COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/preflow.h @ 2365:751a14b992f2

Last change on this file since 2365:751a14b992f2 was 2350:eb371753e814, checked in by Alpar Juttner, 17 years ago

Several doc improvements.

File size: 24.5 KB
RevLine 
[906]1/* -*- C++ -*-
2 *
[1956]3 * This file is a part of LEMON, a generic C++ optimization library
4 *
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[921]19#ifndef LEMON_PREFLOW_H
20#define LEMON_PREFLOW_H
[836]21
22#include <vector>
23#include <queue>
24
[1762]25#include <lemon/error.h>
[1993]26#include <lemon/bits/invalid.h>
[1835]27#include <lemon/tolerance.h>
[921]28#include <lemon/maps.h>
[977]29#include <lemon/graph_utils.h>
[836]30
31/// \file
32/// \ingroup flowalgs
[1742]33/// \brief Implementation of the preflow algorithm.
[836]34
[921]35namespace lemon {
[836]36
[1792]37  ///\ingroup flowalgs
38  ///\brief %Preflow algorithms class.
39  ///
[836]40  ///This class provides an implementation of the \e preflow \e
41  ///algorithm producing a flow of maximum value in a directed
[2024]42  ///graph. The preflow algorithms are the fastest known max flow algorithms.
43  ///The \e source node, the \e target node, the \e
[836]44  ///capacity of the edges and the \e starting \e flow value of the
45  ///edges should be passed to the algorithm through the
46  ///constructor. It is possible to change these quantities using the
[1285]47  ///functions \ref source, \ref target, \ref capacityMap and \ref
48  ///flowMap.
[836]49  ///
[921]50  ///After running \ref lemon::Preflow::phase1() "phase1()"
51  ///or \ref lemon::Preflow::run() "run()", the maximal flow
[836]52  ///value can be obtained by calling \ref flowValue(). The minimum
[851]53  ///value cut can be written into a <tt>bool</tt> node map by
54  ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
[836]55  ///the inclusionwise minimum and maximum of the minimum value cuts,
56  ///resp.)
57  ///
58  ///\param Graph The directed graph type the algorithm runs on.
59  ///\param Num The number type of the capacities and the flow values.
[1222]60  ///\param CapacityMap The capacity map type.
[836]61  ///\param FlowMap The flow map type.
[2024]62  ///\param Tolerance The tolerance type.
[836]63  ///
64  ///\author Jacint Szabo
[1227]65  ///\todo Second template parameter is superfluous
[836]66  template <typename Graph, typename Num,
[1222]67            typename CapacityMap=typename Graph::template EdgeMap<Num>,
[1835]68            typename FlowMap=typename Graph::template EdgeMap<Num>,
[2019]69            typename Tolerance=Tolerance<Num> >
[836]70  class Preflow {
71  protected:
72    typedef typename Graph::Node Node;
73    typedef typename Graph::NodeIt NodeIt;
74    typedef typename Graph::EdgeIt EdgeIt;
75    typedef typename Graph::OutEdgeIt OutEdgeIt;
76    typedef typename Graph::InEdgeIt InEdgeIt;
77
78    typedef typename Graph::template NodeMap<Node> NNMap;
79    typedef typename std::vector<Node> VecNode;
80
[1222]81    const Graph* _g;
82    Node _source;
83    Node _target;
84    const CapacityMap* _capacity;
85    FlowMap* _flow;
[1835]86
[2019]87    Tolerance _surely;
[1835]88   
[1222]89    int _node_num;      //the number of nodes of G
[836]90   
91    typename Graph::template NodeMap<int> level; 
92    typename Graph::template NodeMap<Num> excess;
93
94    // constants used for heuristics
95    static const int H0=20;
96    static const int H1=1;
97
[1762]98  public:
99
100    ///\ref Exception for the case when s=t.
101
102    ///\ref Exception for the case when the source equals the target.
