COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/maps.h @ 2511:a99186a9b6b0

Last change on this file since 2511:a99186a9b6b0 was 2511:a99186a9b6b0, checked in by Balazs Dezso, 12 years ago

IntegerMap?

File size: 42.2 KB
Line 
1/* -*- C++ -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_MAPS_H
20#define LEMON_MAPS_H
21
22#include <iterator>
23#include <functional>
24#include <vector>
25
26#include <lemon/bits/utility.h>
27#include <lemon/bits/traits.h>
28
29///\file
30///\ingroup maps
31///\brief Miscellaneous property maps
32///
33#include <map>
34
35namespace lemon {
36
37  /// \addtogroup maps
38  /// @{
39
40  /// Base class of maps.
41
42  /// Base class of maps.
43  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
44  template<typename K, typename T>
45  class MapBase {
46  public:
47    ///\e
48    typedef K Key;
49    ///\e
50    typedef T Value;
51  };
52
53  /// Null map. (a.k.a. DoNothingMap)
54
55  /// If you have to provide a map only for its type definitions,
56  /// or if you have to provide a writable map, but
57  /// data written to it will sent to <tt>/dev/null</tt>...
58  template<typename K, typename T>
59  class NullMap : public MapBase<K, T> {
60  public:
61    typedef MapBase<K, T> Parent;
62    typedef typename Parent::Key Key;
63    typedef typename Parent::Value Value;
64   
65    /// Gives back a default constructed element.
66    T operator[](const K&) const { return T(); }
67    /// Absorbs the value.
68    void set(const K&, const T&) {}
69  };
70
71  template <typename K, typename V>
72  NullMap<K, V> nullMap() {
73    return NullMap<K, V>();
74  }
75
76
77  /// Constant map.
78
79  /// This is a readable map which assigns a specified value to each key.
80  /// In other aspects it is equivalent to the \c NullMap.
81  template<typename K, typename T>
82  class ConstMap : public MapBase<K, T> {
83  private:
84    T v;
85  public:
86
87    typedef MapBase<K, T> Parent;
88    typedef typename Parent::Key Key;
89    typedef typename Parent::Value Value;
90
91    /// Default constructor
92
93    /// The value of the map will be uninitialized.
94    /// (More exactly it will be default constructed.)
95    ConstMap() {}
96    ///\e
97
98    /// \param _v The initial value of the map.
99    ///
100    ConstMap(const T &_v) : v(_v) {}
101   
102    ///\e
103    T operator[](const K&) const { return v; }
104
105    ///\e
106    void setAll(const T &t) {
107      v = t;
108    }   
109
110    template<typename T1>
111    struct rebind {
112      typedef ConstMap<K, T1> other;
113    };
114
115    template<typename T1>
116    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
117  };
118
119  ///Returns a \c ConstMap class
120
121  ///This function just returns a \c ConstMap class.
122  ///\relates ConstMap
123  template<typename K, typename V>
124  inline ConstMap<K, V> constMap(const V &v) {
125    return ConstMap<K, V>(v);
126  }
127
128
129  template<typename T, T v>
130  struct Const { };
131
132  /// Constant map with inlined constant value.
133
134  /// This is a readable map which assigns a specified value to each key.
135  /// In other aspects it is equivalent to the \c NullMap.
136  template<typename K, typename V, V v>
137  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
138  public:
139    typedef MapBase<K, V> Parent;
140    typedef typename Parent::Key Key;
141    typedef typename Parent::Value Value;
142
143    ConstMap() { }
144    ///\e
145    V operator[](const K&) const { return v; }
146    ///\e
147    void set(const K&, const V&) { }
148  };
149
150  ///Returns a \c ConstMap class
151
152  ///This function just returns a \c ConstMap class with inlined value.
153  ///\relates ConstMap
154  template<typename K, typename V, V v>
155  inline ConstMap<K, Const<V, v> > constMap() {
156    return ConstMap<K, Const<V, v> >();
157  }
158
159  ///Map based on std::map
160
161  ///This is essentially a wrapper for \c std::map. With addition that
162  ///you can specify a default value different from \c Value() .
163  template <typename K, typename T, typename Compare = std::less<K> >
164  class StdMap {
165    template <typename K1, typename T1, typename C1>
166    friend class StdMap;
167  public:
168
169    typedef True ReferenceMapTag;
170    ///\e
171    typedef K Key;
172    ///\e
173    typedef T Value;
174    ///\e
175    typedef T& Reference;
176    ///\e
177    typedef const T& ConstReference;
178
179  private:
180   
181    typedef std::map<K, T, Compare> Map;
182    Value _value;
183    Map _map;
184
185  public:
186
187    /// Constructor with specified default value
188    StdMap(const T& value = T()) : _value(value) {}
189    /// \brief Constructs the map from an appropriate std::map, and explicitly
190    /// specifies a default value.
191    template <typename T1, typename Comp1>
192    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T())
193      : _map(map.begin(), map.end()), _value(value) {}
194   
195    /// \brief Constructs a map from an other StdMap.
