1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_SUB_GRAPH_H |
---|
20 | #define LEMON_SUB_GRAPH_H |
---|
21 | |
---|
22 | #include <lemon/graph_adaptor.h> |
---|
23 | #include <lemon/bits/graph_adaptor_extender.h> |
---|
24 | #include <lemon/bits/default_map.h> |
---|
25 | |
---|
26 | /// \ingroup semi_adaptors |
---|
27 | /// \file |
---|
28 | /// \brief Subgraphs. |
---|
29 | /// |
---|
30 | /// Graphs with filtered edge and node set. |
---|
31 | |
---|
32 | namespace lemon { |
---|
33 | |
---|
34 | /// \brief Base for the SubGraph. |
---|
35 | /// |
---|
36 | /// Base for the SubGraph. |
---|
37 | template <typename _Graph> |
---|
38 | class SubGraphBase : public GraphAdaptorBase<const _Graph> { |
---|
39 | public: |
---|
40 | typedef _Graph Graph; |
---|
41 | typedef SubGraphBase<_Graph> SubGraph; |
---|
42 | typedef GraphAdaptorBase<const _Graph> Parent; |
---|
43 | typedef Parent Base; |
---|
44 | |
---|
45 | typedef typename Parent::Node Node; |
---|
46 | typedef typename Parent::Edge Edge; |
---|
47 | |
---|
48 | |
---|
49 | protected: |
---|
50 | |
---|
51 | class NodesImpl; |
---|
52 | class EdgesImpl; |
---|
53 | |
---|
54 | SubGraphBase() {} |
---|
55 | |
---|
56 | void construct(const Graph& _graph, NodesImpl& _nodes, EdgesImpl& _edges) { |
---|
57 | Parent::setGraph(_graph); |
---|
58 | nodes = &_nodes; |
---|
59 | edges = &_edges; |
---|
60 | firstNode = INVALID; |
---|
61 | |
---|
62 | Node node; |
---|
63 | Parent::first(node); |
---|
64 | while (node != INVALID) { |
---|
65 | (*nodes)[node].prev = node; |
---|
66 | (*nodes)[node].firstIn = INVALID; |
---|
67 | (*nodes)[node].firstOut = INVALID; |
---|
68 | Parent::next(node); |
---|
69 | } |
---|
70 | |
---|
71 | Edge edge; |
---|
72 | Parent::first(edge); |
---|
73 | while (edge != INVALID) { |
---|
74 | (*edges)[edge].prevOut = edge; |
---|
75 | Parent::next(edge); |
---|
76 | } |
---|
77 | } |
---|
78 | |
---|
79 | public: |
---|
80 | |
---|
81 | void first(Node& node) const { |
---|
82 | node = firstNode; |
---|
83 | } |
---|
84 | void next(Node& node) const { |
---|
85 | node = (*nodes)[node].next; |
---|
86 | } |
---|
87 | |
---|
88 | void first(Edge& edge) const { |
---|
89 | Node node = firstNode; |
---|
90 | while (node != INVALID && (*nodes)[node].firstOut == INVALID) { |
---|
91 | node = (*nodes)[node].next; |
---|
92 | } |
---|
93 | if (node == INVALID) { |
---|
94 | edge = INVALID; |
---|
95 | } else { |
---|
96 | edge = (*nodes)[node].firstOut; |
---|
97 | } |
---|
98 | } |
---|
99 | void next(Edge& edge) const { |
---|
100 | if ((*edges)[edge].nextOut != INVALID) { |
---|
101 | edge = (*edges)[edge].nextOut; |
---|
102 | } else { |
---|
103 | Node node = (*nodes)[source(edge)].next; |
---|
104 | while (node != INVALID && (*nodes)[node].firstOut == INVALID) { |
---|
105 | node = (*nodes)[node].next; |
---|
106 | } |
---|
107 | if (node == INVALID) { |
---|
108 | edge = INVALID; |
---|
109 | } else { |
---|
110 | edge = (*nodes)[node].firstOut; |
---|
111 | } |
---|
