/* -*- C++ -*- * lemon/radix_heap.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_RADIX_HEAP_H #define LEMON_RADIX_HEAP_H ///\ingroup auxdat ///\file ///\brief Radix Heap implementation. #include #include namespace lemon { /// \addtogroup auxdat /// @{ /// \brief Exception thrown by RadixHeap. /// /// This Exception is thrown when a smaller priority /// is inserted into the \e RadixHeap then the last time erased. /// \see RadixHeap /// \author Balazs Dezso class UnderFlowPriorityError : public RuntimeError { public: virtual const char* exceptionName() const { return "lemon::UnderFlowPriorityError"; } }; /// \brief A Radix Heap implementation. /// /// This class implements the \e radix \e heap data structure. A \e heap /// is a data structure for storing items with specified values called \e /// priorities in such a way that finding the item with minimum priority is /// efficient. This heap type can store only items with \e int priority. /// In a heap one can change the priority of an item, add or erase an /// item, but the priority cannot be decreased under the last removed /// item's priority. /// /// \param _Item Type of the items to be stored. /// \param _ItemIntMap A read and writable Item int map, used internally /// to handle the cross references. /// /// \see BinHeap /// \see Dijkstra /// \author Balazs Dezso template class RadixHeap { public: typedef _Item Item; typedef int Prio; typedef _ItemIntMap ItemIntMap; /// \brief Type to represent the items states. /// /// Each Item element have a state associated to it. It may be "in heap", /// "pre heap" or "post heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The ItemIntMap \e should be initialized in such way that it maps /// PRE_HEAP (-1) to any element to be put in the heap... enum state_enum { IN_HEAP = 0, PRE_HEAP = -1, POST_HEAP = -2 }; private: struct RadixItem { int prev, next, box; Item item; int prio; RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} }; struct RadixBox { int first; int min, size; RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} }; std::vector data; std::vector boxes; ItemIntMap &iim; public: /// \brief The constructor. /// /// The constructor. /// \param _iim should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. explicit RadixHeap(ItemIntMap &_iim) : iim(_iim) { boxes.push_back(RadixBox(0, 1)); boxes.push_back(RadixBox(1, 1)); } /// \brief The constructor. /// /// The constructor. /// /// \param _iim It should be given to the constructor, since it is used /// internally to handle the cross references. The value of the map /// should be PRE_HEAP (-1) for each element. /// /// \param capacity It determines the initial capacity of the heap. RadixHeap(ItemIntMap &_iim, int capacity) : iim(_iim) { boxes.push_back(RadixBox(0, 1)); boxes.push_back(RadixBox(1, 1)); while (upper(boxes.back(), capacity)) { extend(); } } /// The number of items stored in the heap. /// /// \brief Returns the number of items stored in the heap. int size() const { return data.size(); } /// \brief Checks if the heap stores no items. /// /// Returns \c true if and only if the heap stores no items. bool empty() const { return data.empty(); } private: bool upper(int box, Prio prio) { return prio < boxes[box].min; } bool lower(int box, Prio prio) { return prio >= boxes[box].min + boxes[box].size; } /// \brief Remove item from the box list. void remove(int index) { if (data[index].prev >= 0) { data[data[index].prev].next = data[index].next; } else { boxes[data[index].box].first = data[index].next; } if (data[index].next >= 0) { data[data[index].next].prev = data[index].prev; } } /// \brief Insert item into the box list. void insert(int box, int index) { if (boxes[box].first == -1) { boxes[box].first = index; data[index].next = data[index].prev = -1; } else { data[index].next = boxes[box].first; data[boxes[box].first].prev = index; data[index].prev = -1; boxes[box].first = index; } data[index].box = box; } /// \brief Add a new box to the box list. void extend() { int min = boxes.back().min + boxes.back().size; int size = 2 * boxes.back().size; boxes.push_back(RadixBox(min, size)); } /// \brief Move an item up into the proper box. void bubble_up(int index) { if (!lower(data[index].box, data[index].prio)) return; remove(index); int box = findUp(data[index].box, data[index].prio); insert(box, index); } /// \brief Find up the proper box for the item with the given prio. int findUp(int start, int prio) { while (lower(start, prio)) { if (++start == (int)boxes.size()) { extend(); } } return start; } /// \brief Move an item down into the proper box. void bubble_down(int index) { if (!upper(data[index].box, data[index].prio)) return; remove(index); int box = findDown(data[index].box, data[index].prio); insert(box, index); } /// \brief