1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MIN_COST_FLOW_H |
---|
20 | #define LEMON_MIN_COST_FLOW_H |
---|
21 | |
---|
22 | ///\ingroup flowalgs |
---|
23 | ///\file |
---|
24 | ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost |
---|
25 | |
---|
26 | |
---|
27 | #include <lemon/dijkstra.h> |
---|
28 | #include <lemon/graph_adaptor.h> |
---|
29 | #include <lemon/maps.h> |
---|
30 | #include <vector> |
---|
31 | |
---|
32 | namespace lemon { |
---|
33 | |
---|
34 | /// \addtogroup flowalgs |
---|
35 | /// @{ |
---|
36 | |
---|
37 | ///\brief Implementation of an algorithm for finding a flow of value \c k |
---|
38 | ///(for small values of \c k) having minimal total cost between 2 nodes |
---|
39 | /// |
---|
40 | /// |
---|
41 | /// The class \ref lemon::MinCostFlow "MinCostFlow" implements an |
---|
42 | /// algorithm for finding a flow of value \c k having minimal total |
---|
43 | /// cost from a given source node to a given target node in a |
---|
44 | /// directed graph with a cost function on the edges. To |
---|
45 | /// this end, the edge-capacities and edge-costs have to be |
---|
46 | /// nonnegative. The edge-capacities should be integers, but the |
---|
47 | /// edge-costs can be integers, reals or of other comparable |
---|
48 | /// numeric type. This algorithm is intended to be used only for |
---|
49 | /// small values of \c k, since it is only polynomial in k, not in |
---|
50 | /// the length of k (which is log k): in order to find the minimum |
---|
51 | /// cost flow of value \c k it finds the minimum cost flow of value |
---|
52 | /// \c i for every \c i between 0 and \c k. |
---|
53 | /// |
---|
54 | ///\param Graph The directed graph type the algorithm runs on. |
---|
55 | ///\param LengthMap The type of the length map. |
---|
56 | ///\param CapacityMap The capacity map type. |
---|
57 | /// |
---|
58 | ///\author Attila Bernath |
---|
59 | template <typename Graph, typename LengthMap, typename CapacityMap> |
---|
60 | class MinCostFlow { |
---|
61 | |
---|
62 | typedef typename LengthMap::Value Length; |
---|
63 | |
---|
64 | //Warning: this should be integer type |
---|
65 | typedef typename CapacityMap::Value Capacity; |
---|
66 | |
---|
67 | typedef typename Graph::Node Node; |
---|
68 | typedef typename Graph::NodeIt NodeIt; |
---|
69 | typedef typename Graph::Edge Edge; |
---|
70 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
---|
71 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
---|
72 | |
---|
73 | typedef ResGraphAdaptor<const Graph,int,CapacityMap,EdgeIntMap> ResGW; |
---|
74 | typedef typename ResGW::Edge ResGraphEdge; |
---|
75 | |
---|
76 | protected: |
---|
77 | |
---|
78 | const Graph& g; |
---|
79 | const LengthMap& length; |
---|
80 | const CapacityMap& capacity; |
---|
81 | |
---|
82 | EdgeIntMap flow; |
---|
83 | typedef typename Graph::template NodeMap<Length> PotentialMap; |
---|
84 | PotentialMap potential; |
---|
85 | |
---|
86 | Node s; |
---|
87 | Node t; |
---|
88 | |
---|
89 | Length total_length; |
---|
90 | |
---|
91 | class ModLengthMap { |
---|
92 | typedef typename Graph::template NodeMap<Length> NodeMap; |
---|
93 | const ResGW& g; |
---|
94 | const LengthMap &length; |
---|
95 | const NodeMap &pot; |
---|
96 | public : |
---|
97 | typedef typename LengthMap::Key Key; |
---|
98 | typedef typename LengthMap::Value Value; |
---|
99 | |
---|
100 | ModLengthMap(const ResGW& _g, |
---|
101 | const LengthMap &_length, const NodeMap &_pot) : |
---|
102 | g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { } |
---|
103 | |
---|
104 | Value operator[](typename ResGW::Edge e) const { |
---|
105 | if (g.forward(e)) |
---|
106 | return length[e]-(pot[g.target(e)]-pot[g.source(e)]); |
---|
107 | else |
---|
108 | return -length[e]-(pot[g.target(e)]-pot[g.source(e)]); |
---|
109 | } |
---|
110 | |
---|
111 | }; //ModLengthMap |
---|
112 | |
---|
113 | ResGW res_graph; |
---|
114 | ModLengthMap mod_length; |
---|
115 | Dijkstra<ResGW, ModLengthMap> dijkstra; |
---|
116 | |
---|
117 | public : |
---|
118 | |
---|
119 | /*! \brief The constructor of the class. |
---|
120 | |
---|
121 | \param _g The directed graph the algorithm runs on. |
---|
122 | \param _length The length (cost) of the edges. |
---|
123 | \param _cap The capacity of the edges. |
---|
124 | \param _s Source node. |
---|
125 | \param _t Target node. |
---|
126 | */ |
---|
127 | MinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap, |
---|
128 | Node _s, Node _t) : |
---|
129 | g(_g), length(_length), capacity(_cap), flow(_g), potential(_g), |
---|
130 | s(_s), t(_t), |
---|
131 | res_graph(g, capacity, flow), |
---|
132 | mod_length(res_graph, length, potential), |
---|
133 | dijkstra(res_graph, mod_length) { |
---|
134 | reset(); |
---|
135 | } |