112 | } |
---|
113 | } |
---|
114 | |
---|
115 | void firstOut(Edge& edge, const Node& node) const { |
---|
116 | edge = (*nodes)[node].firstOut; |
---|
117 | } |
---|
118 | void nextOut(Edge& edge) const { |
---|
119 | edge = (*edges)[edge].nextOut; |
---|
120 | } |
---|
121 | |
---|
122 | void firstIn(Edge& edge, const Node& node) const { |
---|
123 | edge = (*nodes)[node].firstIn; |
---|
124 | } |
---|
125 | void nextIn(Edge& edge) const { |
---|
126 | edge = (*edges)[edge].nextIn; |
---|
127 | } |
---|
128 | |
---|
129 | /// \brief Returns true when the given node is hidden. |
---|
130 | /// |
---|
131 | /// Returns true when the given node is hidden. |
---|
132 | bool hidden(const Node& node) const { |
---|
133 | return (*nodes)[node].prev == node; |
---|
134 | } |
---|
135 | |
---|
136 | /// \brief Hide the given node in the sub-graph. |
---|
137 | /// |
---|
138 | /// Hide the given node in the sub graph. It just lace out from |
---|
139 | /// the linked lists the given node. If there are incoming or outgoing |
---|
140 | /// edges into or from this node then all of these will be hidden. |
---|
141 | void hide(const Node& node) { |
---|
142 | if (hidden(node)) return; |
---|
143 | Edge edge; |
---|
144 | firstOut(edge, node); |
---|
145 | while (edge != INVALID) { |
---|
146 | hide(edge); |
---|
147 | firstOut(edge, node); |
---|
148 | } |
---|
149 | |
---|
150 | firstOut(edge, node); |
---|
151 | while (edge != INVALID) { |
---|
152 | hide(edge); |
---|
153 | firstOut(edge, node); |
---|
154 | } |
---|
155 | if ((*nodes)[node].prev != INVALID) { |
---|
156 | (*nodes)[(*nodes)[node].prev].next = (*nodes)[node].next; |
---|
157 | } else { |
---|
158 | firstNode = (*nodes)[node].next; |
---|
159 | } |
---|
160 | if ((*nodes)[node].next != INVALID) { |
---|
161 | (*nodes)[(*nodes)[node].next].prev = (*nodes)[node].prev; |
---|
162 | } |
---|
163 | (*nodes)[node].prev = node; |
---|
164 | (*nodes)[node].firstIn = INVALID; |
---|
165 | (*nodes)[node].firstOut = INVALID; |
---|
166 | } |
---|
167 | |
---|
168 | /// \brief Unhide the given node in the sub-graph. |
---|
169 | /// |
---|
170 | /// Unhide the given node in the sub graph. It just lace in the given |
---|
171 | /// node into the linked lists. |
---|
172 | void unHide(const Node& node) { |
---|
173 | if (!hidden(node)) return; |
---|
174 | (*nodes)[node].next = firstNode; |
---|
175 | (*nodes)[node].prev = INVALID; |
---|
176 | if ((*nodes)[node].next != INVALID) { |
---|
177 | (*nodes)[(*nodes)[node].next].prev = node; |
---|
178 | } |
---|
179 | firstNode = node; |
---|
180 | } |
---|
181 | |
---|
182 | /// \brief Returns true when the given edge is hidden. |
---|
183 | /// |
---|
184 | /// Returns true when the given edge is hidden. |
---|
185 | bool hidden(const Edge& edge) const { |
---|
186 | return (*edges)[edge].prevOut == edge; |
---|
187 | } |
---|
188 | |
---|
189 | /// \brief Hide the given edge in the sub-graph. |
---|
190 | /// |
---|
191 | /// Hide the given edge in the sub graph. It just lace out from |
