COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/maps.h @ 1757:bd4199049036

Last change on this file since 1757:bd4199049036 was 1725:22752dd6c693, checked in by Balazs Dezso, 18 years ago

Using proper return type

File size: 24.6 KB
Line 
1/* -*- C++ -*-
2 * lemon/maps.h - Part of LEMON, a generic C++ optimization library
3 *
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
17#ifndef LEMON_MAPS_H
18#define LEMON_MAPS_H
19
20#include <lemon/utility.h>
21#include <lemon/traits.h>
22
23///\file
24///\ingroup maps
25///\brief Miscellaneous property maps
26///
27///\todo This file has the same name as the concept file in concept/,
28/// and this is not easily detectable in docs...
29
30#include <map>
31
32namespace lemon {
33
34  /// \addtogroup maps
35  /// @{
36
37  /// Base class of maps.
38
39  /// Base class of maps.
40  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
41  template<typename K, typename T>
42  class MapBase {
43  public:
44    ///\e
45    typedef K Key;
46    ///\e
47    typedef T Value;
48  };
49
50  /// Null map. (a.k.a. DoNothingMap)
51
52  /// If you have to provide a map only for its type definitions,
53  /// or if you have to provide a writable map, but
54  /// data written to it will sent to <tt>/dev/null</tt>...
55  template<typename K, typename T>
56  class NullMap : public MapBase<K, T> {
57  public:
58    typedef MapBase<K, T> Parent;
59    typedef typename Parent::Key Key;
60    typedef typename Parent::Value Value;
61   
62    /// Gives back a default constructed element.
63    T operator[](const K&) const { return T(); }
64    /// Absorbs the value.
65    void set(const K&, const T&) {}
66  };
67
68  template <typename K, typename V>
69  NullMap<K, V> nullMap() {
70    return NullMap<K, V>();
71  }
72
73
74  /// Constant map.
75
76  /// This is a readable map which assigns a specified value to each key.
77  /// In other aspects it is equivalent to the \ref NullMap.
78  /// \todo set could be used to set the value.
79  template<typename K, typename T>
80  class ConstMap : public MapBase<K, T> {
81  private:
82    T v;
83  public:
84
85    typedef MapBase<K, T> Parent;
86    typedef typename Parent::Key Key;
87    typedef typename Parent::Value Value;
88
89    /// Default constructor
90
91    /// The value of the map will be uninitialized.
92    /// (More exactly it will be default constructed.)
93    ConstMap() {}
94    ///\e
95
96    /// \param _v The initial value of the map.
97    ///
98    ConstMap(const T &_v) : v(_v) {}
99
100    T operator[](const K&) const { return v; }
101    void set(const K&, const T&) {}
102
103    template<typename T1>
104    struct rebind {
105      typedef ConstMap<K, T1> other;
106    };
107
108    template<typename T1>
109    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
110  };
111
112  ///Returns a \ref ConstMap class
113
114  ///This function just returns a \ref ConstMap class.
115  ///\relates ConstMap
116  template<typename K, typename V>
117  inline ConstMap<K, V> constMap(const V &v) {
118    return ConstMap<K, V>(v);
119  }
120
121
122  //\todo to document later
123  template<typename T, T v>
124  struct Const { };
125
126  //\todo to document later
127  template<typename K, typename V, V v>
128  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
129  public:
130    typedef MapBase<K, V> Parent;
131    typedef typename Parent::Key Key;
132    typedef typename Parent::Value Value;
133
134    ConstMap() { }
135    V operator[](const K&) const { return v; }
136    void set(const K&, const V&) { }
137  };
138
139  ///Returns a \ref ConstMap class
140
141  ///This function just returns a \ref ConstMap class.
142  ///\relates ConstMap
143  template<typename K, typename V, V v>
144  inline ConstMap<K, Const<V, v> > constMap() {
145    return ConstMap<K, Const<V, v> >();
146  }
147
148  /// \c std::map wrapper
149
150  /// This is essentially a wrapper for \c std::map. With addition that
151  /// you can specify a default value different from \c Value() .
152  ///
153  /// \todo Provide allocator parameter...