196    template<typename T1, typename Comp1>
197    StdMap(const StdMap<Key, T1, Comp1> &c)
198      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
199
200  private:
201
202    StdMap& operator=(const StdMap&);
203
204  public:
205
206    ///\e
207    Reference operator[](const Key &k) {
208      typename Map::iterator it = _map.lower_bound(k);
209      if (it != _map.end() && !_map.key_comp()(k, it->first))
210        return it->second;
211      else
212        return _map.insert(it, std::make_pair(k, _value))->second;
213    }
214
215    /// \e
216    ConstReference operator[](const Key &k) const {
217      typename Map::const_iterator it = _map.find(k);
218      if (it != _map.end())
219        return it->second;
220      else
221        return _value;
222    }
223
224    /// \e
225    void set(const Key &k, const T &t) {
226      typename Map::iterator it = _map.lower_bound(k);
227      if (it != _map.end() && !_map.key_comp()(k, it->first))
228        it->second = t;
229      else
230        _map.insert(it, std::make_pair(k, t));
231    }
232
233    /// \e
234    void setAll(const T &t) {
235      _value = t;
236      _map.clear();
237    }   
238
239    template <typename T1, typename C1 = std::less<T1> >
240    struct rebind {
241      typedef StdMap<Key, T1, C1> other;
242    };
243  };
244
245  /// \brief Map for storing values for the range \c [0..size-1] range keys
246  ///
247  /// The current map has the \c [0..size-1] keyset and the values
248  /// are stored in a \c std::vector<T>  container. It can be used with
249  /// some data structures, for example \c UnionFind, \c BinHeap, when
250  /// the used items are small integer numbers.
251  template <typename T>
252  class IntegerMap {
253
254    template <typename T1>
255    friend class IntegerMap;
256
257  public:
258
259    typedef True ReferenceMapTag;
260    ///\e
261    typedef int Key;
262    ///\e
263    typedef T Value;
264    ///\e
265    typedef T& Reference;
266    ///\e
267    typedef const T& ConstReference;
268
269  private:
270   
271    typedef std::vector<T> Vector;
272    Vector _vector;
273
274  public:
275
276    /// Constructor with specified default value
277    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
278
279    /// \brief Constructs the map from an appropriate std::vector.
280    template <typename T1>
281    IntegerMap(const std::vector<T1>& vector)
282      : _vector(vector.begin(), vector.end()) {}
283   
284    /// \brief Constructs a map from an other IntegerMap.
285    template <typename T1>
286    IntegerMap(const IntegerMap<T1> &c)
287      : _vector(c._vector.begin(), c._vector.end()) {}
288
289    /// \brief Resize the container
290    void resize(int size, const T& value = T()) {
291      _vector.resize(size, value);
292    }
293
294  private:
295
296    IntegerMap& operator=(const IntegerMap&);
297
298  public:
299
300    ///\e
301    Reference operator[](Key k) {
302      return _vector[k];
303    }
304
305    /// \e
306    ConstReference operator[](Key k) const {
307      return _vector[k];
308    }
309
310    /// \e
311    void set(const Key &k, const T& t) {
312      _vector[k] = t;
313    }
314
315  };
316
317  /// @}
318
319  /// \addtogroup map_adaptors
320  /// @{
321
322  /// \brief Identity mapping.
323  ///
324  /// This mapping gives back the given key as value without any
325  /// modification.
326  template <typename T>
327  class IdentityMap : public MapBase<T, T> {
328  public:
329    typedef MapBase<T, T> Parent;
330    typedef typename Parent::Key Key;
331    typedef typename Parent::Value Value;
332
333    /// \e
334    const T& operator[](const T& t) const {
335      return t;
336    }
337  };
338
339  ///Returns an \c IdentityMap class
340
341  ///This function just returns an \c IdentityMap class.
342  ///\relates IdentityMap
343  template<typename T>
344  inline IdentityMap<T> identityMap() {
345    return IdentityMap<T>();
346  }
347 
348
349  ///Convert the \c Value of a map to another type.
350
351  ///This \c concepts::ReadMap "read only map"
352  ///converts the \c Value of a maps to type \c T.
353  ///Its \c Key is inherited from \c M.
354  template <typename M, typename T>
355  class ConvertMap : public MapBase<typename M::Key, T> {
356    const M& m;
357  public:
358    typedef MapBase<typename M::Key, T> Parent;
359    typedef typename Parent::Key Key;
360    typedef typename Parent::Value Value;
361
362    ///Constructor
363
364    ///Constructor
365    ///\param _m is the underlying map
366    ConvertMap(const M &_m) : m(_m) {};
367
368    /// \brief The subscript operator.
369    ///
370    /// The subscript operator.
371    /// \param k The key
372    /// \return The target of the edge
373    Value operator[](const Key& k) const {return m[k];}
374  };
375 
376  ///Returns an \c ConvertMap class
377
378  ///This function just returns an \c ConvertMap class.
379  ///\relates ConvertMap
380  template<typename T, typename M>
381  inline ConvertMap<M, T> convertMap(const M &m) {
382    return ConvertMap<M, T>(m);
383  }
384
385  ///Simple wrapping of the map
386
387  ///This \c concepts::ReadMap "read only map" returns the simple
388  ///wrapping of the given map. Sometimes the reference maps cannot be
389  ///combined with simple read maps. This map adaptor wraps the given
390  ///map to simple read map.
391  template<typename M>
392  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
393    const M& m;
394
395  public:
396    typedef MapBase<typename M::Key, typename M::Value> Parent;
397    typedef typename Parent::Key Key;
398    typedef typename Parent::Value Value;
399
400    ///Constructor
401    SimpleMap(const M &_m) : m(_m) {};
402    ///\e
403    Value operator[](Key k) const {return m[k];}
404  };
405
406  ///Simple writeable wrapping of the map
407
408  ///This \c concepts::ReadMap "read only map" returns the simple
409  ///wrapping of the given map. Sometimes the reference maps cannot be
410  ///combined with simple read-write maps. This map adaptor wraps the
411  ///given map to simple read-write map.
