/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2006 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_STEINER_H #define LEMON_STEINER_H ///\ingroup approx ///\file ///\brief Algorithm for the 2-approximation of Steiner Tree problem. /// #include #include #include #include #include #include #include namespace lemon { /// \ingroup approx /// \brief Algorithm for the 2-approximation of Steiner Tree problem /// /// The Steiner-tree problem is the next: Given a connected /// undirected graph, a cost function on the edges and a subset of /// the nodes. Construct a tree with minimum cost which covers the /// given subset of the nodes. The problem is NP-hard moreover /// it is APX-complete too. /// /// Mehlhorn's approximation algorithm is implemented in this class, /// which gives a 2-approximation for the Steiner-tree problem. The /// algorithm's time complexity is O(nlog(n)+e). template > class SteinerTree { public: UGRAPH_TYPEDEFS(typename UGraph) typedef typename CostMap::Value Value; private: class CompMap { public: typedef Node Key; typedef Edge Value; private: const UGraph& _graph; typename UGraph::template NodeMap _comp; public: CompMap(const UGraph& graph) : _graph(graph), _comp(graph) {} void set(const Node& node, const Edge& edge) { if (edge != INVALID) { _comp.set(node, _comp[_graph.source(edge)]); } else { _comp.set(node, -1); } } int comp(const Node& node) const { return _comp[node]; } void comp(const Node& node, int value) { _comp.set(node, value); } }; typedef typename UGraph::template NodeMap PredMap; typedef ForkWriteMap ForkedMap; struct External { int source, target; UEdge uedge; Value value; External(int s, int t, const UEdge& e, const Value& v) : source(s), target(t), uedge(e), value(v) {} }; struct ExternalLess { bool operator()(const External& left, const External& right) const { return (left.source < right.source) || (left.source == right.source && left.target < right.target); } }; typedef typename UGraph::template NodeMap FilterMap; typedef typename UGraph::template UEdgeMap TreeMap; const UGraph& _graph; const CostMap& _cost; typename Dijkstra:: template DefPredMap::Create _dijkstra; PredMap* _pred; CompMap* _comp; ForkedMap* _forked; int _terminal_num; FilterMap *_filter; TreeMap *_tree; public: /// \brief Constructor /// Constructor /// SteinerTree(const UGraph &graph, const CostMap &cost) : _graph(graph), _cost(cost), _dijkstra(graph, _cost), _pred(0), _comp(0), _forked(0), _filter(0), _tree(0) {} /// \brief Initializes the internal data structures. /// /// Initializes the internal data structures. void init() { if (!_pred) _pred = new PredMap(_graph); if (!_comp) _comp = new CompMap(_graph); if (!_forked) _forked = new ForkedMap(*_pred, *_comp); if (!_filter) _filter = new FilterMap(_graph); if (!_tree) _tree = new TreeMap(_graph); _dijkstra.predMap(*_forked); _dijkstra.init(); _terminal_num = 0; for (NodeIt it(_graph); it != INVALID; ++it) { _filter->set(it, false); } } /// \brief Adds a new terminal node. /// /// Adds a new terminal node to the Steiner-tree problem. void addTerminal(const Node& node) { if (!_dijkstra.reached(node)) { _dijkstra.addSource(node); _comp->comp(node, _terminal_num); ++_terminal_num; } } /// \brief Executes the algorithm. /// /// Executes the algorithm. /// /// \pre init() must be called and at least some nodes should be /// added with addTerminal() before using this function. /// /// This method constructs an approximation of the Steiner-Tree. void start() { _dijkstra.start(); std::vector externals; for (UEdgeIt it(_graph); it != INVALID; ++it) { Node s = _graph.source(it); Node t = _graph.target(it); if (_comp->comp(s) == _comp->comp(t)) continue; Value cost = _dijkstra.dist(s) + _dijkstra.dist(t) + _cost[it]; if (_comp->comp(s) < _comp->comp(t)) { externals.push_back(External(_comp->comp(s), _comp->comp(t), it, cost)); } else { externals.push_back(External(_comp->comp(t), _comp->comp(s), it, cost)); } } std::sort(externals.begin(), externals.end(), ExternalLess()); SmartUGraph aux_graph; std::vector aux_nodes; for (int i = 0; i < _terminal_num; ++i) { aux_nodes.push_back(aux_graph.addNode()); } SmartUGraph::UEdgeMap aux_cost(aux_graph); SmartUGraph::UEdgeMap cross(aux_graph); { int i = 0; while (i < (int)externals.size()) { int sn = externals[i].source; int tn = externals[i].target; Value ev = externals[i].value; UEdge ee = externals[i].uedge; ++i; while (i < (int)externals.size() && sn == externals[i].source && tn == externals[i].target) { if (externals[i].value < ev) { ev = externals[i].value; ee = externals[i].uedge; } ++i; } SmartUGraph::UEdge ne = aux_graph.addEdge(aux_nodes[sn], aux_nodes[tn]); aux_cost.set(ne, ev); cross.set(ne, ee); } } std::vector aux_tree_edges; BackInserterBoolMap > aux_tree_map(aux_tree_edges); prim(aux_graph, aux_cost, aux_tree_map); for (std::vector::iterator it = aux_tree_edges.begin(); it != aux_tree_edges.end(); ++it) { Node node; node = _graph.source(cross[*it]); while (node != INVALID && !(*_filter)[node]) { _filter->set(node, true); node = (*_pred)[node] != INVALID ? _graph.source((*_pred)[node]) : INVALID; } node = _graph.target(cross[*it]); while (node != INVALID && !(*_filter)[node]) { _filter->set(node, true); node = (*_pred)[node] != INVALID ? _graph.source((*_pred)[node]) : INVALID; } } prim(nodeSubUGraphAdaptor(_graph, *_filter), _cost, *_tree); } /// \brief Checks if an edge is in the Steiner-tree or not. /// /// Checks if an edge is in the Steiner-tree or not. /// \param e is the edge that will be checked /// \return \c true if e is in the Steiner-tree, \c false otherwise bool tree(UEdge e){ return (*_tree)[e]; } /// \brief Checks if the node is in the Steiner-tree or not. /// /// Checks if a node is in the Steiner-tree or not. /// \param n is the node that will be checked /// \return \c true if n is in the Steiner-tree, \c false otherwise bool tree(Node n){ return (*_filter)[n]; } }; } //END OF NAMESPACE LEMON #endif