1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2007 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAX_MATCHING_H |
---|
20 | #define LEMON_MAX_MATCHING_H |
---|
21 | |
---|
22 | #include <queue> |
---|
23 | #include <lemon/bits/invalid.h> |
---|
24 | #include <lemon/unionfind.h> |
---|
25 | #include <lemon/graph_utils.h> |
---|
26 | |
---|
27 | ///\ingroup matching |
---|
28 | ///\file |
---|
29 | ///\brief Maximum matching algorithm in undirected graph. |
---|
30 | |
---|
31 | namespace lemon { |
---|
32 | |
---|
33 | ///\ingroup matching |
---|
34 | |
---|
35 | ///\brief Edmonds' alternating forest maximum matching algorithm. |
---|
36 | /// |
---|
37 | ///This class provides Edmonds' alternating forest matching |
---|
38 | ///algorithm. The starting matching (if any) can be passed to the |
---|
39 | ///algorithm using some of init functions. |
---|
40 | /// |
---|
41 | ///The dual side of a matching is a map of the nodes to |
---|
42 | ///MaxMatching::DecompType, having values \c D, \c A and \c C |
---|
43 | ///showing the Gallai-Edmonds decomposition of the graph. The nodes |
---|
44 | ///in \c D induce a graph with factor-critical components, the nodes |
---|
45 | ///in \c A form the barrier, and the nodes in \c C induce a graph |
---|
46 | ///having a perfect matching. This decomposition can be attained by |
---|
47 | ///calling \c decomposition() after running the algorithm. |
---|
48 | /// |
---|
49 | ///\param Graph The undirected graph type the algorithm runs on. |
---|
50 | /// |
---|
51 | ///\author Jacint Szabo |
---|
52 | template <typename Graph> |
---|
53 | class MaxMatching { |
---|
54 | |
---|
55 | protected: |
---|
56 | |
---|
57 | typedef typename Graph::Node Node; |
---|
58 | typedef typename Graph::Edge Edge; |
---|
59 | typedef typename Graph::UEdge UEdge; |
---|
60 | typedef typename Graph::UEdgeIt UEdgeIt; |
---|
61 | typedef typename Graph::NodeIt NodeIt; |
---|
62 | typedef typename Graph::IncEdgeIt IncEdgeIt; |
---|
63 | |
---|
64 | typedef typename Graph::template NodeMap<int> UFECrossRef; |
---|
65 | typedef UnionFindEnum<UFECrossRef> UFE; |
---|
66 | typedef std::vector<Node> NV; |
---|
67 | |
---|
68 | typedef typename Graph::template NodeMap<int> EFECrossRef; |
---|
69 | typedef ExtendFindEnum<EFECrossRef> EFE; |
---|
70 | |
---|
71 | public: |
---|
72 | |
---|
73 | ///\brief Indicates the Gallai-Edmonds decomposition of the graph. |
---|
74 | /// |
---|
75 | ///Indicates the Gallai-Edmonds decomposition of the graph, which |
---|
76 | ///shows an upper bound on the size of a maximum matching. The |
---|
77 | ///nodes with DecompType \c D induce a graph with factor-critical |
---|
78 | ///components, the nodes in \c A form the canonical barrier, and the |
---|
79 | ///nodes in \c C induce a graph having a perfect matching. |
---|
80 | enum DecompType { |
---|
81 | D=0, |
---|
82 | A=1, |
---|
83 | C=2 |
---|
84 | }; |
---|
85 | |
---|
86 | protected: |
---|
87 | |
---|
88 | static const int HEUR_density=2; |
---|
89 | const Graph& g; |
---|
90 | typename Graph::template NodeMap<Node> _mate; |
---|
91 | typename Graph::template NodeMap<DecompType> position; |
---|
92 | |
---|
93 | public: |
---|
94 | |
---|
95 | MaxMatching(const Graph& _g) |
---|
96 | : g(_g), _mate(_g), position(_g) {} |
---|
97 | |
---|
98 | ///\brief Sets the actual matching to the empty matching. |
---|
99 | /// |
---|
