COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/max_matching.h @ 1882:2c3f6c7e01b4

Last change on this file since 1882:2c3f6c7e01b4 was 1875:98698b69a902, checked in by Alpar Juttner, 18 years ago

Happy new year to LEMON

  • Property exe set to *
File size: 15.9 KB
Line 
1/* -*- C++ -*-
2 * lemon/max_matching.h - Part of LEMON, a generic C++ optimization library
3 *
4 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
17#ifndef LEMON_MAX_MATCHING_H
18#define LEMON_MAX_MATCHING_H
19
20#include <queue>
21#include <lemon/invalid.h>
22#include <lemon/unionfind.h>
23#include <lemon/graph_utils.h>
24
25///\ingroup galgs
26///\file
27///\brief Maximum matching algorithm.
28
29namespace lemon {
30
31  /// \addtogroup galgs
32  /// @{
33
34  ///Edmonds' alternating forest maximum matching algorithm.
35
36  ///This class provides Edmonds' alternating forest matching
37  ///algorithm. The starting matching (if any) can be passed to the
38  ///algorithm using read-in functions \ref readNMapNode, \ref
39  ///readNMapEdge or \ref readEMapBool depending on the container. The
40  ///resulting maximum matching can be attained by write-out functions
41  ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
42  ///depending on the preferred container.
43  ///
44  ///The dual side of a matching is a map of the nodes to
45  ///MaxMatching::pos_enum, having values D, A and C showing the
46  ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
47  ///a graph with factor-critical components, the nodes in A form the
48  ///barrier, and the nodes in C induce a graph having a perfect
49  ///matching. This decomposition can be attained by calling \ref
50  ///writePos after running the algorithm.
51  ///
52  ///\param Graph The undirected graph type the algorithm runs on.
53  ///
54  ///\author Jacint Szabo 
55  template <typename Graph>
56  class MaxMatching {
57
58  protected:
59
60    typedef typename Graph::Node Node;
61    typedef typename Graph::Edge Edge;
62    typedef typename Graph::UndirEdge UndirEdge;
63    typedef typename Graph::UndirEdgeIt UndirEdgeIt;
64    typedef typename Graph::NodeIt NodeIt;
65    typedef typename Graph::IncEdgeIt IncEdgeIt;
66
67    typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
68
69  public:
70   
71    ///Indicates the Gallai-Edmonds decomposition of the graph.
72
73    ///Indicates the Gallai-Edmonds decomposition of the graph, which
74    ///shows an upper bound on the size of a maximum matching. The
75    ///nodes with pos_enum \c D induce a graph with factor-critical
76    ///components, the nodes in \c A form the canonical barrier, and the
77    ///nodes in \c C induce a graph having a perfect matching.
78    enum pos_enum {
79      D=0,
80      A=1,
81      C=2
82    };
83
84  protected:
85
86    static const int HEUR_density=2;
87    const Graph& g;
88    typename Graph::template NodeMap<Node> _mate;
89    typename Graph::template NodeMap<pos_enum> position;
90     
91  public:
92   
93    MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
94
95    ///Runs Edmonds' algorithm.
96
97    ///Runs Edmonds' algorithm for sparse graphs (number of edges <
98    ///2*number of nodes), and a heuristical Edmonds' algorithm with a
99    ///heuristic of postponing shrinks for dense graphs.
100    void run() {
101      if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
102        greedyMatching();
103        runEdmonds(0);
104      } else runEdmonds(1);
105    }
106
107
108    ///Runs Edmonds' algorithm.
109   
110    ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
111    ///Edmonds' algorithm with a heuristic of postponing shrinks,
112    ///giving a faster algorithm for dense graphs. 
113    void runEdmonds( int heur = 1 ) {
114     
115      for(NodeIt v(g); v!=INVALID; ++v)
116        position.set(v,C);     
117     
118      typename Graph::template NodeMap<Node> ear(g,INVALID);
119      //undefined for the base nodes of the blossoms (i.e. for the
120      //representative elements of UFE blossom) and for the nodes in C
121     
122      typename UFE::MapType blossom_base(g);
123      UFE blossom(blossom_base);
124      typename UFE::MapType tree_base(g);
125      UFE tree(tree_base);
126      //If these UFE's would be members of the class then also
127      //blossom_base and tree_base should be a member.