412  template<typename M>
413  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
414    M& m;
415
416  public:
417    typedef MapBase<typename M::Key, typename M::Value> Parent;
418    typedef typename Parent::Key Key;
419    typedef typename Parent::Value Value;
420
421    ///Constructor
422    SimpleWriteMap(M &_m) : m(_m) {};
423    ///\e
424    Value operator[](Key k) const {return m[k];}
425    ///\e
426    void set(Key k, const Value& c) { m.set(k, c); }
427  };
428
429  ///Sum of two maps
430
431  ///This \c concepts::ReadMap "read only map" returns the sum of the two
432  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
433  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
434
435  template<typename M1, typename M2>
436  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
437    const M1& m1;
438    const M2& m2;
439
440  public:
441    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
442    typedef typename Parent::Key Key;
443    typedef typename Parent::Value Value;
444
445    ///Constructor
446    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
447    ///\e
448    Value operator[](Key k) const {return m1[k]+m2[k];}
449  };
450 
451  ///Returns an \c AddMap class
452
453  ///This function just returns an \c AddMap class.
454  ///\todo How to call these type of functions?
455  ///
456  ///\relates AddMap
457  template<typename M1, typename M2>
458  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
459    return AddMap<M1, M2>(m1,m2);
460  }
461
462  ///Shift a map with a constant.
463
464  ///This \c concepts::ReadMap "read only map" returns the sum of the
465  ///given map and a constant value.
466  ///Its \c Key and \c Value is inherited from \c M.
467  ///
468  ///Actually,
469  ///\code
470  ///  ShiftMap<X> sh(x,v);
471  ///\endcode
472  ///is equivalent with
473  ///\code
474  ///  ConstMap<X::Key, X::Value> c_tmp(v);
475  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
476  ///\endcode
477  template<typename M, typename C = typename M::Value>
478  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
479    const M& m;
480    C v;
481  public:
482    typedef MapBase<typename M::Key, typename M::Value> Parent;
483    typedef typename Parent::Key Key;
484    typedef typename Parent::Value Value;
485
486    ///Constructor
487
488    ///Constructor
489    ///\param _m is the undelying map
490    ///\param _v is the shift value
491    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
492    ///\e
493    Value operator[](Key k) const {return m[k] + v;}
494  };
495
496  ///Shift a map with a constant.
497
498  ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
499  ///given map and a constant value. It makes also possible to write the map.
500  ///Its \c Key and \c Value is inherited from \c M.
501  ///
502  ///Actually,
503  ///\code
504  ///  ShiftMap<X> sh(x,v);
505  ///\endcode
506  ///is equivalent with
507  ///\code
508  ///  ConstMap<X::Key, X::Value> c_tmp(v);
509  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
510  ///\endcode
511  template<typename M, typename C = typename M::Value>
512  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
513    M& m;
514    C v;
515  public:
516    typedef MapBase<typename M::Key, typename M::Value> Parent;
517    typedef typename Parent::Key Key;
518    typedef typename Parent::Value Value;
519
520    ///Constructor
521
522    ///Constructor
523    ///\param _m is the undelying map
524    ///\param _v is the shift value
525    ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
526    /// \e
527    Value operator[](Key k) const {return m[k] + v;}
528    /// \e
529    void set(Key k, const Value& c) { m.set(k, c - v); }
530  };
531 
532  ///Returns an \c ShiftMap class
533
534  ///This function just returns an \c ShiftMap class.
535  ///\relates ShiftMap
536  template<typename M, typename C>
537  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
538    return ShiftMap<M, C>(m,v);
539  }
540
541  template<typename M, typename C>
542  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
543    return ShiftWriteMap<M, C>(m,v);
544  }
545
546  ///Difference of two maps
547
548  ///This \c concepts::ReadMap "read only map" returns the difference
549  ///of the values of the two
550  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
551  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
552
553  template<typename M1, typename M2>
554  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
555    const M1& m1;
556    const M2& m2;
557  public:
558    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
559    typedef typename Parent::Key Key;
560    typedef typename Parent::Value Value;
561
562    ///Constructor
563    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
564    /// \e
565    Value operator[](Key k) const {return m1[k]-m2[k];}
566  };
567 
568  ///Returns a \c SubMap class
569
570  ///This function just returns a \c SubMap class.
571  ///
572  ///\relates SubMap
573  template<typename M1, typename M2>
574  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
575    return SubMap<M1, M2>(m1, m2);
576  }
577
578  ///Product of two maps
579
580  ///This \c concepts::ReadMap "read only map" returns the product of the
581  ///values of the two
582  ///given
583  ///maps. Its \c Key and \c Value will be inherited from \c M1.
584  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
585
586  template<typename M1, typename M2>
587  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
588    const M1& m1;
589    const M2& m2;
590  public:
591    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
592    typedef typename Parent::Key Key;
593    typedef typename Parent::Value Value;
594
595    ///Constructor
596    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
597    /// \e
598    Value operator[](Key k) const {return m1[k]*m2[k];}
599  };
600 
601  ///Returns a \c MulMap class
602
603  ///This function just returns a \c MulMap class.
604  ///\relates MulMap
605  template<typename M1, typename M2>
606  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
607    return MulMap<M1, M2>(m1,m2);
608  }
609 
610  ///Scales a maps with a constant.
611
612  ///This \c concepts::ReadMap "read only map" returns the value of the
613  ///given map multiplied from the left side with a constant value.
614  ///Its \c Key and \c Value is inherited from \c M.