100 | ///Sets the actual matching to the empty matching. |
---|
101 | /// |
---|
102 | void init() { |
---|
103 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
104 | _mate.set(v,INVALID); |
---|
105 | position.set(v,C); |
---|
106 | } |
---|
107 | } |
---|
108 | |
---|
109 | ///\brief Finds a greedy matching for initial matching. |
---|
110 | /// |
---|
111 | ///For initial matchig it finds a maximal greedy matching. |
---|
112 | void greedyInit() { |
---|
113 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
114 | _mate.set(v,INVALID); |
---|
115 | position.set(v,C); |
---|
116 | } |
---|
117 | for(NodeIt v(g); v!=INVALID; ++v) |
---|
118 | if ( _mate[v]==INVALID ) { |
---|
119 | for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) { |
---|
120 | Node y=g.runningNode(e); |
---|
121 | if ( _mate[y]==INVALID && y!=v ) { |
---|
122 | _mate.set(v,y); |
---|
123 | _mate.set(y,v); |
---|
124 | break; |
---|
125 | } |
---|
126 | } |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | ///\brief Initialize the matching from each nodes' mate. |
---|
131 | /// |
---|
132 | ///Initialize the matching from a \c Node valued \c Node map. This |
---|
133 | ///map must be \e symmetric, i.e. if \c map[u]==v then \c |
---|
134 | ///map[v]==u must hold, and \c uv will be an edge of the initial |
---|
135 | ///matching. |
---|
136 | template <typename MateMap> |
---|
137 | void mateMapInit(MateMap& map) { |
---|
138 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
139 | _mate.set(v,map[v]); |
---|
140 | position.set(v,C); |
---|
141 | } |
---|
142 | } |
---|
143 | |
---|
144 | ///\brief Initialize the matching from a node map with the |
---|
145 | ///incident matching edges. |
---|
146 | /// |
---|
147 | ///Initialize the matching from an \c UEdge valued \c Node map. \c |
---|
148 | ///map[v] must be an \c UEdge incident to \c v. This map must have |
---|
149 | ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c |
---|
150 | ///g.oppositeNode(v,map[v])==u holds, and now some edge joining \c |
---|
151 | ///u to \c v will be an edge of the matching. |
---|
152 | template<typename MatchingMap> |
---|
153 | void matchingMapInit(MatchingMap& map) { |
---|
154 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
155 | position.set(v,C); |
---|
156 | UEdge e=map[v]; |
---|
157 | if ( e!=INVALID ) |
---|
158 | _mate.set(v,g.oppositeNode(v,e)); |
---|
159 | else |
---|
160 | _mate.set(v,INVALID); |
---|
161 | } |
---|
162 | } |
---|
163 | |
---|
164 | ///\brief Initialize the matching from the map containing the |
---|
165 | ///undirected matching edges. |
---|
166 | /// |
---|
167 | ///Initialize the matching from a \c bool valued \c UEdge map. This |
---|
168 | ///map must have the property that there are no two incident edges |
---|
169 | ///\c e, \c f with \c map[e]==map[f]==true. The edges \c e with \c |
---|
170 | ///map[e]==true form the matching. |
---|
171 | template <typename MatchingMap> |
---|
172 | void matchingInit(MatchingMap& map) { |
---|
173 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
174 | _mate.set(v,INVALID); |
---|
175 | position.set(v,C); |
---|
176 | } |
---|
177 | for(UEdgeIt e(g); e!=INVALID; ++e) { |
---|
178 | if ( map[e] ) { |
---|
179 | Node u=g.source(e); |
---|
180 | Node v=g.target(e); |
---|
181 | _mate.set(u,v); |
---|
182 | _mate.set(v,u); |
---|
183 | } |
---|
184 | } |
---|
185 | } |
---|
186 | |
---|
187 | |
---|
188 | ///\brief Runs Edmonds' algorithm. |