128     
129      for(NodeIt v(g); v!=INVALID; ++v) {
130        if ( position[v]==C && _mate[v]==INVALID ) {
131          blossom.insert(v);
132          tree.insert(v);
133          position.set(v,D);
134          if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
135          else normShrink( v, ear, blossom, tree );
136        }
137      }
138    }
139
140
141    ///Finds a greedy matching starting from the actual matching.
142   
143    ///Starting form the actual matching stored, it finds a maximal
144    ///greedy matching.
145    void greedyMatching() {
146      for(NodeIt v(g); v!=INVALID; ++v)
147        if ( _mate[v]==INVALID ) {
148          for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
149            Node y=g.runningNode(e);
150            if ( _mate[y]==INVALID && y!=v ) {
151              _mate.set(v,y);
152              _mate.set(y,v);
153              break;
154            }
155          }
156        }
157    }
158
159    ///Returns the size of the actual matching stored.
160
161    ///Returns the size of the actual matching stored. After \ref
162    ///run() it returns the size of a maximum matching in the graph.
163    int size() const {
164      int s=0;
165      for(NodeIt v(g); v!=INVALID; ++v) {
166        if ( _mate[v]!=INVALID ) {
167          ++s;
168        }
169      }
170      return s/2;
171    }
172
173
174    ///Resets the actual matching to the empty matching.
175
176    ///Resets the actual matching to the empty matching. 
177    ///
178    void resetMatching() {
179      for(NodeIt v(g); v!=INVALID; ++v)
180        _mate.set(v,INVALID);     
181    }
182
183    ///Returns the mate of a node in the actual matching.
184
185    ///Returns the mate of a \c node in the actual matching.
186    ///Returns INVALID if the \c node is not covered by the actual matching.
187    Node mate(Node& node) const {
188      return _mate[node];
189    }
190
191    ///Reads a matching from a \c Node valued \c Node map.
192
193    ///Reads a matching from a \c Node valued \c Node map. This map
194    ///must be \e symmetric, i.e. if \c map[u]==v then \c map[v]==u
195    ///must hold, and \c uv will be an edge of the matching.
196    template<typename NMapN>
197    void readNMapNode(NMapN& map) {
198      for(NodeIt v(g); v!=INVALID; ++v) {
199        _mate.set(v,map[v]);   
200      }
201    }
202   
203    ///Writes the stored matching to a \c Node valued \c Node map.
204
205    ///Writes the stored matching to a \c Node valued \c Node map. The
206    ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
207    ///map[v]==u will hold, and now \c uv is an edge of the matching.
208    template<typename NMapN>
209    void writeNMapNode (NMapN& map) const {
210      for(NodeIt v(g); v!=INVALID; ++v) {
211        map.set(v,_mate[v]);   
212      }
213    }
214
215    ///Reads a matching from an \c UndirEdge valued \c Node map.
216
217    ///Reads a matching from an \c UndirEdge valued \c Node map. \c
218    ///map[v] must be an \c UndirEdge incident to \c v. This map must
219    ///have the property that if \c g.oppositeNode(u,map[u])==v then
220    ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
221    ///joining \c u to \c v will be an edge of the matching.
222    template<typename NMapE>
223    void readNMapEdge(NMapE& map) {
224     for(NodeIt v(g); v!=INVALID; ++v) {
225       UndirEdge e=map[v];
226        if ( e!=INVALID )
227          _mate.set(v,g.oppositeNode(v,e));
228      }
229    }
230   
231    ///Writes the matching stored to an \c UndirEdge valued \c Node map.
232
233    ///Writes the stored matching to an \c UndirEdge valued \c Node
234    ///map. \c map[v] will be an \c UndirEdge incident to \c v. This
235    ///map will have the property that if \c g.oppositeNode(u,map[u])
236    ///== v then \c map[u]==map[v] holds, and now this edge is an edge
237    ///of the matching.
238    template<typename NMapE>
239    void writeNMapEdge (NMapE& map)  const {
240      typename Graph::template NodeMap<bool> todo(g,true);
241      for(NodeIt v(g); v!=INVALID; ++v) {
242        if ( todo[v] && _mate[v]!=INVALID ) {
243          Node u=_mate[v];
244          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
245            if ( g.runningNode(e) == u ) {
246              map.set(u,e);
247              map.set(v,e);
248              todo.set(u,false);
249              todo.set(v,false);
250              break;
251            }
252          }
253        }
254      }
255    }
256
257
258    ///Reads a matching from a \c bool valued \c Edge map.
259   
260    ///Reads a matching from a \c bool valued \c Edge map. This map
261    ///must have the property that there are no two incident edges \c
262    ///e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
263    ///map[e]==true form the matching.
