1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_BEZIER_H |
---|
20 | #define LEMON_BEZIER_H |
---|
21 | |
---|
22 | ///\ingroup misc |
---|
23 | ///\file |
---|
24 | ///\brief A simple class implementing polynomials. |
---|
25 | /// |
---|
26 | ///\author Alpar Juttner |
---|
27 | |
---|
28 | #include<vector> |
---|
29 | |
---|
30 | namespace lemon { |
---|
31 | |
---|
32 | /// \addtogroup misc |
---|
33 | /// @{ |
---|
34 | |
---|
35 | ///Simple polinomial class |
---|
36 | |
---|
37 | ///This class implements a polynomial where the coefficients are of |
---|
38 | ///type \c T. |
---|
39 | /// |
---|
40 | ///The coefficients are stored in an std::vector. |
---|
41 | template<class T> |
---|
42 | class Polynomial |
---|
43 | { |
---|
44 | std::vector<T> _coeff; |
---|
45 | public: |
---|
46 | ///Construct a polynomial of degree \c d. |
---|
47 | explicit Polynomial(int d=0) : _coeff(d+1) {} |
---|
48 | ///\e |
---|
49 | template<class U> Polynomial(const U &u) : _coeff(1,u) {} |
---|
50 | ///\e |
---|
51 | template<class U> Polynomial(const Polynomial<U> &u) : _coeff(u.deg()+1) |
---|
52 | { |
---|
53 | for(int i=0;i<(int)_coeff.size();i++) _coeff[i]=u[i]; |
---|
54 | } |
---|
55 | ///Query the degree of the polynomial. |
---|
56 | |
---|
57 | ///Query the degree of the polynomial. |
---|
58 | ///\warning This number differs from real degree of the polinomial if |
---|
59 | ///the coefficient of highest degree is 0. |
---|
60 | int deg() const { return _coeff.size()-1; } |
---|
61 | ///Set the degree of the polynomial. |
---|
62 | |
---|
63 | ///Set the degree of the polynomial. In fact it resizes the |
---|
64 | ///coefficient vector. |
---|
65 | void deg(int d) { _coeff.resize(d+1);} |
---|
66 | |
---|
67 | ///Returns (as a reference) the coefficient of degree \c d. |
---|
68 | typename std::vector<T>::reference operator[](int d) { return _coeff[d]; } |
---|
69 | ///Returns (as a const reference) the coefficient of degree \c d. |
---|
70 | typename std::vector<T>::const_reference |
---|
71 | operator[](int d) const {return _coeff[d];} |
---|
72 | |
---|
73 | ///Substitute the value u into the polinomial. |
---|
74 | |
---|
75 | ///Substitute the value u into the polinomial. |
---|
76 | ///The calculation will be done using type \c R. |
---|
77 | ///The following examples shows the usage of the template parameter \c R. |
---|
78 | ///\code |
---|
79 | /// Polynomial<xy<double> > line(1); |
---|
80 | /// line[0]=xy<double>(12,25); |
---|
81 | /// line[1]=xy<double>(2,7); |
---|
82 | /// ... |
---|
83 | /// xy<double> d = line.subst<xy<double> >(23.2); |
---|
84 | ///\endcode |
---|
85 | /// |
---|
86 | ///\code |
---|
87 | /// Polynomial<double> p; |
---|
88 | /// Polynomial<double> q; |
---|
89 | /// ... |
---|
90 | /// Polynomial<double> s = p.subst<Polynomial<double> >(q); |
---|
91 | ///\endcode |
---|
92 | template<class R,class U> |
---|
93 | R subst(const U &u) const |
---|
94 | { |
---|
95 | typename std::vector<T>::const_reverse_iterator i=_coeff.rbegin(); |
---|
96 | R v=*i; |
---|
97 | for(++i;i!=_coeff.rend();++i) v=v*u+*i; |
---|
98 | return v; |
---|
99 | } |
---|
100 | ///Substitute the value u into the polinomial. |
---|
101 | |
---|
102 | ///Substitute the value u into the polinomial. |
---|
103 | ///The calculation will be done using type \c T |
---|
104 | ///(i.e. using the type of the coefficients.) |
---|
105 | template<class U> |
---|
106 | T operator()(const U &u) const |
---|
107 | { |
---|
108 | return subst<T>(u); |
---|
109 | } |
---|
110 | |
---|
111 | ///Derivate the polynomial (in place) |
---|
112 | Polynomial &derivateMyself() |
---|