154  template <typename K, typename T, typename Compare = std::less<K> >
155  class StdMap : public std::map<K, T, Compare> {
156    typedef std::map<K, T, Compare> parent;
157    T v;
158    typedef typename parent::value_type PairType;
159
160  public:
161    ///\e
162    typedef K Key;
163    ///\e
164    typedef T Value;
165    ///\e
166    typedef T& Reference;
167    ///\e
168    typedef const T& ConstReference;
169
170
171    StdMap() : v() {}
172    /// Constructor with specified default value
173    StdMap(const T& _v) : v(_v) {}
174
175    /// \brief Constructs the map from an appropriate std::map.
176    ///
177    /// \warning Inefficient: copies the content of \c m !
178    StdMap(const parent &m) : parent(m) {}
179    /// \brief Constructs the map from an appropriate std::map, and explicitly
180    /// specifies a default value.
181    ///
182    /// \warning Inefficient: copies the content of \c m !
183    StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
184   
185    template<typename T1, typename Comp1>
186    StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) {
187      //FIXME;
188    }
189
190    Reference operator[](const Key &k) {
191      return insert(PairType(k,v)).first -> second;
192    }
193
194    ConstReference operator[](const Key &k) const {
195      typename parent::iterator i = lower_bound(k);
196      if (i == parent::end() || parent::key_comp()(k, (*i).first))
197        return v;
198      return (*i).second;
199    }
200    void set(const Key &k, const T &t) {
201      parent::operator[](k) = t;
202    }
203
204    /// Changes the default value of the map.
205    /// \return Returns the previous default value.
206    ///
207    /// \warning The value of some keys (which has already been queried, but
208    /// the value has been unchanged from the default) may change!
209    T setDefault(const T &_v) { T old=v; v=_v; return old; }
210
211    template<typename T1>
212    struct rebind {
213      typedef StdMap<Key, T1,Compare> other;
214    };
215  };
216
217  /// @}
218
219  /// \addtogroup map_adaptors
220  /// @{
221
222  /// \brief Identity mapping.
223  ///
224  /// This mapping gives back the given key as value without any
225  /// modification.
226  template <typename T>
227  class IdentityMap : public MapBase<T, T> {
228  public:
229    typedef MapBase<T, T> Parent;
230    typedef typename Parent::Key Key;
231    typedef typename Parent::Value Value;
232
233    const T& operator[](const T& t) const {
234      return t;
235    }
236  };
237
238  ///Returns an \ref IdentityMap class
239
240  ///This function just returns an \ref IdentityMap class.
241  ///\relates IdentityMap
242  template<typename T>
243  inline IdentityMap<T> identityMap() {
244    return IdentityMap<T>();
245  }
246 
247
248  ///Convert the \c Value of a map to another type.
249
250  ///This \ref concept::ReadMap "read only map"
251  ///converts the \c Value of a maps to type \c T.
252  ///Its \c Key is inherited from \c M.
253  template <typename M, typename T>
254  class ConvertMap : public MapBase<typename M::Key, T> {
255    const M& m;
256  public:
257    typedef MapBase<typename M::Key, T> Parent;
258    typedef typename Parent::Key Key;
259    typedef typename Parent::Value Value;
260
261    ///Constructor
262
263    ///Constructor
264    ///\param _m is the underlying map
265    ConvertMap(const M &_m) : m(_m) {};
266
267    /// \brief The subscript operator.
268    ///
269    /// The subscript operator.
270    /// \param k The key
271    /// \return The target of the edge
272    Value operator[](const Key& k) const {return m[k];}
273  };
274 
275  ///Returns an \ref ConvertMap class
276
277  ///This function just returns an \ref ConvertMap class.
278  ///\relates ConvertMap
279  ///\todo The order of the template parameters are changed.
280  template<typename T, typename M>
281  inline ConvertMap<M, T> convertMap(const M &m) {
282    return ConvertMap<M, T>(m);
283  }
284
285  ///Sum of two maps
286
287  ///This \ref concept::ReadMap "read only map" returns the sum of the two
288  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
289  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
290
291  template<typename M1, typename M2>
292  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
293    const M1& m1;
294    const M2& m2;
295
296  public:
297    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
298    typedef typename Parent::Key Key;
299    typedef typename Parent::Value Value;
300
301    ///Constructor
302    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
303    Value operator[](Key k) const {return m1[k]+m2[k];}
304  };
305 
306  ///Returns an \ref AddMap class
307
308  ///This function just returns an \ref AddMap class.