615  ///
616  ///Actually,
617  ///\code
618  ///  ScaleMap<X> sc(x,v);
619  ///\endcode
620  ///is equivalent with
621  ///\code
622  ///  ConstMap<X::Key, X::Value> c_tmp(v);
623  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
624  ///\endcode
625  template<typename M, typename C = typename M::Value>
626  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
627    const M& m;
628    C v;
629  public:
630    typedef MapBase<typename M::Key, typename M::Value> Parent;
631    typedef typename Parent::Key Key;
632    typedef typename Parent::Value Value;
633
634    ///Constructor
635
636    ///Constructor
637    ///\param _m is the undelying map
638    ///\param _v is the scaling value
639    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
640    /// \e
641    Value operator[](Key k) const {return v * m[k];}
642  };
643
644  ///Scales a maps with a constant.
645
646  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
647  ///given map multiplied from the left side with a constant value. It can
648  ///be used as write map also if the given multiplier is not zero.
649  ///Its \c Key and \c Value is inherited from \c M.
650  template<typename M, typename C = typename M::Value>
651  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
652    M& m;
653    C v;
654  public:
655    typedef MapBase<typename M::Key, typename M::Value> Parent;
656    typedef typename Parent::Key Key;
657    typedef typename Parent::Value Value;
658
659    ///Constructor
660
661    ///Constructor
662    ///\param _m is the undelying map
663    ///\param _v is the scaling value
664    ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
665    /// \e
666    Value operator[](Key k) const {return v * m[k];}
667    /// \e
668    void set(Key k, const Value& c) { m.set(k, c / v);}
669  };
670 
671  ///Returns an \c ScaleMap class
672
673  ///This function just returns an \c ScaleMap class.
674  ///\relates ScaleMap
675  template<typename M, typename C>
676  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
677    return ScaleMap<M, C>(m,v);
678  }
679
680  template<typename M, typename C>
681  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
682    return ScaleWriteMap<M, C>(m,v);
683  }
684
685  ///Quotient of two maps
686
687  ///This \c concepts::ReadMap "read only map" returns the quotient of the
688  ///values of the two
689  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
690  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
691
692  template<typename M1, typename M2>
693  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
694    const M1& m1;
695    const M2& m2;
696  public:
697    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
698    typedef typename Parent::Key Key;
699    typedef typename Parent::Value Value;
700
701    ///Constructor
702    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
703    /// \e
704    Value operator[](Key k) const {return m1[k]/m2[k];}
705  };
706 
707  ///Returns a \c DivMap class
708
709  ///This function just returns a \c DivMap class.
710  ///\relates DivMap
711  template<typename M1, typename M2>
712  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
713    return DivMap<M1, M2>(m1,m2);
714  }
715 
716  ///Composition of two maps
717
718  ///This \c concepts::ReadMap "read only map" returns the composition of
719  ///two
720  ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
721  ///of \c M2,
722  ///then for
723  ///\code
724  ///  ComposeMap<M1, M2> cm(m1,m2);
725  ///\endcode
726  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
727  ///
728  ///Its \c Key is inherited from \c M2 and its \c Value is from
729  ///\c M1.
730  ///The \c M2::Value must be convertible to \c M1::Key.
731  ///\todo Check the requirements.
732  template <typename M1, typename M2>
733  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
734    const M1& m1;
735    const M2& m2;
736  public:
737    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
738    typedef typename Parent::Key Key;
739    typedef typename Parent::Value Value;
740
741    ///Constructor
742    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
743   
744    typename MapTraits<M1>::ConstReturnValue
745    /// \e
746    operator[](Key k) const {return m1[m2[k]];}
747  };
748  ///Returns a \c ComposeMap class
749
750  ///This function just returns a \c ComposeMap class.
751  ///
752  ///\relates ComposeMap
753  template <typename M1, typename M2>
754  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
755    return ComposeMap<M1, M2>(m1,m2);
756  }
757 
758  ///Combines of two maps using an STL (binary) functor.
759
760  ///Combines of two maps using an STL (binary) functor.
761  ///
762  ///
763  ///This \c concepts::ReadMap "read only map" takes two maps and a
764  ///binary functor and returns the composition of
765  ///the two
766  ///given maps unsing the functor.
767  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
768  ///and \c f is of \c F,
769  ///then for
770  ///\code
771  ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
772  ///\endcode
773  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
774  ///
775  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
776  ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
777  ///input parameter of \c F and the return type of \c F must be convertible
778  ///to \c V.
779  ///\todo Check the requirements.
780  template<typename M1, typename M2, typename F,
781           typename V = typename F::result_type>
782  class CombineMap : public MapBase<typename M1::Key, V> {
783    const M1& m1;
784    const M2& m2;
785    F f;
786  public:
787    typedef MapBase<typename M1::Key, V> Parent;
788    typedef typename Parent::Key Key;
789    typedef typename Parent::Value Value;
790
791    ///Constructor
792    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
793      : m1(_m1), m2(_m2), f(_f) {};
794    /// \e
795    Value operator[](Key k) const {return f(m1[k],m2[k]);}
796  };
797 
798  ///Returns a \c CombineMap class
799
800  ///This function just returns a \c CombineMap class.
801  ///
802  ///For example if \c m1 and \c m2 are both \c double valued maps, then
803  ///\code
804  ///combineMap<double>(m1,m2,std::plus<double>())
805  ///\endcode
806  ///is equivalent with
807  ///\code
808  ///addMap(m1,m2)
809  ///\endcode
810  ///
811  ///This function is specialized for adaptable binary function
812  ///classes and c++ functions.