---|
189 | /// |
---|
190 | ///Runs Edmonds' algorithm for sparse graphs (number of edges < |
---|
191 | ///2*number of nodes), and a heuristical Edmonds' algorithm with a |
---|
192 | ///heuristic of postponing shrinks for dense graphs. |
---|
193 | void run() { |
---|
194 | if (countUEdges(g) < HEUR_density * countNodes(g)) { |
---|
195 | greedyInit(); |
---|
196 | startSparse(); |
---|
197 | } else { |
---|
198 | init(); |
---|
199 | startDense(); |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | |
---|
204 | ///\brief Starts Edmonds' algorithm. |
---|
205 | /// |
---|
206 | ///If runs the original Edmonds' algorithm. |
---|
207 | void startSparse() { |
---|
208 | |
---|
209 | typename Graph::template NodeMap<Node> ear(g,INVALID); |
---|
210 | //undefined for the base nodes of the blossoms (i.e. for the |
---|
211 | //representative elements of UFE blossom) and for the nodes in C |
---|
212 | |
---|
213 | UFECrossRef blossom_base(g); |
---|
214 | UFE blossom(blossom_base); |
---|
215 | NV rep(countNodes(g)); |
---|
216 | |
---|
217 | EFECrossRef tree_base(g); |
---|
218 | EFE tree(tree_base); |
---|
219 | |
---|
220 | //If these UFE's would be members of the class then also |
---|
221 | //blossom_base and tree_base should be a member. |
---|
222 | |
---|
223 | //We build only one tree and the other vertices uncovered by the |
---|
224 | //matching belong to C. (They can be considered as singleton |
---|
225 | //trees.) If this tree can be augmented or no more |
---|
226 | //grow/augmentation/shrink is possible then we return to this |
---|
227 | //"for" cycle. |
---|
228 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
229 | if (position[v]==C && _mate[v]==INVALID) { |
---|
230 | rep[blossom.insert(v)] = v; |
---|
231 | tree.insert(v); |
---|
232 | position.set(v,D); |
---|
233 | normShrink(v, ear, blossom, rep, tree); |
---|
234 | } |
---|
235 | } |
---|
236 | } |
---|
237 | |
---|
238 | ///\brief Starts Edmonds' algorithm. |
---|
239 | /// |
---|
240 | ///It runs Edmonds' algorithm with a heuristic of postponing |
---|
241 | ///shrinks, giving a faster algorithm for dense graphs. |
---|
242 | void startDense() { |
---|
243 | |
---|
244 | typename Graph::template NodeMap<Node> ear(g,INVALID); |
---|
245 | //undefined for the base nodes of the blossoms (i.e. for the |
---|
246 | //representative elements of UFE blossom) and for the nodes in C |
---|
247 | |
---|
248 | UFECrossRef blossom_base(g); |
---|
249 | UFE blossom(blossom_base); |
---|
250 | NV rep(countNodes(g)); |
---|
251 | |
---|
252 | EFECrossRef tree_base(g); |
---|
253 | EFE tree(tree_base); |
---|
254 | |
---|
255 | //If these UFE's would be members of the class then also |
---|
256 | //blossom_base and tree_base should be a member. |
---|
257 | |
---|
258 | //We build only one tree and the other vertices uncovered by the |
---|
259 | //matching belong to C. (They can be considered as singleton |
---|
260 | //trees.) If this tree can be augmented or no more |
---|
261 | //grow/augmentation/shrink is possible then we return to this |
---|
262 | //"for" cycle. |
---|
263 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
264 | if ( position[v]==C && _mate[v]==INVALID ) { |
---|
265 | rep[blossom.insert(v)] = v; |
---|
266 | tree.insert(v); |
---|
267 | position.set(v,D); |
---|
268 | lateShrink(v, ear, blossom, rep, tree); |
---|
269 | } |
---|
270 | } |
---|
271 | } |
---|