103    class InvalidArgument : public lemon::LogicError {
[836]104    public:
[2151]105      virtual const char* what() const throw() {
[1762]106        return "lemon::Preflow::InvalidArgument";
107      }
108    };
109   
110   
[836]111    ///Indicates the property of the starting flow map.
[1762]112   
[1222]113    ///Indicates the property of the starting flow map.
[836]114    ///
115    enum FlowEnum{
[1898]116      ///indicates an unspecified edge map. \c flow will be
117      ///set to the constant zero flow in the beginning of
118      ///the algorithm in this case.
[836]119      NO_FLOW,
[1898]120      ///constant zero flow
[836]121      ZERO_FLOW,
[1898]122      ///any flow, i.e. the sum of the in-flows equals to
123      ///the sum of the out-flows in every node except the \c source and
124      ///the \c target.
[836]125      GEN_FLOW,
[1898]126      ///any preflow, i.e. the sum of the in-flows is at
127      ///least the sum of the out-flows in every node except the \c source.
[836]128      PRE_FLOW
129    };
130
131    ///Indicates the state of the preflow algorithm.
132
[1222]133    ///Indicates the state of the preflow algorithm.
[836]134    ///
135    enum StatusEnum {
[1898]136      ///before running the algorithm or
137      ///at an unspecified state.
[836]138      AFTER_NOTHING,
[1898]139      ///right after running \ref phase1()
[836]140      AFTER_PREFLOW_PHASE_1,     
[1898]141      ///after running \ref phase2()
[836]142      AFTER_PREFLOW_PHASE_2
143    };
144   
[1762]145  protected:
146    FlowEnum flow_prop;
[836]147    StatusEnum status; // Do not needle this flag only if necessary.
148   
149  public:
150    ///The constructor of the class.
151
152    ///The constructor of the class.
[1285]153    ///\param _gr The directed graph the algorithm runs on.
[836]154    ///\param _s The source node.
155    ///\param _t The target node.
[1222]156    ///\param _cap The capacity of the edges.
157    ///\param _f The flow of the edges.
[2350]158    ///\param _sr Tolerance class.
[836]159    ///Except the graph, all of these parameters can be reset by
[1285]160    ///calling \ref source, \ref target, \ref capacityMap and \ref
161    ///flowMap, resp.
[2033]162    Preflow(const Graph& _gr, Node _s, Node _t,
163            const CapacityMap& _cap, FlowMap& _f,
164            const Tolerance &_sr=Tolerance()) :
[1222]165        _g(&_gr), _source(_s), _target(_t), _capacity(&_cap),
[2019]166        _flow(&_f), _surely(_sr),
[1835]167        _node_num(countNodes(_gr)), level(_gr), excess(_gr,0),
[1762]168        flow_prop(NO_FLOW), status(AFTER_NOTHING) {
169        if ( _source==_target )
170          throw InvalidArgument();
[2033]171    }
[1762]172   
[1898]173    ///Give a reference to the tolerance handler class
[836]174
[1898]175    ///Give a reference to the tolerance handler class
176    ///\sa Tolerance
[2019]177    Tolerance &tolerance() { return _surely; }
[1898]178
[836]179    ///Runs the preflow algorithm. 
180
[851]181    ///Runs the preflow algorithm.
182    ///
[836]183    void run() {
184      phase1(flow_prop);
185      phase2();
186    }
187   
188    ///Runs the preflow algorithm. 
189   
190    ///Runs the preflow algorithm.
191    ///\pre The starting flow map must be
192    /// - a constant zero flow if \c fp is \c ZERO_FLOW,
193    /// - an arbitrary flow if \c fp is \c GEN_FLOW,
194    /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
195    /// - any map if \c fp is NO_FLOW.
196    ///If the starting flow map is a flow or a preflow then
197    ///the algorithm terminates faster.
198    void run(FlowEnum fp) {
199      flow_prop=fp;
200      run();
201    }
202     
203    ///Runs the first phase of the preflow algorithm.