813  ///
814  ///\relates CombineMap
815  template<typename M1, typename M2, typename F, typename V>
816  inline CombineMap<M1, M2, F, V>
817  combineMap(const M1& m1,const M2& m2, const F& f) {
818    return CombineMap<M1, M2, F, V>(m1,m2,f);
819  }
820
821  template<typename M1, typename M2, typename F>
822  inline CombineMap<M1, M2, F, typename F::result_type>
823  combineMap(const M1& m1, const M2& m2, const F& f) {
824    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
825  }
826
827  template<typename M1, typename M2, typename K1, typename K2, typename V>
828  inline CombineMap<M1, M2, V (*)(K1, K2), V>
829  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
830    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
831  }
832
833  ///Negative value of a map
834
835  ///This \c concepts::ReadMap "read only map" returns the negative
836  ///value of the
837  ///value returned by the
838  ///given map. Its \c Key and \c Value will be inherited from \c M.
839  ///The unary \c - operator must be defined for \c Value, of course.
840
841  template<typename M>
842  class NegMap : public MapBase<typename M::Key, typename M::Value> {
843    const M& m;
844  public:
845    typedef MapBase<typename M::Key, typename M::Value> Parent;
846    typedef typename Parent::Key Key;
847    typedef typename Parent::Value Value;
848
849    ///Constructor
850    NegMap(const M &_m) : m(_m) {};
851    /// \e
852    Value operator[](Key k) const {return -m[k];}
853  };
854 
855  ///Negative value of a map
856
857  ///This \c concepts::ReadWriteMap "read-write map" returns the negative
858  ///value of the value returned by the
859  ///given map. Its \c Key and \c Value will be inherited from \c M.
860  ///The unary \c - operator must be defined for \c Value, of course.
861
862  template<typename M>
863  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
864    M& m;
865  public:
866    typedef MapBase<typename M::Key, typename M::Value> Parent;
867    typedef typename Parent::Key Key;
868    typedef typename Parent::Value Value;
869
870    ///Constructor
871    NegWriteMap(M &_m) : m(_m) {};
872    /// \e
873    Value operator[](Key k) const {return -m[k];}
874    /// \e
875    void set(Key k, const Value& v) { m.set(k, -v); }
876  };
877
878  ///Returns a \c NegMap class
879
880  ///This function just returns a \c NegMap class.
881  ///\relates NegMap
882  template <typename M>
883  inline NegMap<M> negMap(const M &m) {
884    return NegMap<M>(m);
885  }
886
887  template <typename M>
888  inline NegWriteMap<M> negMap(M &m) {
889    return NegWriteMap<M>(m);
890  }
891
892  ///Absolute value of a map
893
894  ///This \c concepts::ReadMap "read only map" returns the absolute value
895  ///of the
896  ///value returned by the
897  ///given map. Its \c Key and \c Value will be inherited
898  ///from <tt>M</tt>. <tt>Value</tt>
899  ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
900  ///operator must be defined for it, of course.
901  ///
902  ///\bug We need a unified way to handle the situation below:
903  ///\code
904  ///  struct _UnConvertible {};
905  ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
906  ///  template<> inline int t_abs<>(int n) {return abs(n);}
907  ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
908  ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
909  ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
910  ///  template<> inline double t_abs<>(double n) {return fabs(n);}
911  ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
912  ///\endcode
913 
914
915  template<typename M>
916  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
917    const M& m;
918  public:
919    typedef MapBase<typename M::Key, typename M::Value> Parent;
920    typedef typename Parent::Key Key;
921    typedef typename Parent::Value Value;
922
923    ///Constructor
924    AbsMap(const M &_m) : m(_m) {};
925    /// \e
926    Value operator[](Key k) const {
927      Value tmp = m[k];
928      return tmp >= 0 ? tmp : -tmp;
929    }
930
931  };
932 
933  ///Returns a \c AbsMap class
934
935  ///This function just returns a \c AbsMap class.
936  ///\relates AbsMap
937  template<typename M>
938  inline AbsMap<M> absMap(const M &m) {
939    return AbsMap<M>(m);
940  }
941
942  ///Converts an STL style functor to a map
943
944  ///This \c concepts::ReadMap "read only map" returns the value
945  ///of a
946  ///given map.
947  ///
948  ///Template parameters \c K and \c V will become its
949  ///\c Key and \c Value. They must be given explicitely
950  ///because a functor does not provide such typedefs.
951  ///
952  ///Parameter \c F is the type of the used functor.
953  template<typename F,
954           typename K = typename F::argument_type,
955           typename V = typename F::result_type>
956  class FunctorMap : public MapBase<K, V> {
957    F f;
958  public:
959    typedef MapBase<K, V> Parent;
960    typedef typename Parent::Key Key;
961    typedef typename Parent::Value Value;
962
963    ///Constructor
964    FunctorMap(const F &_f = F()) : f(_f) {}
965    /// \e
966    Value operator[](Key k) const { return f(k);}
967  };
968 
969  ///Returns a \c FunctorMap class
970
971  ///This function just returns a \c FunctorMap class.
972  ///
973  ///It is specialized for adaptable function classes and
974  ///c++ functions.
975  ///\relates FunctorMap
976  template<typename K, typename V, typename F> inline
977  FunctorMap<F, K, V> functorMap(const F &f) {
978    return FunctorMap<F, K, V>(f);
979  }
980
981  template <typename F> inline
982  FunctorMap<F, typename F::argument_type, typename F::result_type>
983  functorMap(const F &f) {
984    return FunctorMap<F, typename F::argument_type,
985      typename F::result_type>(f);
986  }
987
988  template <typename K, typename V> inline
989  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
990    return FunctorMap<V (*)(K), K, V>(f);
991  }
992
993
994  ///Converts a map to an STL style (unary) functor
995
996  ///This class Converts a map to an STL style (unary) functor.
997  ///that is it provides an <tt>operator()</tt> to read its values.