Find up the proper box for the item with the given prio. int findDown(int start, int prio) { while (upper(start, prio)) { if (--start < 0) throw UnderFlowPriorityError(); } return start; } /// \brief Find the first not empty box. int findFirst() { int first = 0; while (boxes[first].first == -1) ++first; return first; } /// \brief Gives back the minimal prio of the box. int minValue(int box) { int min = data[boxes[box].first].prio; for (int k = boxes[box].first; k != -1; k = data[k].next) { if (data[k].prio < min) min = data[k].prio; } return min; } /// \brief Rearrange the items of the heap and makes the /// first box not empty. void moveDown() { int box = findFirst(); if (box == 0) return; int min = minValue(box); for (int i = 0; i <= box; ++i) { boxes[i].min = min; min += boxes[i].size; } int curr = boxes[box].first, next; while (curr != -1) { next = data[curr].next; bubble_down(curr); curr = next; } } void relocate_last(int index) { if (index != (int)data.size() - 1) { data[index] = data.back(); if (data[index].prev != -1) { data[data[index].prev].next = index; } else { boxes[data[index].box].first = index; } if (data[index].next != -1) { data[data[index].next].prev = index; } iim[data[index].item] = index; } data.pop_back(); } public: /// \brief Insert an item into the heap with the given heap. /// /// Adds \c i to the heap with priority \c p. /// \param i The item to insert. /// \param p The priority of the item. void push(const Item &i, const Prio &p) { int n = data.size(); iim.set(i, n); data.push_back(RadixItem(i, p)); while (lower(boxes.size() - 1, p)) { extend(); } int box = findDown(boxes.size() - 1, p); insert(box, n); } /// \brief Returns the item with minimum priority. /// /// This method returns the item with minimum priority. /// \pre The heap must be nonempty. Item top() const { const_cast*>(this)->moveDown(); return data[boxes[0].first].item; } /// \brief Returns the minimum priority. /// /// It returns the minimum priority. /// \pre The heap must be nonempty. Prio prio() const { const_cast*>(this)->moveDown(); return data[boxes[0].first].prio; } /// \brief Deletes the item with minimum priority. /// /// This method deletes the item with minimum priority. /// \pre The heap must be non-empty. void pop() { moveDown(); int index = boxes[0].first; iim[data[index].item] = POST_HEAP; remove(index); relocate_last(index); } /// \brief Deletes \c i from the heap. /// /// This method deletes item \c i from the heap, if \c i was /// already stored in the heap. /// \param i The item to erase. void erase(const Item &i) { int index = iim[i]; iim[i] = POST_HEAP; remove(index); relocate_last(index); } /// \brief Returns the priority of \c i. /// /// This function returns the priority of item \c i. /// \pre \c i must be in the heap. /// \param i The item. Prio operator[](const Item &i) const { int idx = iim[i]; return data[idx].prio; } /// \brief \c i gets to the heap with priority \c p independently /// if \c i was already there. /// /// This method calls \ref push(\c i, \c p) if \c i is not stored /// in the heap and sets the priority of \c i to \c p otherwise. /// It may throw an \e UnderFlowPriorityException. /// \param i The item. /// \param p The priority. void set(const Item &i, const Prio &p) { int idx = iim[i]; if( idx < 0 ) { push(i, p); } else if( p >= data[idx].prio ) { data[idx].prio = p; bubble_up(idx); } else { data[idx].prio = p; bubble_down(idx); } } /// \brief Decreases the priority of \c i to \c p. /// /// This method decreases the priority of item \c i to \c p. /// \pre \c i must be stored in the heap with priority at least \c p, and /// \c should be greater then the last removed item's priority. /// \param i The item. /// \param p The priority. void decrease(const Item &i, const Prio &p) { int idx = iim[i]; data[idx].prio = p; bubble_down(idx); } /// \brief Increases the priority of \c i to \c p. /// /// This method sets the priority of item \c i to \c p. /// \pre \c i must be stored in the heap with priority at most \c /// p relative to \c Compare. /// \param i The item. /// \param p The priority. void increase(const Item &i, const Prio &p) { int idx = iim[i]; data[idx].prio = p; bubble_up(idx); } /// \brief Returns if \c item is in, has already been in, or has /// never been in the heap. /// /// This method returns PRE_HEAP if \c item has never been in the /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP /// otherwise. In the latter case it is possible that \c item will /// get back to the heap again. /// \param i The item. state_enum state(const Item &i) const { int s = iim[i]; if( s >= 0 ) s = 0; return state_enum(s); } }; // class RadixHeap ///@} } // namespace lemon #endif // LEMON_RADIX_HEAP_H