272 | |
---|
273 | |
---|
274 | |
---|
275 | ///\brief Returns the size of the actual matching stored. |
---|
276 | /// |
---|
277 | ///Returns the size of the actual matching stored. After \ref |
---|
278 | ///run() it returns the size of a maximum matching in the graph. |
---|
279 | int size() const { |
---|
280 | int s=0; |
---|
281 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
282 | if ( _mate[v]!=INVALID ) { |
---|
283 | ++s; |
---|
284 | } |
---|
285 | } |
---|
286 | return s/2; |
---|
287 | } |
---|
288 | |
---|
289 | |
---|
290 | ///\brief Returns the mate of a node in the actual matching. |
---|
291 | /// |
---|
292 | ///Returns the mate of a \c node in the actual matching. |
---|
293 | ///Returns INVALID if the \c node is not covered by the actual matching. |
---|
294 | Node mate(const Node& node) const { |
---|
295 | return _mate[node]; |
---|
296 | } |
---|
297 | |
---|
298 | ///\brief Returns the matching edge incident to the given node. |
---|
299 | /// |
---|
300 | ///Returns the matching edge of a \c node in the actual matching. |
---|
301 | ///Returns INVALID if the \c node is not covered by the actual matching. |
---|
302 | UEdge matchingEdge(const Node& node) const { |
---|
303 | if (_mate[node] == INVALID) return INVALID; |
---|
304 | Node n = node < _mate[node] ? node : _mate[node]; |
---|
305 | for (IncEdgeIt e(g, n); e != INVALID; ++e) { |
---|
306 | if (g.oppositeNode(n, e) == _mate[n]) { |
---|
307 | return e; |
---|
308 | } |
---|
309 | } |
---|
310 | return INVALID; |
---|
311 | } |
---|
312 | |
---|
313 | /// \brief Returns the class of the node in the Edmonds-Gallai |
---|
314 | /// decomposition. |
---|
315 | /// |
---|
316 | /// Returns the class of the node in the Edmonds-Gallai |
---|
317 | /// decomposition. |
---|
318 | DecompType decomposition(const Node& n) { |
---|
319 | return position[n] == A; |
---|
320 | } |
---|
321 | |
---|
322 | /// \brief Returns true when the node is in the barrier. |
---|
323 | /// |
---|
324 | /// Returns true when the node is in the barrier. |
---|
325 | bool barrier(const Node& n) { |
---|
326 | return position[n] == A; |
---|
327 | } |
---|
328 | |
---|
329 | ///\brief Gives back the matching in a \c Node of mates. |
---|
330 | /// |
---|
331 | ///Writes the stored matching to a \c Node valued \c Node map. The |
---|
332 | ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c |
---|
333 | ///map[v]==u will hold, and now \c uv is an edge of the matching. |
---|
334 | template <typename MateMap> |
---|
335 | void mateMap(MateMap& map) const { |
---|
336 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
337 | map.set(v,_mate[v]); |
---|
338 | } |
---|
339 | } |
---|
340 | |
---|
341 | ///\brief Gives back the matching in an \c UEdge valued \c Node |
---|
342 | ///map. |
---|
343 | /// |
---|
344 | ///Writes the stored matching to an \c UEdge valued \c Node |
---|
345 | ///map. \c map[v] will be an \c UEdge incident to \c v. This |
---|
346 | ///map will have the property that if \c g.oppositeNode(u,map[u]) |
---|
347 | ///== v then \c map[u]==map[v] holds, and now this edge is an edge |
---|
348 | ///of the matching. |
---|
349 | template <typename MatchingMap> |
---|
350 | void matchingMap(MatchingMap& map) const { |
---|
351 | typename Graph::template NodeMap<bool> todo(g,true); |
---|
352 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
353 | if (_mate[v]!=INVALID && v < _mate[v]) { |
