|
1056 | struct Identity { |
---|
1057 | typedef Value argument_type; |
---|
1058 | typedef Value result_type; |
---|
1059 | Value operator()(const Value& val) const { |
---|
1060 | return val; |
---|
1061 | } |
---|
1062 | }; |
---|
1063 | |
---|
1064 | template <typename _Iterator, typename Enable = void> |
---|
1065 | struct IteratorTraits { |
---|
1066 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
---|
1067 | }; |
---|
1068 | |
---|
1069 | template <typename _Iterator> |
---|
1070 | struct IteratorTraits<_Iterator, |
---|
1071 | typename exists<typename _Iterator::container_type>::type> |
---|
1072 | { |
---|
1073 | typedef typename _Iterator::container_type::value_type Value; |
---|
1074 | }; |
---|
1075 | |
---|
1076 | } |
---|
1077 | |
---|
1078 | |
---|
1079 | /// \brief Writable bool map for store each true assigned elements. |
---|
1080 | /// |
---|
1081 | /// Writable bool map to store each true assigned elements. It will |
---|
1082 | /// copies all the keys set to true to the given iterator. |
---|
1083 | /// |
---|
1084 | /// \note The container of the iterator should contain space |
---|
1085 | /// for each element. |
---|
1086 | /// |
---|
1087 | /// The next example shows how can you write the nodes directly |
---|
1088 | /// to the standard output. |
---|
1089 | ///\code |
---|
1090 | /// typedef IdMap<UGraph, UEdge> UEdgeIdMap; |
---|
1091 | /// UEdgeIdMap uedgeId(ugraph); |
---|
1092 | /// |
---|
1093 | /// typedef MapFunctor<UEdgeIdMap> UEdgeIdFunctor; |
---|
1094 | /// UEdgeIdFunctor uedgeIdFunctor(uedgeId); |
---|
1095 | /// |
---|
1096 | /// StoreBoolMap<ostream_iterator<int>, UEdgeIdFunctor> |
---|
1097 | /// writerMap(ostream_iterator<int>(cout, " "), uedgeIdFunctor); |
---|
1098 | /// |
---|
1099 | /// prim(ugraph, cost, writerMap); |
---|
1100 | ///\endcode |
---|
1101 | template <typename _Iterator, |
---|
1102 | typename _Functor = |
---|
1103 | _maps_bits::Identity<typename _maps_bits:: |
---|
1104 | IteratorTraits<_Iterator>::Value> > |
---|
1105 | class StoreBoolMap { |
---|
1106 | public: |
---|
1107 | typedef _Iterator Iterator; |
---|
1108 | |
---|
1109 | typedef typename _Functor::argument_type Key; |
---|
1110 | typedef bool Value; |
---|
1111 | |
---|
1112 | typedef _Functor Functor; |
---|
1113 | |
---|
1114 | /// Constructor |
---|
1115 | StoreBoolMap(Iterator it, const Functor& functor = Functor()) |
---|
1116 | : _begin(it), _end(it), _functor(functor) {} |
---|
1117 | |
---|
1118 | /// Gives back the given iterator set for the first time. |
---|
1119 | Iterator begin() const { |
---|
1120 | return _begin; |
---|
1121 | } |
---|
1122 | |
---|
1123 | /// Gives back the iterator after the last set operation. |
---|
1124 | Iterator end() const { |
---|
1125 | return _end; |
---|
1126 | } |
---|
1127 | |
---|
1128 | /// Setter function of the map |
---|
1129 | void set(const Key& key, Value value) const { |
---|
1130 | if (value) { |
---|
1131 | *_end++ = _functor(key); |
---|
1132 | } |
---|
1133 | } |
---|
1134 | |
---|
1135 | private: |
---|
1136 | Iterator _begin; |
---|
1137 | mutable Iterator _end; |
---|
1138 | Functor _functor; |
---|
1139 | }; |
---|
1140 | |
---|
1141 | /// \brief Writable bool map for store each true assigned elements in |
---|
1142 | /// a back insertable container. |
---|
1143 | /// |
---|
1144 | /// Writable bool map for store each true assigned elements in a back |