204
[920]205    ///The preflow algorithm consists of two phases, this method runs
206    ///the first phase. After the first phase the maximum flow value
[1285]207    ///and a minimum value cut can already be computed, although a
[920]208    ///maximum flow is not yet obtained. So after calling this method
209    ///\ref flowValue returns the value of a maximum flow and \ref
210    ///minCut returns a minimum cut.     
211    ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
212    ///value cuts unless calling \ref phase2. 
213    ///\pre The starting flow must be
214    ///- a constant zero flow if \c fp is \c ZERO_FLOW,
215    ///- an arbitary flow if \c fp is \c GEN_FLOW,
216    ///- an arbitary preflow if \c fp is \c PRE_FLOW,
217    ///- any map if \c fp is NO_FLOW.
[836]218    void phase1(FlowEnum fp)
219    {
220      flow_prop=fp;
221      phase1();
222    }
223
224   
225    ///Runs the first phase of the preflow algorithm.
226
[920]227    ///The preflow algorithm consists of two phases, this method runs
228    ///the first phase. After the first phase the maximum flow value
[1285]229    ///and a minimum value cut can already be computed, although a
[920]230    ///maximum flow is not yet obtained. So after calling this method
231    ///\ref flowValue returns the value of a maximum flow and \ref
232    ///minCut returns a minimum cut.
[1786]233    ///\warning \ref minMinCut() and \ref maxMinCut() do not
[911]234    ///give minimum value cuts unless calling \ref phase2().
[836]235    void phase1()
236    {
[1222]237      int heur0=(int)(H0*_node_num);  //time while running 'bound decrease'
238      int heur1=(int)(H1*_node_num);  //time while running 'highest label'
[836]239      int heur=heur1;         //starting time interval (#of relabels)
240      int numrelabel=0;
241
242      bool what_heur=1;
243      //It is 0 in case 'bound decrease' and 1 in case 'highest label'
244
245      bool end=false;
246      //Needed for 'bound decrease', true means no active
247      //nodes are above bound b.
248
[1222]249      int k=_node_num-2;  //bound on the highest level under n containing a node
[2024]250      int b=k;    //bound on the highest level under n containing an active node
[836]251
[1222]252      VecNode first(_node_num, INVALID);
253      NNMap next(*_g, INVALID);
[836]254
[1222]255      NNMap left(*_g, INVALID);
256      NNMap right(*_g, INVALID);
257      VecNode level_list(_node_num,INVALID);
[836]258      //List of the nodes in level i<n, set to n.
259
260      preflowPreproc(first, next, level_list, left, right);
261
262      //Push/relabel on the highest level active nodes.
263      while ( true ) {
264        if ( b == 0 ) {
265          if ( !what_heur && !end && k > 0 ) {
266            b=k;
267            end=true;
268          } else break;
269        }
270
271        if ( first[b]==INVALID ) --b;
272        else {
273          end=false;
274          Node w=first[b];
275          first[b]=next[w];
276          int newlevel=push(w, next, first);
[2330]277          if ( excess[w] != 0 ) {
278            relabel(w, newlevel, first, next, level_list,
279                    left, right, b, k, what_heur);
280          }
[836]281
282          ++numrelabel;
283          if ( numrelabel >= heur ) {
284            numrelabel=0;
285            if ( what_heur ) {
286              what_heur=0;
287              heur=heur0;
288              end=false;
289            } else {
290              what_heur=1;
291              heur=heur1;
292              b=k;
293            }
294          }
295        }
296      }
297      flow_prop=PRE_FLOW;
298      status=AFTER_PREFLOW_PHASE_1;
299    }
300    // Heuristics:
301    //   2 phase
302    //   gap
303    //   list 'level_list' on the nodes on level i implemented by hand
304    //   stack 'active' on the active nodes on level i     
305    //   runs heuristic 'highest label' for H1*n relabels
[1222]306    //   runs heuristic 'bound decrease' for H0*n relabels,
307    //        starts with 'highest label'
[836]308    //   Parameters H0 and H1 are initialized to 20 and 1.