---|
354 | Node u=_mate[v]; |
---|
355 | for(IncEdgeIt e(g,v); e!=INVALID; ++e) { |
---|
356 | if ( g.runningNode(e) == u ) { |
---|
357 | map.set(u,e); |
---|
358 | map.set(v,e); |
---|
359 | todo.set(u,false); |
---|
360 | todo.set(v,false); |
---|
361 | break; |
---|
362 | } |
---|
363 | } |
---|
364 | } |
---|
365 | } |
---|
366 | } |
---|
367 | |
---|
368 | |
---|
369 | ///\brief Gives back the matching in a \c bool valued \c UEdge |
---|
370 | ///map. |
---|
371 | /// |
---|
372 | ///Writes the matching stored to a \c bool valued \c Edge |
---|
373 | ///map. This map will have the property that there are no two |
---|
374 | ///incident edges \c e, \c f with \c map[e]==map[f]==true. The |
---|
375 | ///edges \c e with \c map[e]==true form the matching. |
---|
376 | template<typename MatchingMap> |
---|
377 | void matching(MatchingMap& map) const { |
---|
378 | for(UEdgeIt e(g); e!=INVALID; ++e) map.set(e,false); |
---|
379 | |
---|
380 | typename Graph::template NodeMap<bool> todo(g,true); |
---|
381 | for(NodeIt v(g); v!=INVALID; ++v) { |
---|
382 | if ( todo[v] && _mate[v]!=INVALID ) { |
---|
383 | Node u=_mate[v]; |
---|
384 | for(IncEdgeIt e(g,v); e!=INVALID; ++e) { |
---|
385 | if ( g.runningNode(e) == u ) { |
---|
386 | map.set(e,true); |
---|
387 | todo.set(u,false); |
---|
388 | todo.set(v,false); |
---|
389 | break; |
---|
390 | } |
---|
391 | } |
---|
392 | } |
---|
393 | } |
---|
394 | } |
---|
395 | |
---|
396 | |
---|
397 | ///\brief Returns the canonical decomposition of the graph after running |
---|
398 | ///the algorithm. |
---|
399 | /// |
---|
400 | ///After calling any run methods of the class, it writes the |
---|
401 | ///Gallai-Edmonds canonical decomposition of the graph. \c map |
---|
402 | ///must be a node map of \ref DecompType 's. |
---|
403 | template <typename DecompositionMap> |
---|
404 | void decomposition(DecompositionMap& map) const { |
---|
405 | for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]); |
---|
406 | } |
---|
407 | |
---|
408 | ///\brief Returns a barrier on the nodes. |
---|
409 | /// |
---|
410 | ///After calling any run methods of the class, it writes a |
---|
411 | ///canonical barrier on the nodes. The odd component number of the |
---|
412 | ///remaining graph minus the barrier size is a lower bound for the |
---|
413 | ///uncovered nodes in the graph. The \c map must be a node map of |
---|
414 | ///bools. |
---|
415 | template <typename BarrierMap> |
---|
416 | void barrier(BarrierMap& barrier) { |
---|
417 | for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A); |
---|
418 | } |
---|
419 | |
---|
420 | private: |
---|
421 | |
---|
422 | |
---|
423 | void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear, |
---|
424 | UFE& blossom, NV& rep, EFE& tree) { |
---|
425 | //We have one tree which we grow, and also shrink but only if it |
---|
426 | //cannot be postponed. If we augment then we return to the "for" |
---|
427 | //cycle of runEdmonds(). |
---|
428 | |
---|
429 | std::queue<Node> Q; //queue of the totally unscanned nodes |
---|
430 | Q.push(v); |
---|
431 | std::queue<Node> R; |
---|
432 | //queue of the nodes which must be scanned for a possible shrink |
---|
433 | |
---|
434 | while ( !Q.empty() ) { |
---|
435 | Node x=Q.front(); |
---|
436 | Q.pop(); |
---|
437 | for( IncEdgeIt e(g,x); e!= INVALID; ++e ) { |
---|
438 | Node y=g.runningNode(e); |
---|