309  ///\todo How to call these type of functions?
310  ///
311  ///\relates AddMap
312  ///\todo Wrong scope in Doxygen when \c \\relates is used
313  template<typename M1, typename M2>
314  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
315    return AddMap<M1, M2>(m1,m2);
316  }
317
318  ///Shift a map with a constant.
319
320  ///This \ref concept::ReadMap "read only map" returns the sum of the
321  ///given map and a constant value.
322  ///Its \c Key and \c Value is inherited from \c M.
323  ///
324  ///Actually,
325  ///\code
326  ///  ShiftMap<X> sh(x,v);
327  ///\endcode
328  ///is equivalent with
329  ///\code
330  ///  ConstMap<X::Key, X::Value> c_tmp(v);
331  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
332  ///\endcode
333  template<typename M, typename C = typename M::Value>
334  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
335    const M& m;
336    C v;
337  public:
338    typedef MapBase<typename M::Key, typename M::Value> Parent;
339    typedef typename Parent::Key Key;
340    typedef typename Parent::Value Value;
341
342    ///Constructor
343
344    ///Constructor
345    ///\param _m is the undelying map
346    ///\param _v is the shift value
347    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
348    Value operator[](Key k) const {return m[k] + v;}
349  };
350 
351  ///Returns an \ref ShiftMap class
352
353  ///This function just returns an \ref ShiftMap class.
354  ///\relates ShiftMap
355  ///\todo A better name is required.
356  template<typename M, typename C>
357  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
358    return ShiftMap<M, C>(m,v);
359  }
360
361  ///Difference of two maps
362
363  ///This \ref concept::ReadMap "read only map" returns the difference
364  ///of the values of the two
365  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
366  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
367
368  template<typename M1, typename M2>
369  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
370    const M1& m1;
371    const M2& m2;
372  public:
373    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
374    typedef typename Parent::Key Key;
375    typedef typename Parent::Value Value;
376
377    ///Constructor
378    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
379    Value operator[](Key k) const {return m1[k]-m2[k];}
380  };
381 
382  ///Returns a \ref SubMap class
383
384  ///This function just returns a \ref SubMap class.
385  ///
386  ///\relates SubMap
387  template<typename M1, typename M2>
388  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
389    return SubMap<M1, M2>(m1, m2);
390  }
391
392  ///Product of two maps
393
394  ///This \ref concept::ReadMap "read only map" returns the product of the
395  ///values of the two
396  ///given
397  ///maps. Its \c Key and \c Value will be inherited from \c M1.
398  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
399
400  template<typename M1, typename M2>
401  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
402    const M1& m1;
403    const M2& m2;
404  public:
405    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
406    typedef typename Parent::Key Key;
407    typedef typename Parent::Value Value;
408
409    ///Constructor
410    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
411    Value operator[](Key k) const {return m1[k]*m2[k];}
412  };
413 
414  ///Returns a \ref MulMap class
415
416  ///This function just returns a \ref MulMap class.
417  ///\relates MulMap
418  template<typename M1, typename M2>
419  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
420    return MulMap<M1, M2>(m1,m2);
421  }
422 
423  ///Scales a maps with a constant.
424
425  ///This \ref concept::ReadMap "read only map" returns the value of the
426  ///given map multiplied from the left side with a constant value.
427  ///Its \c Key and \c Value is inherited from \c M.
428  ///
429  ///Actually,
430  ///\code
431  ///  ScaleMap<X> sc(x,v);
432  ///\endcode
433  ///is equivalent with
434  ///\code
435  ///  ConstMap<X::Key, X::Value> c_tmp(v);
436  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
437  ///\endcode
438  template<typename M, typename C = typename M::Value>
439  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
440    const M& m;
441    C v;
442  public:
443    typedef MapBase<typename M::Key, typename M::Value> Parent;
444    typedef typename Parent::Key Key;
445    typedef typename Parent::Value Value;
446
447    ///Constructor
448
449    ///Constructor
450    ///\param _m is the undelying map
451    ///\param _v is the scaling value
452    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
453    Value operator[](Key k) const {return v * m[k];}
454  };
455 
456  ///Returns an \ref ScaleMap class
457
458  ///This function just returns an \ref ScaleMap class.