113 | { |
---|
114 | for(int i=1;i<(int)_coeff.size();i++) _coeff[i-1]=i*_coeff[i]; |
---|
115 | _coeff.pop_back(); |
---|
116 | return *this; |
---|
117 | } |
---|
118 | |
---|
119 | ///Return the derivate of the polynomial |
---|
120 | Polynomial derivate() const |
---|
121 | { |
---|
122 | Polynomial tmp(deg()-1); |
---|
123 | for(int i=1;i<(int)_coeff.size();i++) tmp[i-1]=i*_coeff[i]; |
---|
124 | return tmp; |
---|
125 | } |
---|
126 | |
---|
127 | ///Integrate the polynomial (in place) |
---|
128 | Polynomial &integrateMyself() |
---|
129 | { |
---|
130 | _coeff.push_back(T()); |
---|
131 | for(int i=_coeff.size()-1;i>=0;i--) _coeff[i]=_coeff[i-1]/i; |
---|
132 | _coeff[0]=0; |
---|
133 | return *this; |
---|
134 | } |
---|
135 | |
---|
136 | ///Return the integrate of the polynomial |
---|
137 | Polynomial integrate() const |
---|
138 | { |
---|
139 | Polynomial tmp(deg()+1); |
---|
140 | tmp[0]=0; |
---|
141 | for(int i=0;i<(int)_coeff.size();i++) tmp[i+1]=_coeff[i]/(i+1); |
---|
142 | return tmp; |
---|
143 | } |
---|
144 | |
---|
145 | ///\e |
---|
146 | template<class U> |
---|
147 | Polynomial &operator+=(const Polynomial<U> &p) |
---|
148 | { |
---|
149 | if(p.deg()>deg()) _coeff.resize(p.deg()+1); |
---|
150 | for(int i=0;i<=(int)std::min(deg(),p.deg());i++) |
---|
151 | _coeff[i]+=p[i]; |
---|
152 | return *this; |
---|
153 | } |
---|
154 | ///\e |
---|
155 | template<class U> |
---|
156 | Polynomial &operator-=(const Polynomial<U> &p) |
---|
157 | { |
---|
158 | if(p.deg()>deg()) _coeff.resize(p.deg()+1); |
---|
159 | for(int i=0;i<=std::min(deg(),p.deg());i++) _coeff[i]-=p[i]; |
---|
160 | return *this; |
---|
161 | } |
---|
162 | ///\e |
---|
163 | template<class U> |
---|
164 | Polynomial &operator+=(const U &u) |
---|
165 | { |
---|
166 | _coeff[0]+=u; |
---|
167 | return *this; |
---|
168 | } |
---|
169 | ///\e |
---|
170 | template<class U> |
---|
171 | Polynomial &operator-=(const U &u) |
---|
172 | { |
---|
173 | _coeff[0]+=u; |
---|
174 | return *this; |
---|
175 | } |
---|
176 | ///\e |
---|
177 | template<class U> |
---|
178 | Polynomial &operator*=(const U &u) |
---|
179 | { |
---|
180 | for(typename std::vector<T>::iterator i=_coeff.begin();i!=_coeff.end();++i) |
---|
181 | *i*=u; |
---|
182 | return *this; |
---|
183 | } |
---|
184 | ///\e |
---|
185 | template<class U> |
---|
186 | Polynomial &operator/=(const U &u) |
---|
187 | { |
---|
188 | for(typename std::vector<T>::iterator i=_coeff.begin();i!=_coeff.end();++i) |
---|
189 | *i/=u; |
---|
190 | return *this; |
---|
191 | } |
---|
192 | |
---|
193 | }; |
---|
194 | |
---|
195 | ///Equality comparison |
---|
196 | |
---|
197 | ///\relates Polynomial |
---|
198 | ///\warning Two polynomials are defined to be unequal if their degrees differ, |
---|
199 | ///even if the non-zero coefficients are the same. |
---|
200 | template<class U,class V> |
---|
201 | bool operator==(const Polynomial<U> &u,const Polynomial<V> &v) |
---|
202 | { |
---|
203 | if(u.deg()!=v.deg()) return false; |
---|
204 | for(int i=0;i<=u.deg();i++) if(u[i]!=v[i]) return false; |
---|
205 | return true; |
---|
206 | } |
---|
207 | |
---|
208 | ///Non-equality comparison |
---|
209 | |
---|
210 | ///\relates Polynomial |
---|
211 | ///\warning Two polynomials are defined to be unequal if their degrees differ, |
---|
212 | ///even if the non-zero coefficients are the same. |
---|
213 | template<class U,class V> |
---|
214 | bool operator!=(const Polynomial<U> &u,const Polynomial<V> &v) |
---|
215 | { |
---|
216 | return !(u==v); |
---|
217 | } |
---|
218 | |
---|
219 | ///\e |
---|
220 | |
---|
221 | ///\relates Polynomial |