998  ///
999  ///For the sake of convenience it also works as
1000  ///a ususal \c concepts::ReadMap "readable map",
1001  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1002  template <typename M>
1003  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
1004    const M& m;
1005  public:
1006    typedef MapBase<typename M::Key, typename M::Value> Parent;
1007    typedef typename Parent::Key Key;
1008    typedef typename Parent::Value Value;
1009
1010    typedef typename M::Key argument_type;
1011    typedef typename M::Value result_type;
1012
1013    ///Constructor
1014    MapFunctor(const M &_m) : m(_m) {};
1015    ///\e
1016    Value operator()(Key k) const {return m[k];}
1017    ///\e
1018    Value operator[](Key k) const {return m[k];}
1019  };
1020 
1021  ///Returns a \c MapFunctor class
1022
1023  ///This function just returns a \c MapFunctor class.
1024  ///\relates MapFunctor
1025  template<typename M>
1026  inline MapFunctor<M> mapFunctor(const M &m) {
1027    return MapFunctor<M>(m);
1028  }
1029
1030  ///Applies all map setting operations to two maps
1031
1032  ///This map has two \c concepts::ReadMap "readable map"
1033  ///parameters and each read request will be passed just to the
1034  ///first map. This class is the just readable map type of the ForkWriteMap.
1035  ///
1036  ///The \c Key and \c Value will be inherited from \c M1.
1037  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1038  template<typename  M1, typename M2>
1039  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
1040    const M1& m1;
1041    const M2& m2;
1042  public:
1043    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1044    typedef typename Parent::Key Key;
1045    typedef typename Parent::Value Value;
1046
1047    ///Constructor
1048    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
1049    /// \e
1050    Value operator[](Key k) const {return m1[k];}
1051  };
1052
1053
1054  ///Applies all map setting operations to two maps
1055
1056  ///This map has two \c concepts::WriteMap "writable map"
1057  ///parameters and each write request will be passed to both of them.
1058  ///If \c M1 is also \c concepts::ReadMap "readable",
1059  ///then the read operations will return the
1060  ///corresponding values of \c M1.
1061  ///
1062  ///The \c Key and \c Value will be inherited from \c M1.
1063  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1064  template<typename  M1, typename M2>
1065  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
1066    M1& m1;
1067    M2& m2;
1068  public:
1069    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1070    typedef typename Parent::Key Key;
1071    typedef typename Parent::Value Value;
1072
1073    ///Constructor
1074    ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
1075    ///\e
1076    Value operator[](Key k) const {return m1[k];}
1077    ///\e
1078    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
1079  };
1080 
1081  ///Returns an \c ForkMap class
1082
1083  ///This function just returns an \c ForkMap class.
1084  ///
1085  ///\relates ForkMap
1086  template <typename M1, typename M2>
1087  inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
1088    return ForkMap<M1, M2>(m1,m2);
1089  }
1090
1091  template <typename M1, typename M2>
1092  inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
1093    return ForkWriteMap<M1, M2>(m1,m2);
1094  }
1095
1096
1097 
1098  /* ************* BOOL MAPS ******************* */
1099 
1100  ///Logical 'not' of a map
1101 
1102  ///This bool \c concepts::ReadMap "read only map" returns the
1103  ///logical negation of
1104  ///value returned by the
1105  ///given map. Its \c Key and will be inherited from \c M,
1106  ///its Value is <tt>bool</tt>.
1107  template <typename M>
1108  class NotMap : public MapBase<typename M::Key, bool> {
1109    const M& m;
1110  public:
1111    typedef MapBase<typename M::Key, bool> Parent;
1112    typedef typename Parent::Key Key;
1113    typedef typename Parent::Value Value;
1114
1115    /// Constructor
1116    NotMap(const M &_m) : m(_m) {};
1117    ///\e
1118    Value operator[](Key k) const {return !m[k];}
1119  };
1120
1121  ///Logical 'not' of a map with writing possibility
1122 
1123  ///This bool \c concepts::ReadWriteMap "read-write map" returns the
1124  ///logical negation of value returned by the given map. When it is set,
1125  ///the opposite value is set to the original map.
1126  ///Its \c Key and will be inherited from \c M,
1127  ///its Value is <tt>bool</tt>.
1128  template <typename M>
1129  class NotWriteMap : public MapBase<typename M::Key, bool> {
1130    M& m;
1131  public:
1132    typedef MapBase<typename M::Key, bool> Parent;
1133    typedef typename Parent::Key Key;
1134    typedef typename Parent::Value Value;
1135
1136    /// Constructor
1137    NotWriteMap(M &_m) : m(_m) {};
1138    ///\e
1139    Value operator[](Key k) const {return !m[k];}
1140    ///\e
1141    void set(Key k, bool v) { m.set(k, !v); }
1142  };
1143 
1144  ///Returns a \c NotMap class
1145 
1146  ///This function just returns a \c NotMap class.
1147  ///\relates NotMap
1148  template <typename M>
1149  inline NotMap<M> notMap(const M &m) {
1150    return NotMap<M>(m);
1151  }
1152 
1153  template <typename M>
1154  inline NotWriteMap<M> notMap(M &m) {
1155    return NotWriteMap<M>(m);
1156  }
1157
1158  namespace _maps_bits {
1159
1160    template <typename Value>
1161    struct Identity {
1162      typedef Value argument_type;
1163      typedef Value result_type;
1164      Value operator()(const Value& val) const {
1165        return val;
1166      }
1167    };
1168
1169    template <typename _Iterator, typename Enable = void>
1170    struct IteratorTraits {
1171      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1172    };
1173
1174    template <typename _Iterator>
1175    struct IteratorTraits<_Iterator,
1176      typename exists<typename _Iterator::container_type>::type>
1177    {
1178      typedef typename _Iterator::container_type::value_type Value;
1179    };
1180
1181  }
1182 
1183
1184  /// \brief Writable bool map for store each true assigned elements.