---|
136 | |
---|
137 | /*! Tries to augment the flow between s and t by 1. |
---|
138 | The return value shows if the augmentation is successful. |
---|
139 | */ |
---|
140 | bool augment() { |
---|
141 | dijkstra.run(s); |
---|
142 | if (!dijkstra.reached(t)) { |
---|
143 | |
---|
144 | //Unsuccessful augmentation. |
---|
145 | return false; |
---|
146 | } else { |
---|
147 | |
---|
148 | //We have to change the potential |
---|
149 | for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n) |
---|
150 | potential.set(n, potential[n]+dijkstra.distMap()[n]); |
---|
151 | |
---|
152 | //Augmenting on the shortest path |
---|
153 | Node n=t; |
---|
154 | ResGraphEdge e; |
---|
155 | while (n!=s){ |
---|
156 | e = dijkstra.predEdge(n); |
---|
157 | n = dijkstra.predNode(n); |
---|
158 | res_graph.augment(e,1); |
---|
159 | //Let's update the total length |
---|
160 | if (res_graph.forward(e)) |
---|
161 | total_length += length[e]; |
---|
162 | else |
---|
163 | total_length -= length[e]; |
---|
164 | } |
---|
165 | |
---|
166 | return true; |
---|
167 | } |
---|
168 | } |
---|
169 | |
---|
170 | /*! \brief Runs the algorithm. |
---|
171 | |
---|
172 | Runs the algorithm. |
---|
173 | Returns k if there is a flow of value at least k from s to t. |
---|
174 | Otherwise it returns the maximum value of a flow from s to t. |
---|
175 | |
---|
176 | \param k The value of the flow we are looking for. |
---|
177 | |
---|
178 | \todo May be it does make sense to be able to start with a nonzero |
---|
179 | feasible primal-dual solution pair as well. |
---|
180 | |
---|
181 | \todo If the actual flow value is bigger than k, then everything is |
---|
182 | cleared and the algorithm starts from zero flow. Is it a good approach? |
---|
183 | */ |
---|
184 | int run(int k) { |
---|
185 | if (flowValue()>k) reset(); |
---|
186 | while (flowValue()<k && augment()) { } |
---|
187 | return flowValue(); |
---|
188 | } |
---|
189 | |
---|
190 | /*! \brief The class is reset to zero flow and potential. |
---|
191 | The class is reset to zero flow and potential. |
---|
192 | */ |
---|
193 | void reset() { |
---|
194 | total_length=0; |
---|
195 | for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0); |
---|
196 | for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0); |
---|
197 | } |
---|
198 | |
---|
199 | /*! Returns the value of the actual flow. |
---|
200 | */ |
---|
201 | int flowValue() const { |
---|
202 | int i=0; |
---|
203 | for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e]; |
---|
204 | for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e]; |
---|
205 | return i; |
---|
206 | } |
---|
207 | |
---|
208 | /// Total cost of the found flow. |
---|
209 | |
---|
210 | /// This function gives back the total cost of the found flow. |
---|
211 | Length totalLength(){ |
---|
212 | return total_length; |
---|
213 | } |
---|
214 | |
---|
215 | ///Returns a const reference to the EdgeMap \c flow. |
---|
216 | |
---|
217 | ///Returns a const reference to the EdgeMap \c flow. |
---|
218 | const EdgeIntMap &getFlow() const { return flow;} |
---|
219 | |
---|
220 | /*! \brief Returns a const reference to the NodeMap \c potential (the dual solution). |
---|
221 | |
---|
222 | Returns a const reference to the NodeMap \c potential (the dual solution). |
---|
223 | */ |
---|
224 | const PotentialMap &getPotential() const { return potential;} |
---|
225 | |
---|
226 | /*! \brief Checking the complementary slackness optimality criteria. |
---|
227 | |
---|
228 | This function checks, whether the given flow and potential |
---|
229 | satisfy the complementary slackness conditions (i.e. these are optimal). |
---|
230 | This function only checks optimality, doesn't bother with feasibility. |
---|
231 | For testing purpose. |
---|
232 | */ |
---|
233 | bool checkComplementarySlackness(){ |
---|
234 | Length mod_pot; |
---|
235 | Length fl_e; |
---|
236 | for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) { |
---|
237 | //C^{\Pi}_{i,j} |
---|
238 | mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)]; |
---|
239 | fl_e = flow[e]; |
---|
240 | if (0<fl_e && fl_e<capacity[e]) { |
---|
241 | /// \todo better comparison is needed for real types, moreover, |
---|
242 | /// this comparison here is superfluous. |
---|
243 | if (mod_pot != 0) |
---|
244 | return false; |
---|
245 | } |
---|
246 | else { |
---|
247 | if (mod_pot > 0 && fl_e != 0) |
---|
248 | return false; |
---|
249 | if (mod_pot < 0 && fl_e != capacity[e]) |
---|
250 | return false; |
---|
251 | } |
---|
252 | } |
---|
253 | return true; |
---|
254 | } |
---|
255 | |
---|
256 | }; //class MinCostFlow |
---|
257 | |
---|
258 | ///@} |
---|
259 | |
---|
260 | } //namespace lemon |
---|
261 | |
---|
262 | #endif //LEMON_MIN_COST_FLOW_H |
---|