439 | //growOrAugment grows if y is covered by the matching and |
---|
440 | //augments if not. In this latter case it returns 1. |
---|
441 | if (position[y]==C && |
---|
442 | growOrAugment(y, x, ear, blossom, rep, tree, Q)) return; |
---|
443 | } |
---|
444 | R.push(x); |
---|
445 | } |
---|
446 | |
---|
447 | while ( !R.empty() ) { |
---|
448 | Node x=R.front(); |
---|
449 | R.pop(); |
---|
450 | |
---|
451 | for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) { |
---|
452 | Node y=g.runningNode(e); |
---|
453 | |
---|
454 | if ( position[y] == D && blossom.find(x) != blossom.find(y) ) |
---|
455 | //Recall that we have only one tree. |
---|
456 | shrink( x, y, ear, blossom, rep, tree, Q); |
---|
457 | |
---|
458 | while ( !Q.empty() ) { |
---|
459 | Node z=Q.front(); |
---|
460 | Q.pop(); |
---|
461 | for( IncEdgeIt f(g,z); f!= INVALID; ++f ) { |
---|
462 | Node w=g.runningNode(f); |
---|
463 | //growOrAugment grows if y is covered by the matching and |
---|
464 | //augments if not. In this latter case it returns 1. |
---|
465 | if (position[w]==C && |
---|
466 | growOrAugment(w, z, ear, blossom, rep, tree, Q)) return; |
---|
467 | } |
---|
468 | R.push(z); |
---|
469 | } |
---|
470 | } //for e |
---|
471 | } // while ( !R.empty() ) |
---|
472 | } |
---|
473 | |
---|
474 | void normShrink(Node v, typename Graph::template NodeMap<Node>& ear, |
---|
475 | UFE& blossom, NV& rep, EFE& tree) { |
---|
476 | //We have one tree, which we grow and shrink. If we augment then we |
---|
477 | //return to the "for" cycle of runEdmonds(). |
---|
478 | |
---|
479 | std::queue<Node> Q; //queue of the unscanned nodes |
---|
480 | Q.push(v); |
---|
481 | while ( !Q.empty() ) { |
---|
482 | |
---|
483 | Node x=Q.front(); |
---|
484 | Q.pop(); |
---|
485 | |
---|
486 | for( IncEdgeIt e(g,x); e!=INVALID; ++e ) { |
---|
487 | Node y=g.runningNode(e); |
---|
488 | |
---|
489 | switch ( position[y] ) { |
---|
490 | case D: //x and y must be in the same tree |
---|
491 | if ( blossom.find(x) != blossom.find(y)) |
---|
492 | //x and y are in the same tree |
---|
493 | shrink(x, y, ear, blossom, rep, tree, Q); |
---|
494 | break; |
---|
495 | case C: |
---|
496 | //growOrAugment grows if y is covered by the matching and |
---|
497 | //augments if not. In this latter case it returns 1. |
---|
498 | if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return; |
---|
499 | break; |
---|
500 | default: break; |
---|
501 | } |
---|
502 | } |
---|
503 | } |
---|
504 | } |
---|
505 | |
---|
506 | void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear, |
---|
507 | UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) { |
---|
508 | //x and y are the two adjacent vertices in two blossoms. |
---|
509 | |
---|
510 | typename Graph::template NodeMap<bool> path(g,false); |
---|
511 | |
---|
512 | Node b=rep[blossom.find(x)]; |
---|
513 | path.set(b,true); |
---|
514 | b=_mate[b]; |
---|
515 | while ( b!=INVALID ) { |
---|
516 | b=rep[blossom.find(ear[b])]; |
---|
517 | path.set(b,true); |
---|
518 | b=_mate[b]; |
---|
519 | } //we go until the root through bases of blossoms and odd vertices |
---|
520 | |
---|
521 | Node top=y; |
---|
522 | Node middle=rep[blossom.find(top)]; |
---|
523 | Node bottom=x; |
---|
524 | while ( !path[middle] ) |
---|
525 | shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q); |
---|
526 | //Until we arrive to a node on the path, we update blossom, tree |
---|