---|
222 | /// |
---|
223 | template<class U,class V> |
---|
224 | Polynomial<U> operator+(const Polynomial<U> &u,const Polynomial<V> &v) |
---|
225 | { |
---|
226 | Polynomial<U> tmp=u; |
---|
227 | tmp+=v; |
---|
228 | return tmp; |
---|
229 | } |
---|
230 | |
---|
231 | ///\e |
---|
232 | |
---|
233 | ///\relates Polynomial |
---|
234 | /// |
---|
235 | template<class U,class V> |
---|
236 | Polynomial<U> operator-(const Polynomial<U> &u,const Polynomial<V> &v) |
---|
237 | { |
---|
238 | Polynomial<U> tmp=u; |
---|
239 | tmp-=v; |
---|
240 | return tmp; |
---|
241 | } |
---|
242 | |
---|
243 | ///\e |
---|
244 | |
---|
245 | ///\relates Polynomial |
---|
246 | /// |
---|
247 | template<class U,class V> |
---|
248 | Polynomial<U> operator*(const Polynomial<U> &u,const Polynomial<V> &v) |
---|
249 | { |
---|
250 | Polynomial<U> tmp(u.deg()+v.deg()); |
---|
251 | for(int i=0;i<=v.deg();i++) |
---|
252 | for(int j=0;j<=u.deg();j++) |
---|
253 | tmp[i+j]+=v[i]*u[j]; |
---|
254 | return tmp; |
---|
255 | } |
---|
256 | ///\e |
---|
257 | |
---|
258 | ///\relates Polynomial |
---|
259 | /// |
---|
260 | template<class U,class V> |
---|
261 | Polynomial<U> operator+(const Polynomial<U> &u,const V &v) |
---|
262 | { |
---|
263 | Polynomial<U> tmp=u; |
---|
264 | tmp+=v; |
---|
265 | return tmp; |
---|
266 | } |
---|
267 | ///\e |
---|
268 | |
---|
269 | ///\relates Polynomial |
---|
270 | /// |
---|
271 | template<class U,class V> |
---|
272 | Polynomial<U> operator+(const V &v,const Polynomial<U> &u) |
---|
273 | { |
---|
274 | Polynomial<U> tmp=u; |
---|
275 | tmp+=v; |
---|
276 | return tmp; |
---|
277 | } |
---|
278 | ///\e |
---|
279 | |
---|
280 | ///\relates Polynomial |
---|
281 | /// |
---|
282 | template<class U,class V> |
---|
283 | Polynomial<U> operator-(const Polynomial<U> &u,const V &v) |
---|
284 | { |
---|
285 | Polynomial<U> tmp=u; |
---|
286 | tmp-=v; |
---|
287 | return tmp; |
---|
288 | } |
---|
289 | ///\e |
---|
290 | |
---|
291 | ///\relates Polynomial |
---|
292 | /// |
---|
293 | template<class U> |
---|
294 | Polynomial<U> operator-(const Polynomial<U> &u) |
---|
295 | { |
---|
296 | Polynomial<U> tmp(u.deg()); |
---|
297 | for(int i=0;i<=u.deg();i++) tmp[i]=-u[i]; |
---|
298 | return tmp; |
---|
299 | } |
---|
300 | ///\e |
---|
301 | |
---|
302 | ///\relates Polynomial |
---|
303 | /// |
---|
304 | template<class U,class V> |
---|
305 | Polynomial<U> operator-(const V &v,const Polynomial<U> &u) |
---|
306 | { |
---|
307 | Polynomial<U> tmp=-u; |
---|
308 | tmp+=v; |
---|
309 | return tmp; |
---|
310 | } |
---|
311 | ///\e |
---|
312 | |
---|
313 | ///\relates Polynomial |
---|
314 | /// |
---|
315 | template<class U,class V> |
---|
316 | Polynomial<U> operator*(const Polynomial<U> &u,const V &v) |
---|
317 | { |
---|
318 | Polynomial<U> tmp=u; |
---|
319 | tmp*=v; |
---|
320 | return tmp; |
---|
321 | } |
---|
322 | ///\e |
---|
323 | |
---|
324 | ///\relates Polynomial |
---|
325 | /// |
---|
326 | template<class U,class V> |
---|
327 | Polynomial<U> operator*(const V &v,const Polynomial<U> &u) |
---|
328 | { |
---|
329 | Polynomial<U> tmp=u; |
---|
330 | tmp*=v; |
---|
331 | return tmp; |
---|
332 | } |
---|
333 | ///\e |
---|
334 | |
---|
335 | ///\relates Polynomial |
---|
336 | /// |
---|
337 | template<class U,class V> |
---|
338 | Polynomial<U> operator/(const Polynomial<U> &u,const V &v) |
---|
339 | { |
---|
340 | Polynomial<U> tmp=u; |
---|
341 | tmp/=v; |
---|
342 | return tmp; |
---|
343 | } |
---|
344 | |
---|
345 | /// @} |
---|
346 | |
---|
347 | } //END OF NAMESPACE LEMON |
---|
348 | |
---|
349 | #endif // LEMON_POLYNOMIAL_H |
---|