309
310
311    ///Runs the second phase of the preflow algorithm.
312
313    ///The preflow algorithm consists of two phases, this method runs
[1631]314    ///the second phase. After calling \ref phase1() and then
315    ///\ref phase2(),
316    /// \ref flowMap() return a maximum flow, \ref flowValue
[920]317    ///returns the value of a maximum flow, \ref minCut returns a
318    ///minimum cut, while the methods \ref minMinCut and \ref
319    ///maxMinCut return the inclusionwise minimum and maximum cuts of
320    ///minimum value, resp.  \pre \ref phase1 must be called before.
[2330]321    ///
322    /// \todo The inexact computation can cause positive excess on a set of
323    /// unpushable nodes. We may have to watch the empty level in this case
324    /// due to avoid the terrible long running time.
[836]325    void phase2()
326    {
327
[1222]328      int k=_node_num-2;  //bound on the highest level under n containing a node
[836]329      int b=k;    //bound on the highest level under n of an active node
330
331   
[1222]332      VecNode first(_node_num, INVALID);
333      NNMap next(*_g, INVALID);
334      level.set(_source,0);
[836]335      std::queue<Node> bfs_queue;
[1222]336      bfs_queue.push(_source);
[836]337
338      while ( !bfs_queue.empty() ) {
339
340        Node v=bfs_queue.front();
341        bfs_queue.pop();
342        int l=level[v]+1;
343
[1222]344        for(InEdgeIt e(*_g,v); e!=INVALID; ++e) {
[2330]345          if ( !_surely.positive((*_capacity)[e] - (*_flow)[e])) continue;
[1222]346          Node u=_g->source(e);
347          if ( level[u] >= _node_num ) {
[836]348            bfs_queue.push(u);
349            level.set(u, l);
[2330]350            if ( excess[u] != 0 ) {
[836]351              next.set(u,first[l]);
352              first[l]=u;
353            }
354          }
355        }
356
[1222]357        for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) {
[2024]358          if ( !_surely.positive((*_flow)[e]) ) continue;
[1222]359          Node u=_g->target(e);
360          if ( level[u] >= _node_num ) {
[836]361            bfs_queue.push(u);
362            level.set(u, l);
[2330]363            if ( excess[u] != 0 ) {
[836]364              next.set(u,first[l]);
365              first[l]=u;
366            }
367          }
368        }
369      }
[1222]370      b=_node_num-2;
[836]371
372      while ( true ) {
373
374        if ( b == 0 ) break;
375        if ( first[b]==INVALID ) --b;
376        else {
377          Node w=first[b];
378          first[b]=next[w];
379          int newlevel=push(w,next, first);
380         
[2330]381          if ( newlevel == _node_num) {
382            excess.set(w, 0);
383            level.set(w,_node_num);
384          }
[836]385          //relabel
[2330]386          if ( excess[w] != 0 ) {
[836]387            level.set(w,++newlevel);
388            next.set(w,first[newlevel]);
389            first[newlevel]=w;
390            b=newlevel;
391          }
392        }
393      } // while(true)
394      flow_prop=GEN_FLOW;
395      status=AFTER_PREFLOW_PHASE_2;
396    }
397
398    /// Returns the value of the maximum flow.
399
400    /// Returns the value of the maximum flow by returning the excess
[911]401    /// of the target node \c t. This value equals to the value of
[836]402    /// the maximum flow already after running \ref phase1.
403    Num flowValue() const {
[1222]404      return excess[_target];
[836]405    }
406
407
408    ///Returns a minimum value cut.
409
410    ///Sets \c M to the characteristic vector of a minimum value
411    ///cut. This method can be called both after running \ref
412    ///phase1 and \ref phase2. It is much faster after
[849]413    ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
[911]414    ///If \ref minCut() is called after \ref phase2() then M should
[836]415    ///be initialized to false.