527 | //and the positions of the odd nodes. |
---|
528 | |
---|
529 | Node base=middle; |
---|
530 | top=x; |
---|
531 | middle=rep[blossom.find(top)]; |
---|
532 | bottom=y; |
---|
533 | Node blossom_base=rep[blossom.find(base)]; |
---|
534 | while ( middle!=blossom_base ) |
---|
535 | shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q); |
---|
536 | //Until we arrive to a node on the path, we update blossom, tree |
---|
537 | //and the positions of the odd nodes. |
---|
538 | |
---|
539 | rep[blossom.find(base)] = base; |
---|
540 | } |
---|
541 | |
---|
542 | void shrinkStep(Node& top, Node& middle, Node& bottom, |
---|
543 | typename Graph::template NodeMap<Node>& ear, |
---|
544 | UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) { |
---|
545 | //We traverse a blossom and update everything. |
---|
546 | |
---|
547 | ear.set(top,bottom); |
---|
548 | Node t=top; |
---|
549 | while ( t!=middle ) { |
---|
550 | Node u=_mate[t]; |
---|
551 | t=ear[u]; |
---|
552 | ear.set(t,u); |
---|
553 | } |
---|
554 | bottom=_mate[middle]; |
---|
555 | position.set(bottom,D); |
---|
556 | Q.push(bottom); |
---|
557 | top=ear[bottom]; |
---|
558 | Node oldmiddle=middle; |
---|
559 | middle=rep[blossom.find(top)]; |
---|
560 | tree.erase(bottom); |
---|
561 | tree.erase(oldmiddle); |
---|
562 | blossom.insert(bottom); |
---|
563 | blossom.join(bottom, oldmiddle); |
---|
564 | blossom.join(top, oldmiddle); |
---|
565 | } |
---|
566 | |
---|
567 | |
---|
568 | |
---|
569 | bool growOrAugment(Node& y, Node& x, typename Graph::template |
---|
570 | NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree, |
---|
571 | std::queue<Node>& Q) { |
---|
572 | //x is in a blossom in the tree, y is outside. If y is covered by |
---|
573 | //the matching we grow, otherwise we augment. In this case we |
---|
574 | //return 1. |
---|
575 | |
---|
576 | if ( _mate[y]!=INVALID ) { //grow |
---|
577 | ear.set(y,x); |
---|
578 | Node w=_mate[y]; |
---|
579 | rep[blossom.insert(w)] = w; |
---|
580 | position.set(y,A); |
---|
581 | position.set(w,D); |
---|
582 | int t = tree.find(rep[blossom.find(x)]); |
---|
583 | tree.insert(y,t); |
---|
584 | tree.insert(w,t); |
---|
585 | Q.push(w); |
---|
586 | } else { //augment |
---|
587 | augment(x, ear, blossom, rep, tree); |
---|
588 | _mate.set(x,y); |
---|
589 | _mate.set(y,x); |
---|
590 | return true; |
---|
591 | } |
---|
592 | return false; |
---|
593 | } |
---|
594 | |
---|
595 | void augment(Node x, typename Graph::template NodeMap<Node>& ear, |
---|
596 | UFE& blossom, NV& rep, EFE& tree) { |
---|
597 | Node v=_mate[x]; |
---|
598 | while ( v!=INVALID ) { |
---|
599 | |
---|
600 | Node u=ear[v]; |
---|
601 | _mate.set(v,u); |
---|
602 | Node tmp=v; |
---|
603 | v=_mate[u]; |
---|
604 | _mate.set(u,tmp); |
---|
605 | } |
---|
606 | int y = tree.find(rep[blossom.find(x)]); |
---|
607 | for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) { |
---|
608 | if ( position[tit] == D ) { |
---|
609 | int b = blossom.find(tit); |
---|
610 | for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) { |
---|
611 | position.set(bit, C); |
---|
612 | } |
---|
613 | blossom.eraseClass(b); |
---|
614 | } else position.set(tit, C); |
---|
615 | } |
---|
616 | tree.eraseClass(y); |
---|
617 | |
---|
618 | } |
---|
619 | |
---|
620 | }; |
---|
621 | |
---|
622 | } //END OF NAMESPACE LEMON |
---|
623 | |
---|
624 | #endif //LEMON_MAX_MATCHING_H |
---|