---|
1145 | /// insertable container. It will push back all the keys set to true into |
---|
1146 | /// the container. It can be used to retrieve the items into a standard |
---|
1147 | /// container. The next example shows how can you store the undirected |
---|
1148 | /// edges in a vector with prim algorithm. |
---|
1149 | /// |
---|
1150 | ///\code |
---|
1151 | /// vector<UEdge> span_tree_uedges; |
---|
1152 | /// BackInserterBoolMap<vector<UEdge> > inserter_map(span_tree_uedges); |
---|
1153 | /// prim(ugraph, cost, inserter_map); |
---|
1154 | ///\endcode |
---|
1155 | template <typename Container, |
---|
1156 | typename Functor = |
---|
1157 | _maps_bits::Identity<typename Container::value_type> > |
---|
1158 | class BackInserterBoolMap { |
---|
1159 | public: |
---|
1160 | typedef typename Container::value_type Key; |
---|
1161 | typedef bool Value; |
---|
1162 | |
---|
1163 | /// Constructor |
---|
1164 | BackInserterBoolMap(Container& _container, |
---|
1165 | const Functor& _functor = Functor()) |
---|
1166 | : container(_container), functor(_functor) {} |
---|
1167 | |
---|
1168 | /// Setter function of the map |
---|
1169 | void set(const Key& key, Value value) { |
---|
1170 | if (value) { |
---|
1171 | container.push_back(functor(key)); |
---|
1172 | } |
---|
1173 | } |
---|
1174 | |
---|
1175 | private: |
---|
1176 | Container& container; |
---|
1177 | Functor functor; |
---|
1178 | }; |
---|
1179 | |
---|
1180 | /// \brief Writable bool map for store each true assigned elements in |
---|
1181 | /// a front insertable container. |
---|
1182 | /// |
---|
1183 | /// Writable bool map for store each true assigned elements in a front |
---|
1184 | /// insertable container. It will push front all the keys set to \c true into |
---|
1185 | /// the container. For example see the BackInserterBoolMap. |
---|
1186 | template <typename Container, |
---|
1187 | typename Functor = |
---|
1188 | _maps_bits::Identity<typename Container::value_type> > |
---|
1189 | class FrontInserterBoolMap { |
---|
1190 | public: |
---|
1191 | typedef typename Container::value_type Key; |
---|
1192 | typedef bool Value; |
---|
1193 | |
---|
1194 | /// Constructor |
---|
1195 | FrontInserterBoolMap(Container& _container, |
---|
1196 | const Functor& _functor = Functor()) |
---|
1197 | : container(_container), functor(_functor) {} |
---|
1198 | |
---|
1199 | /// Setter function of the map |
---|
1200 | void set(const Key& key, Value value) { |
---|
1201 | if (value) { |
---|
1202 | container.push_front(key); |
---|
1203 | } |
---|
1204 | } |
---|
1205 | |
---|
1206 | private: |
---|
1207 | Container& container; |
---|
1208 | Functor functor; |
---|
1209 | }; |
---|
1210 | |
---|
1211 | /// \brief Writable bool map for store each true assigned elements in |
---|
1212 | /// an insertable container. |
---|
1213 | /// |
---|
1214 | /// Writable bool map for store each true assigned elements in an |
---|
1215 | /// insertable container. It will insert all the keys set to \c true into |
---|
1216 | /// the container. If you want to store the cut edges of the strongly |
---|
1217 | /// connected components in a set you can use the next code: |
---|
1218 | /// |
---|
1219 | ///\code |
---|
1220 | /// set<Edge> cut_edges; |
---|
1221 | /// InserterBoolMap<set<Edge> > inserter_map(cut_edges); |
---|