416    template<typename _CutMap>
417    void minCut(_CutMap& M) const {
418      switch ( status ) {
419        case AFTER_PREFLOW_PHASE_1:
[1222]420        for(NodeIt v(*_g); v!=INVALID; ++v) {
421          if (level[v] < _node_num) {
[836]422            M.set(v, false);
423          } else {
424            M.set(v, true);
425          }
426        }
427        break;
428        case AFTER_PREFLOW_PHASE_2:
429        minMinCut(M);
430        break;
431        case AFTER_NOTHING:
432        break;
433      }
434    }
435
436    ///Returns the inclusionwise minimum of the minimum value cuts.
437
438    ///Sets \c M to the characteristic vector of the minimum value cut
439    ///which is inclusionwise minimum. It is computed by processing a
440    ///bfs from the source node \c s in the residual graph.  \pre M
441    ///should be a node map of bools initialized to false.  \pre \ref
442    ///phase2 should already be run.
443    template<typename _CutMap>
444    void minMinCut(_CutMap& M) const {
445
446      std::queue<Node> queue;
[1222]447      M.set(_source,true);
[1227]448      queue.push(_source);
[836]449     
450      while (!queue.empty()) {
451        Node w=queue.front();
452        queue.pop();
453       
[1222]454        for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
455          Node v=_g->target(e);
[2330]456          if (!M[v] && _surely.positive((*_capacity)[e] -(*_flow)[e]) ) {
[836]457            queue.push(v);
458            M.set(v, true);
459          }
460        }
461       
[1222]462        for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
463          Node v=_g->source(e);
[2024]464          if (!M[v] && _surely.positive((*_flow)[e]) ) {
[836]465            queue.push(v);
466            M.set(v, true);
467          }
468        }
469      }
470    }
471   
472    ///Returns the inclusionwise maximum of the minimum value cuts.
473
474    ///Sets \c M to the characteristic vector of the minimum value cut
475    ///which is inclusionwise maximum. It is computed by processing a
476    ///backward bfs from the target node \c t in the residual graph.
[911]477    ///\pre \ref phase2() or run() should already be run.
[836]478    template<typename _CutMap>
479    void maxMinCut(_CutMap& M) const {
480
[1222]481      for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true);
[836]482
483      std::queue<Node> queue;
484
[1222]485      M.set(_target,false);
486      queue.push(_target);
[836]487
488      while (!queue.empty()) {
489        Node w=queue.front();
490        queue.pop();
491
[1222]492        for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
493          Node v=_g->source(e);
[2330]494          if (M[v] && _surely.positive((*_capacity)[e] - (*_flow)[e]) ) {
[836]495            queue.push(v);
496            M.set(v, false);
497          }
498        }
499
[1222]500        for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
501          Node v=_g->target(e);
[2024]502          if (M[v] && _surely.positive((*_flow)[e]) ) {
[836]503            queue.push(v);
504            M.set(v, false);
505          }
506        }
507      }
508    }
509
510    ///Sets the source node to \c _s.
511
512    ///Sets the source node to \c _s.
513    ///
[1222]514    void source(Node _s) {
515      _source=_s;
[836]516      if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
517      status=AFTER_NOTHING;
518    }
519
[1222]520    ///Returns the source node.
521
522    ///Returns the source node.
523    ///
524    Node source() const {
525      return _source;
526    }
527
[836]528    ///Sets the target node to \c _t.
529
530    ///Sets the target node to \c _t.
531    ///
[1222]532    void target(Node _t) {
533      _target=_t;
[836]534      if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
535      status=AFTER_NOTHING;
536    }
537
[1222]538    ///Returns the target node.
539
540    ///Returns the target node.
541    ///
542    Node target() const {
543      return _target;
544    }
545
[836]546    /// Sets the edge map of the capacities to _cap.
547
548    /// Sets the edge map of the capacities to _cap.