459  ///\relates ScaleMap
460  ///\todo A better name is required.
461  template<typename M, typename C>
462  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
463    return ScaleMap<M, C>(m,v);
464  }
465
466  ///Quotient of two maps
467
468  ///This \ref concept::ReadMap "read only map" returns the quotient of the
469  ///values of the two
470  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
471  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
472
473  template<typename M1, typename M2>
474  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
475    const M1& m1;
476    const M2& m2;
477  public:
478    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
479    typedef typename Parent::Key Key;
480    typedef typename Parent::Value Value;
481
482    ///Constructor
483    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
484    Value operator[](Key k) const {return m1[k]/m2[k];}
485  };
486 
487  ///Returns a \ref DivMap class
488
489  ///This function just returns a \ref DivMap class.
490  ///\relates DivMap
491  template<typename M1, typename M2>
492  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
493    return DivMap<M1, M2>(m1,m2);
494  }
495 
496  ///Composition of two maps
497
498  ///This \ref concept::ReadMap "read only map" returns the composition of
499  ///two
500  ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
501  ///of \c M2,
502  ///then for
503  ///\code
504  ///  ComposeMap<M1, M2> cm(m1,m2);
505  ///\endcode
506  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
507  ///
508  ///Its \c Key is inherited from \c M2 and its \c Value is from
509  ///\c M1.
510  ///The \c M2::Value must be convertible to \c M1::Key.
511  ///\todo Check the requirements.
512
513  template <typename M1, typename M2>
514  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
515    const M1& m1;
516    const M2& m2;
517  public:
518    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
519    typedef typename Parent::Key Key;
520    typedef typename Parent::Value Value;
521
522    ///Constructor
523    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
524   
525    typename MapTraits<M1>::ConstReturnValue
526    operator[](Key k) const {return m1[m2[k]];}
527  };
528  ///Returns a \ref ComposeMap class
529
530  ///This function just returns a \ref ComposeMap class.
531  ///
532  ///\relates ComposeMap
533  template <typename M1, typename M2>
534  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
535    return ComposeMap<M1, M2>(m1,m2);
536  }
537 
538  ///Combines of two maps using an STL (binary) functor.
539
540  ///Combines of two maps using an STL (binary) functor.
541  ///
542  ///
543  ///This \ref concept::ReadMap "read only map" takes two maps and a
544  ///binary functor and returns the composition of
545  ///the two
546  ///given maps unsing the functor.
547  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
548  ///and \c f is of \c F,
549  ///then for
550  ///\code
551  ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
552  ///\endcode
553  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
554  ///
555  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
556  ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
557  ///input parameter of \c F and the return type of \c F must be convertible
558  ///to \c V.
559  ///\todo Check the requirements.
560
561  template<typename M1, typename M2, typename F,
562           typename V = typename F::result_type,
563           typename NC = False>
564  class CombineMap : public MapBase<typename M1::Key, V> {
565    const M1& m1;
566    const M2& m2;
567    F f;
568  public:
569    typedef MapBase<typename M1::Key, V> Parent;
570    typedef typename Parent::Key Key;
571    typedef typename Parent::Value Value;
572
573    ///Constructor
574    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
575      : m1(_m1), m2(_m2), f(_f) {};
576    Value operator[](Key k) const {return f(m1[k],m2[k]);}
577  };
578 
579  ///Returns a \ref CombineMap class
580
581  ///This function just returns a \ref CombineMap class.
582  ///
583  ///Only the first template parameter (the value type) must be given.