1185  ///
1186  /// Writable bool map to store each true assigned elements. It will
1187  /// copies all the keys set to true to the given iterator.
1188  ///
1189  /// \note The container of the iterator should contain space
1190  /// for each element.
1191  ///
1192  /// The next example shows how can you write the nodes directly
1193  /// to the standard output.
1194  ///\code
1195  /// typedef IdMap<UGraph, UEdge> UEdgeIdMap;
1196  /// UEdgeIdMap uedgeId(ugraph);
1197  ///
1198  /// typedef MapFunctor<UEdgeIdMap> UEdgeIdFunctor;
1199  /// UEdgeIdFunctor uedgeIdFunctor(uedgeId);
1200  ///
1201  /// StoreBoolMap<ostream_iterator<int>, UEdgeIdFunctor>
1202  ///   writerMap(ostream_iterator<int>(cout, " "), uedgeIdFunctor);
1203  ///
1204  /// prim(ugraph, cost, writerMap);
1205  ///\endcode
1206  template <typename _Iterator,
1207            typename _Functor =
1208            _maps_bits::Identity<typename _maps_bits::
1209                                 IteratorTraits<_Iterator>::Value> >
1210  class StoreBoolMap {
1211  public:
1212    typedef _Iterator Iterator;
1213
1214    typedef typename _Functor::argument_type Key;
1215    typedef bool Value;
1216
1217    typedef _Functor Functor;
1218
1219    /// Constructor
1220    StoreBoolMap(Iterator it, const Functor& functor = Functor())
1221      : _begin(it), _end(it), _functor(functor) {}
1222
1223    /// Gives back the given iterator set for the first time.
1224    Iterator begin() const {
1225      return _begin;
1226    }
1227 
1228    /// Gives back the iterator after the last set operation.
1229    Iterator end() const {
1230      return _end;
1231    }
1232
1233    /// Setter function of the map
1234    void set(const Key& key, Value value) const {
1235      if (value) {
1236        *_end++ = _functor(key);
1237      }
1238    }
1239   
1240  private:
1241    Iterator _begin;
1242    mutable Iterator _end;
1243    Functor _functor;
1244  };
1245
1246  /// \brief Writable bool map for store each true assigned elements in
1247  /// a back insertable container.
1248  ///
1249  /// Writable bool map for store each true assigned elements in a back
1250  /// insertable container. It will push back all the keys set to true into
1251  /// the container. It can be used to retrieve the items into a standard
1252  /// container. The next example shows how can you store the undirected
1253  /// edges in a vector with prim algorithm.
1254  ///
1255  ///\code
1256  /// vector<UEdge> span_tree_uedges;
1257  /// BackInserterBoolMap<vector<UEdge> > inserter_map(span_tree_uedges);
1258  /// prim(ugraph, cost, inserter_map);
1259  ///\endcode
1260  template <typename Container,
1261            typename Functor =
1262            _maps_bits::Identity<typename Container::value_type> >
1263  class BackInserterBoolMap {
1264  public:
1265    typedef typename Container::value_type Key;
1266    typedef bool Value;
1267
1268    /// Constructor
1269    BackInserterBoolMap(Container& _container,
1270                        const Functor& _functor = Functor())
1271      : container(_container), functor(_functor) {}
1272
1273    /// Setter function of the map
1274    void set(const Key& key, Value value) {
1275      if (value) {
1276        container.push_back(functor(key));
1277      }
1278    }
1279   
1280  private:
1281    Container& container;
1282    Functor functor;
1283  };
1284
1285  /// \brief Writable bool map for store each true assigned elements in
1286  /// a front insertable container.
1287  ///
1288  /// Writable bool map for store each true assigned elements in a front
1289  /// insertable container. It will push front all the keys set to \c true into
1290  /// the container. For example see the BackInserterBoolMap.
1291  template <typename Container,
1292            typename Functor =
1293            _maps_bits::Identity<typename Container::value_type> >
1294  class FrontInserterBoolMap {
1295  public:
1296    typedef typename Container::value_type Key;
1297    typedef bool Value;
1298
1299    /// Constructor
1300    FrontInserterBoolMap(Container& _container,
1301                         const Functor& _functor = Functor())
1302      : container(_container), functor(_functor) {}
1303
1304    /// Setter function of the map
1305    void set(const Key& key, Value value) {
1306      if (value) {
1307        container.push_front(key);
1308      }
1309    }
1310   
1311  private:
1312    Container& container;   
1313    Functor functor;
1314  };
1315
1316  /// \brief Writable bool map for store each true assigned elements in
1317  /// an insertable container.
1318  ///
1319  /// Writable bool map for store each true assigned elements in an
1320  /// insertable container. It will insert all the keys set to \c true into
1321  /// the container. If you want to store the cut edges of the strongly
1322  /// connected components in a set you can use the next code:
1323  ///
1324  ///\code
1325  /// set<Edge> cut_edges;
1326  /// InserterBoolMap<set<Edge> > inserter_map(cut_edges);
1327  /// stronglyConnectedCutEdges(graph, cost, inserter_map);
1328  ///\endcode
1329  template <typename Container,
1330            typename Functor =
1331            _maps_bits::Identity<typename Container::value_type> >
1332  class InserterBoolMap {
1333  public:
1334    typedef typename Container::value_type Key;
1335    typedef bool Value;
1336
1337    /// Constructor
1338    InserterBoolMap(Container& _container, typename Container::iterator _it,
1339                    const Functor& _functor = Functor())
1340      : container(_container), it(_it), functor(_functor) {}
1341
1342    /// Constructor
1343    InserterBoolMap(Container& _container, const Functor& _functor = Functor())
1344      : container(_container), it(_container.end()), functor(_functor) {}
1345
1346    /// Setter function of the map
1347    void set(const Key& key, Value value) {
1348      if (value) {
1349        it = container.insert(it, key);
1350        ++it;
1351      }
1352    }
1353   
1354  private:
1355    Container& container;
1356    typename Container::iterator it;
1357    Functor functor;
1358  };
1359
1360  /// \brief Fill the true set elements with a given value.