549    ///
[1222]550    void capacityMap(const CapacityMap& _cap) {
551      _capacity=&_cap;
[836]552      status=AFTER_NOTHING;
553    }
[1285]554    /// Returns a reference to capacity map.
[1222]555
[1285]556    /// Returns a reference to capacity map.
[1222]557    ///
558    const CapacityMap &capacityMap() const {
559      return *_capacity;
560    }
[836]561
562    /// Sets the edge map of the flows to _flow.
563
564    /// Sets the edge map of the flows to _flow.
565    ///
[1222]566    void flowMap(FlowMap& _f) {
567      _flow=&_f;
[836]568      flow_prop=NO_FLOW;
569      status=AFTER_NOTHING;
570    }
[1222]571     
[1285]572    /// Returns a reference to flow map.
[836]573
[1285]574    /// Returns a reference to flow map.
[1222]575    ///
576    const FlowMap &flowMap() const {
577      return *_flow;
578    }
[836]579
580  private:
581
582    int push(Node w, NNMap& next, VecNode& first) {
583
584      int lev=level[w];
585      Num exc=excess[w];
[1222]586      int newlevel=_node_num;       //bound on the next level of w
[836]587
[1222]588      for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
[2330]589        if ( !_surely.positive((*_capacity)[e] - (*_flow)[e])) continue;
[1222]590        Node v=_g->target(e);
[2024]591       
[836]592        if( lev > level[v] ) { //Push is allowed now
593         
[2330]594          if ( excess[v] == 0 && v!=_target && v!=_source ) {
[836]595            next.set(v,first[level[v]]);
596            first[level[v]]=v;
597          }
598
[1222]599          Num cap=(*_capacity)[e];
600          Num flo=(*_flow)[e];
[836]601          Num remcap=cap-flo;
602         
[2024]603          if ( ! _surely.less(remcap, exc) ) { //A nonsaturating push.
[836]604           
[1222]605            _flow->set(e, flo+exc);
[836]606            excess.set(v, excess[v]+exc);
607            exc=0;
608            break;
609
610          } else { //A saturating push.
[1222]611            _flow->set(e, cap);
[836]612            excess.set(v, excess[v]+remcap);
613            exc-=remcap;
614          }
615        } else if ( newlevel > level[v] ) newlevel = level[v];
616      } //for out edges wv
617
[2330]618      if ( exc != 0 ) {
[1222]619        for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) {
[836]620         
[2024]621          if ( !_surely.positive((*_flow)[e]) ) continue;
[1222]622          Node v=_g->source(e);
[2024]623         
[836]624          if( lev > level[v] ) { //Push is allowed now
625
[2330]626            if ( excess[v] == 0 && v!=_target && v!=_source ) {
[836]627              next.set(v,first[level[v]]);
628              first[level[v]]=v;
629            }
630
[1222]631            Num flo=(*_flow)[e];
[836]632
[2024]633            if ( !_surely.less(flo, exc) ) { //A nonsaturating push.
[836]634
[1222]635              _flow->set(e, flo-exc);
[836]636              excess.set(v, excess[v]+exc);
637              exc=0;
638              break;
639            } else {  //A saturating push.
640
641              excess.set(v, excess[v]+flo);
642              exc-=flo;
[1222]643              _flow->set(e,0);
[836]644            }
645          } else if ( newlevel > level[v] ) newlevel = level[v];
646        } //for in edges vw
647
648      } // if w still has excess after the out edge for cycle
649
650      excess.set(w, exc);
651     
652      return newlevel;
653    }
654   
655   
656   
657    void preflowPreproc(VecNode& first, NNMap& next,
658                        VecNode& level_list, NNMap& left, NNMap& right)
659    {
[1222]660      for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num);
[836]661      std::queue<Node> bfs_queue;
662     
663      if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
664        //Reverse_bfs from t in the residual graph,
665        //to find the starting level.