584  ///
585  ///For example if \c m1 and \c m2 are both \c double valued maps, then
586  ///\code
587  ///combineMap<double>(m1,m2,std::plus<double>)
588  ///\endcode
589  ///is equivalent with
590  ///\code
591  ///addMap(m1,m2)
592  ///\endcode
593  ///
594  ///\relates CombineMap
595  template<typename M1, typename M2, typename F, typename V>
596  inline CombineMap<M1, M2, F, V>
597  combineMap(const M1& m1,const M2& m2, const F& f) {
598    return CombineMap<M1, M2, F, V>(m1,m2,f);
599  }
600
601  template<typename M1, typename M2, typename F>
602  inline CombineMap<M1, M2, F, typename F::result_type>
603  combineMap(const M1& m1, const M2& m2, const F& f) {
604    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
605  }
606
607  template<typename M1, typename M2, typename K1, typename K2, typename V>
608  inline CombineMap<M1, M2, V (*)(K1, K2), V>
609  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
610    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
611  }
612
613  ///Negative value of a map
614
615  ///This \ref concept::ReadMap "read only map" returns the negative
616  ///value of the
617  ///value returned by the
618  ///given map. Its \c Key and \c Value will be inherited from \c M.
619  ///The unary \c - operator must be defined for \c Value, of course.
620
621  template<typename M>
622  class NegMap : public MapBase<typename M::Key, typename M::Value> {
623    const M& m;
624  public:
625    typedef MapBase<typename M::Key, typename M::Value> Parent;
626    typedef typename Parent::Key Key;
627    typedef typename Parent::Value Value;
628
629    ///Constructor
630    NegMap(const M &_m) : m(_m) {};
631    Value operator[](Key k) const {return -m[k];}
632  };
633 
634  ///Returns a \ref NegMap class
635
636  ///This function just returns a \ref NegMap class.
637  ///\relates NegMap
638  template <typename M>
639  inline NegMap<M> negMap(const M &m) {
640    return NegMap<M>(m);
641  }
642
643
644  ///Absolute value of a map
645
646  ///This \ref concept::ReadMap "read only map" returns the absolute value
647  ///of the
648  ///value returned by the
649  ///given map. Its \c Key and \c Value will be inherited
650  ///from <tt>M</tt>. <tt>Value</tt>
651  ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
652  ///operator must be defined for it, of course.
653  ///
654  ///\bug We need a unified way to handle the situation below:
655  ///\code
656  ///  struct _UnConvertible {};
657  ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
658  ///  template<> inline int t_abs<>(int n) {return abs(n);}
659  ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
660  ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
661  ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
662  ///  template<> inline double t_abs<>(double n) {return fabs(n);}
663  ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
664  ///\endcode
665 
666
667  template<typename M>
668  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
669    const M& m;
670  public:
671    typedef MapBase<typename M::Key, typename M::Value> Parent;
672    typedef typename Parent::Key Key;
673    typedef typename Parent::Value Value;
674
675    ///Constructor
676    AbsMap(const M &_m) : m(_m) {};
677    Value operator[](Key k) const {
678      Value tmp = m[k];
679      return tmp >= 0 ? tmp : -tmp;
680    }
681
682  };
683 
684  ///Returns a \ref AbsMap class
685
686  ///This function just returns a \ref AbsMap class.
687  ///\relates AbsMap
688  template<typename M>
689  inline AbsMap<M> absMap(const M &m) {
690    return AbsMap<M>(m);
691  }
692
693  ///Converts an STL style functor to a map
694
695  ///This \ref concept::ReadMap "read only map" returns the value
696  ///of a
697  ///given map.
698  ///
699  ///Template parameters \c K and \c V will become its
700  ///\c Key and \c Value. They must be given explicitely
701  ///because a functor does not provide such typedefs.
702  ///
703  ///Parameter \c F is the type of the used functor.
704 
705
706  template<typename F,
707           typename K = typename F::argument_type,
708           typename V = typename F::result_type,
709           typename NC = False>
710  class FunctorMap : public MapBase<K, V> {
711    F f;
712  public:
713    typedef MapBase<K, V> Parent;
714    typedef typename Parent::Key Key;
715    typedef typename Parent::Value Value;
716
717    ///Constructor
718    FunctorMap(const F &_f) : f(_f) {}
719
720    Value operator[](Key k) const { return f(k);}
721  };
722 
723  ///Returns a \ref FunctorMap class
724
725  ///This function just returns a \ref FunctorMap class.
726  ///
727  ///The third template parameter isn't necessary to be given.