1361  ///
1362  /// Writable bool map to fill the elements set to \c true with a given value.
1363  /// The value can set
1364  /// the container.
1365  ///
1366  /// The next code finds the connected components of the undirected graph
1367  /// and stores it in the \c comp map:
1368  ///\code
1369  /// typedef UGraph::NodeMap<int> ComponentMap;
1370  /// ComponentMap comp(ugraph);
1371  /// typedef FillBoolMap<UGraph::NodeMap<int> > ComponentFillerMap;
1372  /// ComponentFillerMap filler(comp, 0);
1373  ///
1374  /// Dfs<UGraph>::DefProcessedMap<ComponentFillerMap>::Create dfs(ugraph);
1375  /// dfs.processedMap(filler);
1376  /// dfs.init();
1377  /// for (NodeIt it(ugraph); it != INVALID; ++it) {
1378  ///   if (!dfs.reached(it)) {
1379  ///     dfs.addSource(it);
1380  ///     dfs.start();
1381  ///     ++filler.fillValue();
1382  ///   }
1383  /// }
1384  ///\endcode
1385  template <typename Map>
1386  class FillBoolMap {
1387  public:
1388    typedef typename Map::Key Key;
1389    typedef bool Value;
1390
1391    /// Constructor
1392    FillBoolMap(Map& _map, const typename Map::Value& _fill)
1393      : map(_map), fill(_fill) {}
1394
1395    /// Constructor
1396    FillBoolMap(Map& _map)
1397      : map(_map), fill() {}
1398
1399    /// Gives back the current fill value
1400    const typename Map::Value& fillValue() const {
1401      return fill;
1402    }
1403
1404    /// Gives back the current fill value
1405    typename Map::Value& fillValue() {
1406      return fill;
1407    }
1408
1409    /// Sets the current fill value
1410    void fillValue(const typename Map::Value& _fill) {
1411      fill = _fill;
1412    }
1413
1414    /// Setter function of the map
1415    void set(const Key& key, Value value) {
1416      if (value) {
1417        map.set(key, fill);
1418      }
1419    }
1420   
1421  private:
1422    Map& map;
1423    typename Map::Value fill;
1424  };
1425
1426
1427  /// \brief Writable bool map which stores for each true assigned elements 
1428  /// the setting order number.
1429  ///
1430  /// Writable bool map which stores for each true assigned elements 
1431  /// the setting order number. It make easy to calculate the leaving
1432  /// order of the nodes in the \c Dfs algorithm.
1433  ///
1434  ///\code
1435  /// typedef Graph::NodeMap<int> OrderMap;
1436  /// OrderMap order(graph);
1437  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1438  /// OrderSetterMap setter(order);
1439  /// Dfs<Graph>::DefProcessedMap<OrderSetterMap>::Create dfs(graph);
1440  /// dfs.processedMap(setter);
1441  /// dfs.init();
1442  /// for (NodeIt it(graph); it != INVALID; ++it) {
1443  ///   if (!dfs.reached(it)) {
1444  ///     dfs.addSource(it);
1445  ///     dfs.start();
1446  ///   }
1447  /// }
1448  ///\endcode
1449  ///
1450  /// The discovering order can be stored a little harder because the
1451  /// ReachedMap should be readable in the dfs algorithm but the setting
1452  /// order map is not readable. Now we should use the fork map:
1453  ///
1454  ///\code
1455  /// typedef Graph::NodeMap<int> OrderMap;
1456  /// OrderMap order(graph);
1457  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1458  /// OrderSetterMap setter(order);
1459  /// typedef Graph::NodeMap<bool> StoreMap;
1460  /// StoreMap store(graph);
1461  ///
1462  /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
1463  /// ReachedMap reached(store, setter);
1464  ///
1465  /// Dfs<Graph>::DefReachedMap<ReachedMap>::Create dfs(graph);
1466  /// dfs.reachedMap(reached);
1467  /// dfs.init();
1468  /// for (NodeIt it(graph); it != INVALID; ++it) {
1469  ///   if (!dfs.reached(it)) {
1470  ///     dfs.addSource(it);
1471  ///     dfs.start();
1472  ///   }
1473  /// }
1474  ///\endcode
1475  template <typename Map>
1476  class SettingOrderBoolMap {
1477  public:
1478    typedef typename Map::Key Key;
1479    typedef bool Value;
1480
1481    /// Constructor
1482    SettingOrderBoolMap(Map& _map)
1483      : map(_map), counter(0) {}
1484
1485    /// Number of set operations.
1486    int num() const {
1487      return counter;
1488    }
1489
1490    /// Setter function of the map
1491    void set(const Key& key, Value value) {
1492      if (value) {
1493        map.set(key, counter++);
1494      }
1495    }
1496   
1497  private:
1498    Map& map;
1499    int counter;
1500  };
1501
1502  /// @}
1503}
1504
1505#endif // LEMON_MAPS_H
Note: See TracBrowser for help on using the repository browser.