1222 | /// stronglyConnectedCutEdges(graph, cost, inserter_map); |
---|
1223 | ///\endcode |
---|
1224 | template <typename Container, |
---|
1225 | typename Functor = |
---|
1226 | _maps_bits::Identity<typename Container::value_type> > |
---|
1227 | class InserterBoolMap { |
---|
1228 | public: |
---|
1229 | typedef typename Container::value_type Key; |
---|
1230 | typedef bool Value; |
---|
1231 | |
---|
1232 | /// Constructor |
---|
1233 | InserterBoolMap(Container& _container, typename Container::iterator _it, |
---|
1234 | const Functor& _functor = Functor()) |
---|
1235 | : container(_container), it(_it), functor(_functor) {} |
---|
1236 | |
---|
1237 | /// Constructor |
---|
1238 | InserterBoolMap(Container& _container, const Functor& _functor = Functor()) |
---|
1239 | : container(_container), it(_container.end()), functor(_functor) {} |
---|
1240 | |
---|
1241 | /// Setter function of the map |
---|
1242 | void set(const Key& key, Value value) { |
---|
1243 | if (value) { |
---|
1244 | it = container.insert(it, key); |
---|
1245 | ++it; |
---|
1246 | } |
---|
1247 | } |
---|
1248 | |
---|
1249 | private: |
---|
1250 | Container& container; |
---|
1251 | typename Container::iterator it; |
---|
1252 | Functor functor; |
---|
1253 | }; |
---|
1254 | |
---|
1255 | /// \brief Fill the true set elements with a given value. |
---|
1256 | /// |
---|
1257 | /// Writable bool map to fill the elements set to \c true with a given value. |
---|
1258 | /// The value can set |
---|
1259 | /// the container. |
---|
1260 | /// |
---|
1261 | /// The next code finds the connected components of the undirected graph |
---|
1262 | /// and stores it in the \c comp map: |
---|
1263 | ///\code |
---|
1264 | /// typedef UGraph::NodeMap<int> ComponentMap; |
---|
1265 | /// ComponentMap comp(ugraph); |
---|
1266 | /// typedef FillBoolMap<UGraph::NodeMap<int> > ComponentFillerMap; |
---|
1267 | /// ComponentFillerMap filler(comp, 0); |
---|
1268 | /// |
---|
1269 | /// Dfs<UGraph>::DefProcessedMap<ComponentFillerMap>::Create dfs(ugraph); |
---|
1270 | /// dfs.processedMap(filler); |
---|
1271 | /// dfs.init(); |
---|
1272 | /// for (NodeIt it(ugraph); it != INVALID; ++it) { |
---|
1273 | /// if (!dfs.reached(it)) { |
---|
1274 | /// dfs.addSource(it); |
---|
1275 | /// dfs.start(); |
---|
1276 | /// ++filler.fillValue(); |
---|
1277 | /// } |
---|
1278 | /// } |
---|
1279 | ///\endcode |
---|
1280 | |
---|
1281 | template <typename Map> |
---|
1282 | class FillBoolMap { |
---|
1283 | public: |
---|
1284 | typedef typename Map::Key Key; |
---|
1285 | typedef bool Value; |
---|
1286 | |
---|
1287 | /// Constructor |
---|
1288 | FillBoolMap(Map& _map, const typename Map::Value& _fill) |
---|
1289 | : map(_map), fill(_fill) {} |
---|
1290 | |
---|
1291 | /// Constructor |
---|
1292 | FillBoolMap(Map& _map) |
---|
1293 | : map(_map), fill() {} |
---|
1294 | |
---|
1295 | /// Gives back the current fill value |
---|
1296 | const typename Map::Value& fillValue() const { |
---|
1297 | return fill; |
---|
1298 | } |
---|
1299 | |
---|
1300 | /// Gives back the current fill value |
---|
1301 | typename Map::Value& fillValue() { |
---|
1302 | return fill; |
---|
1303 | } |
---|
1304 | |
---|
1305 | /// Sets the current fill value |
---|
1306 | void fillValue(const typename Map::Value& _fill) { |
---|
1307 | fill = _fill; |
---|
1308 | } |
---|
1309 | |
---|
1310 | /// Setter function of the map |