728  ///\relates FunctorMap
729  template<typename K, typename V, typename F> inline
730  FunctorMap<F, K, V> functorMap(const F &f) {
731    return FunctorMap<F, K, V>(f);
732  }
733
734  template <typename F> inline
735  FunctorMap<F, typename F::argument_type, typename F::result_type>
736  functorMap(const F &f) {
737    return FunctorMap<F, typename F::argument_type,
738      typename F::result_type>(f);
739  }
740
741  template <typename K, typename V> inline
742  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
743    return FunctorMap<V (*)(K), K, V>(f);
744  }
745
746
747  ///Converts a map to an STL style (unary) functor
748
749  ///This class Converts a map to an STL style (unary) functor.
750  ///that is it provides an <tt>operator()</tt> to read its values.
751  ///
752  ///For the sake of convenience it also works as
753  ///a ususal \ref concept::ReadMap "readable map",
754  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
755
756  template <typename M>
757  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
758    const M& m;
759  public:
760    typedef MapBase<typename M::Key, typename M::Value> Parent;
761    typedef typename Parent::Key Key;
762    typedef typename Parent::Value Value;
763
764    ///\e
765    typedef typename M::Key argument_type;
766    ///\e
767    typedef typename M::Value result_type;
768
769    ///Constructor
770    MapFunctor(const M &_m) : m(_m) {};
771    ///Returns a value of the map
772    Value operator()(Key k) const {return m[k];}
773    ///\e
774    Value operator[](Key k) const {return m[k];}
775  };
776 
777  ///Returns a \ref MapFunctor class
778
779  ///This function just returns a \ref MapFunctor class.
780  ///\relates MapFunctor
781  template<typename M>
782  inline MapFunctor<M> mapFunctor(const M &m) {
783    return MapFunctor<M>(m);
784  }
785
786
787  ///Applies all map setting operations to two maps
788
789  ///This map has two \ref concept::WriteMap "writable map"
790  ///parameters and each write request will be passed to both of them.
791  ///If \c M1 is also \ref concept::ReadMap "readable",
792  ///then the read operations will return the
793  ///corresponding values of \c M1.
794  ///
795  ///The \c Key and \c Value will be inherited from \c M1.
796  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
797
798  template<typename  M1, typename M2>
799  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
800    const M1& m1;
801    const M2& m2;
802  public:
803    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
804    typedef typename Parent::Key Key;
805    typedef typename Parent::Value Value;
806
807    ///Constructor
808    ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
809    Value operator[](Key k) const {return m1[k];}
810    //    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
811  };
812 
813  ///Returns an \ref ForkMap class
814
815  ///This function just returns an \ref ForkMap class.
816  ///\todo How to call these type of functions?
817  ///
818  ///\relates ForkMap
819  ///\todo Wrong scope in Doxygen when \c \\relates is used
820  template <typename M1, typename M2>
821  inline ForkMap<M1, M2> forkMap(const M1 &m1,const M2 &m2) {
822    return ForkMap<M1, M2>(m1,m2);
823  }
824
825
826 
827  /* ************* BOOL MAPS ******************* */
828 
829  ///Logical 'not' of a map
830 
831  ///This bool \ref concept::ReadMap "read only map" returns the
832  ///logical negation of
833  ///value returned by the
834  ///given map. Its \c Key and will be inherited from \c M,
835  ///its Value is <tt>bool</tt>.
836
837  template <typename M>
838  class NotMap : public MapBase<typename M::Key, bool> {
839    const M& m;
840  public:
841    typedef MapBase<typename M::Key, bool> Parent;
842    typedef typename Parent::Key Key;
843    typedef typename Parent::Value Value;
844
845    ///Constructor
846    NotMap(const M &_m) : m(_m) {};
847    Value operator[](Key k) const {return !m[k];}
848  };
849 
850  ///Returns a \ref NotMap class
851 
852  ///This function just returns a \ref NotMap class.
853  ///\relates NotMap
854  template <typename M>
855  inline NotMap<M> notMap(const M &m) {
856    return NotMap<M>(m);
857  }
858
859  /// @}
860}
861
862#endif // LEMON_MAPS_H
Note: See TracBrowser for help on using the repository browser.