264    template<typename EMapB>
265    void readEMapBool(EMapB& map) {
266      for(UndirEdgeIt e(g); e!=INVALID; ++e) {
267        if ( map[e] ) {
268          Node u=g.source(e);     
269          Node v=g.target(e);
270          _mate.set(u,v);
271          _mate.set(v,u);
272        }
273      }
274    }
275
276
277    ///Writes the matching stored to a \c bool valued \c Edge map.
278
279    ///Writes the matching stored to a \c bool valued \c Edge
280    ///map. This map will have the property that there are no two
281    ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
282    ///edges \c e with \c map[e]==true form the matching.
283    template<typename EMapB>
284    void writeEMapBool (EMapB& map) const {
285      for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
286
287      typename Graph::template NodeMap<bool> todo(g,true);
288      for(NodeIt v(g); v!=INVALID; ++v) {
289        if ( todo[v] && _mate[v]!=INVALID ) {
290          Node u=_mate[v];
291          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
292            if ( g.runningNode(e) == u ) {
293              map.set(e,true);
294              todo.set(u,false);
295              todo.set(v,false);
296              break;
297            }
298          }
299        }
300      }
301    }
302
303
304    ///Writes the canonical decomposition of the graph after running
305    ///the algorithm.
306
307    ///After calling any run methods of the class, it writes the
308    ///Gallai-Edmonds canonical decomposition of the graph. \c map
309    ///must be a node map of \ref pos_enum 's.
310    template<typename NMapEnum>
311    void writePos (NMapEnum& map) const {
312      for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
313    }
314
315  private:
316
317 
318    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear, 
319                    UFE& blossom, UFE& tree);
320
321    void normShrink(Node v, typename Graph::template NodeMap<Node>& ear, 
322                    UFE& blossom, UFE& tree);
323
324    bool noShrinkStep(Node x, typename Graph::template NodeMap<Node>& ear, 
325                      UFE& blossom, UFE& tree, std::queue<Node>& Q);
326
327    void shrinkStep(Node& top, Node& middle, Node& bottom,
328                    typename Graph::template NodeMap<Node>& ear, 
329                    UFE& blossom, UFE& tree, std::queue<Node>& Q);
330
331    void augment(Node x, typename Graph::template NodeMap<Node>& ear, 
332                 UFE& blossom, UFE& tree);
333
334  };
335
336
337  // **********************************************************************
338  //  IMPLEMENTATIONS
339  // **********************************************************************
340
341
342  template <typename Graph>
343  void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear, 
344                                      UFE& blossom, UFE& tree) {
345
346    std::queue<Node> Q;   //queue of the totally unscanned nodes
347    Q.push(v); 
348    std::queue<Node> R;   
349    //queue of the nodes which must be scanned for a possible shrink
350     
351    while ( !Q.empty() ) {
352      Node x=Q.front();
353      Q.pop();
354      if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
355      else R.push(x);
356    }
357     
358    while ( !R.empty() ) {
359      Node x=R.front();
360      R.pop();
361       
362      for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
363        Node y=g.runningNode(e);
364
365        if ( position[y] == D && blossom.find(x) != blossom.find(y) ) {
366          //x and y must be in the same tree
367       
368          typename Graph::template NodeMap<bool> path(g,false);
369
370          Node b=blossom.find(x);
371          path.set(b,true);
372          b=_mate[b];
373          while ( b!=INVALID ) {
374            b=blossom.find(ear[b]);
375            path.set(b,true);
376            b=_mate[b];
377          } //going till the root
378       
379          Node top=y;
380          Node middle=blossom.find(top);
381          Node bottom=x;
382          while ( !path[middle] )
383            shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
384                 
385          Node base=middle;
386          top=x;
387          middle=blossom.find(top);
388          bottom=y;
389          Node blossom_base=blossom.find(base);
390          while ( middle!=blossom_base )
391            shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
392                 
393          blossom.makeRep(base);
394        } // if shrink is needed
395
396        while ( !Q.empty() ) {
397          Node x=Q.front();
398          Q.pop();
399          if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
400          else R.push(x);
401        }
402      } //for e
403    } // while ( !R.empty() )
404  }
405
406
407  template <typename Graph>
408  void MaxMatching<Graph>::normShrink(Node v,
409                                      typename Graph::template
410                                      NodeMap<Node>& ear, 
411                                      UFE& blossom, UFE& tree) {