---|
1311 | void set(const Key& key, Value value) { |
---|
1312 | if (value) { |
---|
1313 | map.set(key, fill); |
---|
1314 | } |
---|
1315 | } |
---|
1316 | |
---|
1317 | private: |
---|
1318 | Map& map; |
---|
1319 | typename Map::Value fill; |
---|
1320 | }; |
---|
1321 | |
---|
1322 | |
---|
1323 | /// \brief Writable bool map which stores for each true assigned elements |
---|
1324 | /// the setting order number. |
---|
1325 | /// |
---|
1326 | /// Writable bool map which stores for each true assigned elements |
---|
1327 | /// the setting order number. It make easy to calculate the leaving |
---|
1328 | /// order of the nodes in the \ref dfs "Dfs" algorithm. |
---|
1329 | /// |
---|
1330 | ///\code |
---|
1331 | /// typedef Graph::NodeMap<int> OrderMap; |
---|
1332 | /// OrderMap order(graph); |
---|
1333 | /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
---|
1334 | /// OrderSetterMap setter(order); |
---|
1335 | /// Dfs<Graph>::DefProcessedMap<OrderSetterMap>::Create dfs(graph); |
---|
1336 | /// dfs.processedMap(setter); |
---|
1337 | /// dfs.init(); |
---|
1338 | /// for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1339 | /// if (!dfs.reached(it)) { |
---|
1340 | /// dfs.addSource(it); |
---|
1341 | /// dfs.start(); |
---|
1342 | /// } |
---|
1343 | /// } |
---|
1344 | ///\endcode |
---|
1345 | /// |
---|
1346 | /// The discovering order can be stored a little harder because the |
---|
1347 | /// ReachedMap should be readable in the dfs algorithm but the setting |
---|
1348 | /// order map is not readable. Now we should use the fork map: |
---|
1349 | /// |
---|
1350 | ///\code |
---|
1351 | /// typedef Graph::NodeMap<int> OrderMap; |
---|
1352 | /// OrderMap order(graph); |
---|
1353 | /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
---|
1354 | /// OrderSetterMap setter(order); |
---|
1355 | /// typedef Graph::NodeMap<bool> StoreMap; |
---|
1356 | /// StoreMap store(graph); |
---|
1357 | /// |
---|
1358 | /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap; |
---|
1359 | /// ReachedMap reached(store, setter); |
---|
1360 | /// |
---|
1361 | /// Dfs<Graph>::DefReachedMap<ReachedMap>::Create dfs(graph); |
---|
1362 | /// dfs.reachedMap(reached); |
---|
1363 | /// dfs.init(); |
---|
1364 | /// for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1365 | /// if (!dfs.reached(it)) { |
---|
1366 | /// dfs.addSource(it); |
---|
1367 | /// dfs.start(); |
---|
1368 | /// } |
---|
1369 | /// } |
---|
1370 | ///\endcode |
---|
1371 | template <typename Map> |
---|
1372 | class SettingOrderBoolMap { |
---|
1373 | public: |
---|
1374 | typedef typename Map::Key Key; |
---|
1375 | typedef bool Value; |
---|
1376 | |
---|
1377 | /// Constructor |
---|
1378 | SettingOrderBoolMap(Map& _map) |
---|
1379 | : map(_map), counter(0) {} |
---|
1380 | |
---|
1381 | /// Number of set operations. |
---|
1382 | int num() const { |
---|
1383 | return counter; |
---|
1384 | } |
---|
1385 | |
---|
1386 | /// Setter function of the map |
---|
1387 | void set(const Key& key, Value value) { |
---|
1388 | if (value) { |
---|
1389 | map.set(key, counter++); |
---|
1390 | } |
---|
1391 | } |
---|
1392 | |
---|
1393 | private: |
---|
1394 | Map& map; |
---|
1395 | int counter; |
---|
1396 | }; |
---|
1397 | |
---|
1398 | /// @} |
---|
1399 | } |
---|
1400 | |
---|
1401 | #endif // LEMON_MAPS_H |
---|