[1222]666        level.set(_target,0);
667        bfs_queue.push(_target);
[836]668       
669        while ( !bfs_queue.empty() ) {
670         
671          Node v=bfs_queue.front();
672          bfs_queue.pop();
673          int l=level[v]+1;
674         
[1222]675          for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
[2330]676            if ( !_surely.positive((*_capacity)[e] - (*_flow)[e] )) continue;
[1222]677            Node w=_g->source(e);
678            if ( level[w] == _node_num && w != _source ) {
[836]679              bfs_queue.push(w);
680              Node z=level_list[l];
681              if ( z!=INVALID ) left.set(z,w);
682              right.set(w,z);
683              level_list[l]=w;
684              level.set(w, l);
685            }
686          }
687         
[1222]688          for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
[2024]689            if ( !_surely.positive((*_flow)[e]) ) continue;
[1222]690            Node w=_g->target(e);
691            if ( level[w] == _node_num && w != _source ) {
[836]692              bfs_queue.push(w);
693              Node z=level_list[l];
694              if ( z!=INVALID ) left.set(z,w);
695              right.set(w,z);
696              level_list[l]=w;
697              level.set(w, l);
698            }
699          }
700        } //while
701      } //if
702
703
704      switch (flow_prop) {
705        case NO_FLOW: 
[1222]706        for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0);
[836]707        case ZERO_FLOW:
[1222]708        for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
[836]709       
710        //Reverse_bfs from t, to find the starting level.
[1222]711        level.set(_target,0);
712        bfs_queue.push(_target);
[836]713       
714        while ( !bfs_queue.empty() ) {
715         
716          Node v=bfs_queue.front();
717          bfs_queue.pop();
718          int l=level[v]+1;
719         
[1222]720          for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) {
721            Node w=_g->source(e);
722            if ( level[w] == _node_num && w != _source ) {
[836]723              bfs_queue.push(w);
724              Node z=level_list[l];
725              if ( z!=INVALID ) left.set(z,w);
726              right.set(w,z);
727              level_list[l]=w;
728              level.set(w, l);
729            }
730          }
731        }
732       
733        //the starting flow
[1222]734        for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
735          Num c=(*_capacity)[e];
[2024]736          if ( !_surely.positive(c) ) continue;
[1222]737          Node w=_g->target(e);
738          if ( level[w] < _node_num ) {
[2330]739            if ( excess[w] == 0 && w!=_target ) { //putting into the stack
[836]740              next.set(w,first[level[w]]);
741              first[level[w]]=w;
742            }
[1222]743            _flow->set(e, c);
[836]744            excess.set(w, excess[w]+c);
745          }
746        }
747        break;
748
749        case GEN_FLOW:
[1222]750        for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0);
[836]751        {
752          Num exc=0;
[1222]753          for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e];
754          for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e];
[2330]755          if (!_surely.positive(exc)) {
756            exc = 0;
757          }
758          excess.set(_target,exc);
[836]759        }
760
761        //the starting flow
[1222]762        for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e)  {
763          Num rem=(*_capacity)[e]-(*_flow)[e];
[2024]764          if ( !_surely.positive(rem) ) continue;
[1222]765          Node w=_g->target(e);
766          if ( level[w] < _node_num ) {
[2330]767            if ( excess[w] == 0 && w!=_target ) { //putting into the stack
[836]768              next.set(w,first[level[w]]);
769              first[level[w]]=w;
770            }   
[1222]771            _flow->set(e, (*_capacity)[e]);
[836]772            excess.set(w, excess[w]+rem);
773          }
774        }
775       
[1222]776        for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) {
[2024]777          if ( !_surely.positive((*_flow)[e]) ) continue;
[1222]778          Node w=_g->source(e);
779          if ( level[w] < _node_num ) {