412    std::queue<Node> Q;   //queue of the unscanned nodes
413    Q.push(v); 
414    while ( !Q.empty() ) {
415
416      Node x=Q.front();
417      Q.pop();
418       
419      for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
420        Node y=g.runningNode(e);
421             
422        switch ( position[y] ) {
423        case D:          //x and y must be in the same tree
424
425          if ( blossom.find(x) != blossom.find(y) ) { //shrink
426            typename Graph::template NodeMap<bool> path(g,false);
427             
428            Node b=blossom.find(x);
429            path.set(b,true);
430            b=_mate[b];
431            while ( b!=INVALID ) {
432              b=blossom.find(ear[b]);
433              path.set(b,true);
434              b=_mate[b];
435            } //going till the root
436       
437            Node top=y;
438            Node middle=blossom.find(top);
439            Node bottom=x;
440            while ( !path[middle] )
441              shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
442               
443            Node base=middle;
444            top=x;
445            middle=blossom.find(top);
446            bottom=y;
447            Node blossom_base=blossom.find(base);
448            while ( middle!=blossom_base )
449              shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
450               
451            blossom.makeRep(base);
452          }
453          break;
454        case C:
455          if ( _mate[y]!=INVALID ) {   //grow
456
457            ear.set(y,x);
458            Node w=_mate[y];
459            blossom.insert(w);
460            position.set(y,A);
461            position.set(w,D);
462            tree.insert(y);
463            tree.insert(w);
464            tree.join(y,blossom.find(x)); 
465            tree.join(w,y); 
466            Q.push(w);
467          } else {                 //augment 
468            augment(x, ear, blossom, tree);
469            _mate.set(x,y);
470            _mate.set(y,x);
471            return;
472          } //if
473          break;
474        default: break;
475        }
476      }
477    }
478  }
479
480  template <typename Graph>
481  bool MaxMatching<Graph>::noShrinkStep(Node x,
482                                        typename Graph::template
483                                        NodeMap<Node>& ear, 
484                                        UFE& blossom, UFE& tree,
485                                        std::queue<Node>& Q) {
486    for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
487      Node y=g.runningNode(e);
488       
489      if ( position[y]==C ) {
490        if ( _mate[y]!=INVALID ) {       //grow
491          ear.set(y,x);
492          Node w=_mate[y];
493          blossom.insert(w);
494          position.set(y,A);
495          position.set(w,D);
496          tree.insert(y);
497          tree.insert(w);
498          tree.join(y,blossom.find(x)); 
499          tree.join(w,y); 
500          Q.push(w);
501        } else {                      //augment
502          augment(x, ear, blossom, tree);
503          _mate.set(x,y);
504          _mate.set(y,x);
505          return true;
506        }
507      }
508    }
509    return false;
510  }
511
512  template <typename Graph>
513  void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom,
514                                      typename Graph::template
515                                      NodeMap<Node>& ear, 
516                                      UFE& blossom, UFE& tree,
517                                      std::queue<Node>& Q) {
518    ear.set(top,bottom);
519    Node t=top;
520    while ( t!=middle ) {
521      Node u=_mate[t];
522      t=ear[u];
523      ear.set(t,u);
524    }
525    bottom=_mate[middle];
526    position.set(bottom,D);
527    Q.push(bottom);
528    top=ear[bottom];           
529    Node oldmiddle=middle;
530    middle=blossom.find(top);
531    tree.erase(bottom);
532    tree.erase(oldmiddle);
533    blossom.insert(bottom);
534    blossom.join(bottom, oldmiddle);
535    blossom.join(top, oldmiddle);
536  }
537
538  template <typename Graph>
539  void MaxMatching<Graph>::augment(Node x,
540                                   typename Graph::template NodeMap<Node>& ear, 
541                                   UFE& blossom, UFE& tree) {
542    Node v=_mate[x];
543    while ( v!=INVALID ) {
544       
545      Node u=ear[v];
546      _mate.set(v,u);
547      Node tmp=v;
548      v=_mate[u];
549      _mate.set(u,tmp);
550    }
551    typename UFE::ItemIt it;
552    for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
553      if ( position[it] == D ) {
554        typename UFE::ItemIt b_it;
555        for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) { 
556          position.set( b_it ,C);
557        }
558        blossom.eraseClass(it);
559      } else position.set( it ,C);
560    }
561    tree.eraseClass(x);
562
563  }
564
565  /// @}
566 
567} //END OF NAMESPACE LEMON
568
569#endif //LEMON_MAX_MATCHING_H
Note: See TracBrowser for help on using the repository browser.