[2330]780            if ( excess[w] == 0 && w!=_target ) {
[836]781              next.set(w,first[level[w]]);
782              first[level[w]]=w;
783            } 
[1222]784            excess.set(w, excess[w]+(*_flow)[e]);
785            _flow->set(e, 0);
[836]786          }
787        }
788        break;
789
790        case PRE_FLOW: 
791        //the starting flow
[1222]792        for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
793          Num rem=(*_capacity)[e]-(*_flow)[e];
[2024]794          if ( !_surely.positive(rem) ) continue;
[1222]795          Node w=_g->target(e);
796          if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]);
[836]797        }
798       
[1222]799        for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) {
[2024]800          if ( !_surely.positive((*_flow)[e]) ) continue;
[1222]801          Node w=_g->source(e);
802          if ( level[w] < _node_num ) _flow->set(e, 0);
[836]803        }
804       
805        //computing the excess
[1222]806        for(NodeIt w(*_g); w!=INVALID; ++w) {
[836]807          Num exc=0;
[1222]808          for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e];
809          for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e];
[2330]810          if (!_surely.positive(exc)) {
811            exc = 0;
812          }
[836]813          excess.set(w,exc);
814         
815          //putting the active nodes into the stack
816          int lev=level[w];
[2330]817            if ( exc != 0 && lev < _node_num && Node(w) != _target ) {
[836]818              next.set(w,first[lev]);
819              first[lev]=w;
820            }
821        }
822        break;
823      } //switch
824    } //preflowPreproc
825
826
827    void relabel(Node w, int newlevel, VecNode& first, NNMap& next,
828                 VecNode& level_list, NNMap& left,
829                 NNMap& right, int& b, int& k, bool what_heur )
830    {
831
832      int lev=level[w];
833
834      Node right_n=right[w];
835      Node left_n=left[w];
836
837      //unlacing starts
838      if ( right_n!=INVALID ) {
839        if ( left_n!=INVALID ) {
840          right.set(left_n, right_n);
841          left.set(right_n, left_n);
842        } else {
843          level_list[lev]=right_n;
844          left.set(right_n, INVALID);
845        }
846      } else {
847        if ( left_n!=INVALID ) {
848          right.set(left_n, INVALID);
849        } else {
850          level_list[lev]=INVALID;
851        }
852      }
853      //unlacing ends
854
855      if ( level_list[lev]==INVALID ) {
856
857        //gapping starts
858        for (int i=lev; i!=k ; ) {
859          Node v=level_list[++i];
860          while ( v!=INVALID ) {
[1222]861            level.set(v,_node_num);
[836]862            v=right[v];
863          }
864          level_list[i]=INVALID;
865          if ( !what_heur ) first[i]=INVALID;
866        }
867
[1222]868        level.set(w,_node_num);
[836]869        b=lev-1;
870        k=b;
871        //gapping ends
872
873      } else {
874
[1222]875        if ( newlevel == _node_num ) level.set(w,_node_num);
[836]876        else {
877          level.set(w,++newlevel);
878          next.set(w,first[newlevel]);
879          first[newlevel]=w;
880          if ( what_heur ) b=newlevel;
881          if ( k < newlevel ) ++k;      //now k=newlevel
882          Node z=level_list[newlevel];
883          if ( z!=INVALID ) left.set(z,w);
884          right.set(w,z);
885          left.set(w,INVALID);
886          level_list[newlevel]=w;
887        }
888      }
889    } //relabel
890
891  };
[1227]892
[1792]893  ///\ingroup flowalgs
894  ///\brief Function type interface for Preflow algorithm.
895  ///
[1227]896  ///Function type interface for Preflow algorithm.
897  ///\sa Preflow
898  template<class GR, class CM, class FM>
899  Preflow<GR,typename CM::Value,CM,FM> preflow(const GR &g,
900                            typename GR::Node source,
901                            typename GR::Node target,
902                            const CM &cap,
903                            FM &flow
904                            )
905  {
906    return Preflow<GR,typename CM::Value,CM,FM>(g,source,target,cap,flow);
907  }
908
[921]909} //namespace lemon
[836]910
[921]911#endif //LEMON_PREFLOW_H
Note: See TracBrowser for help on using the repository browser.