---|
192 | /// the linked lists the given edge. |
---|
193 | void hide(const Edge& edge) { |
---|
194 | if (hidden(edge)) return; |
---|
195 | if ((*edges)[edge].prevOut == edge) return; |
---|
196 | if ((*edges)[edge].prevOut != INVALID) { |
---|
197 | (*edges)[(*edges)[edge].prevOut].nextOut = (*edges)[edge].nextOut; |
---|
198 | } else { |
---|
199 | (*nodes)[source(edge)].firstOut = (*edges)[edge].nextOut; |
---|
200 | } |
---|
201 | if ((*edges)[edge].nextOut != INVALID) { |
---|
202 | (*edges)[(*edges)[edge].nextOut].prevOut = (*edges)[edge].prevOut; |
---|
203 | } |
---|
204 | |
---|
205 | if ((*edges)[edge].prevIn != INVALID) { |
---|
206 | (*edges)[(*edges)[edge].prevIn].nextIn = (*edges)[edge].nextIn; |
---|
207 | } else { |
---|
208 | (*nodes)[target(edge)].firstIn = (*edges)[edge].nextIn; |
---|
209 | } |
---|
210 | if ((*edges)[edge].nextIn != INVALID) { |
---|
211 | (*edges)[(*edges)[edge].nextIn].prevIn = (*edges)[edge].prevIn; |
---|
212 | } |
---|
213 | (*edges)[edge].next = edge; |
---|
214 | } |
---|
215 | |
---|
216 | /// \brief Unhide the given edge in the sub-graph. |
---|
217 | /// |
---|
218 | /// Unhide the given edge in the sub graph. It just lace in the given |
---|
219 | /// edge into the linked lists. If the source or the target of the |
---|
220 | /// node is hidden then it will unhide it. |
---|
221 | void unHide(const Edge& edge) { |
---|
222 | if (!hidden(edge)) return; |
---|
223 | |
---|
224 | Node node; |
---|
225 | |
---|
226 | node = Parent::source(edge); |
---|
227 | unHide(node); |
---|
228 | (*edges)[edge].nextOut = (*nodes)[node].firstOut; |
---|
229 | (*edges)[edge].prevOut = INVALID; |
---|
230 | if ((*edges)[edge].nextOut != INVALID) { |
---|
231 | (*edges)[(*edges)[edge].nextOut].prevOut = edge; |
---|
232 | } |
---|
233 | (*nodes)[node].firstOut = edge; |
---|
234 | |
---|
235 | node = Parent::target(edge); |
---|
236 | unHide(node); |
---|
237 | (*edges)[edge].nextIn = (*nodes)[node].firstIn; |
---|
238 | (*edges)[edge].prevIn = INVALID; |
---|
239 | if ((*edges)[edge].nextIn != INVALID) { |
---|
240 | (*edges)[(*edges)[edge].nextIn].prevIn = edge; |
---|
241 | } |
---|
242 | (*nodes)[node].firstIn = edge; |
---|
243 | } |
---|
244 | |
---|
245 | typedef False NodeNumTag; |
---|
246 | typedef False EdgeNumTag; |
---|
247 | |
---|
248 | protected: |
---|
249 | struct NodeT { |
---|
250 | Node prev, next; |
---|
251 | Edge firstIn, firstOut; |
---|
252 | }; |
---|
253 | class NodesImpl : public DefaultMap<Graph, Node, NodeT> { |
---|
254 | friend class SubGraphBase; |
---|
255 | public: |
---|
256 | typedef DefaultMap<Graph, Node, NodeT> Parent; |
---|
257 | |
---|
258 | NodesImpl(SubGraph& _adaptor, const Graph& _graph) |
---|
259 | : Parent(_graph), adaptor(_adaptor) {} |
---|
260 | |
---|
261 | virtual ~NodesImpl() {} |
---|
262 | |
---|
263 | virtual void build() { |
---|
264 | Parent::build(); |
---|
265 | Node node; |
---|
266 | adaptor.Base::first(node); |
---|
267 | while (node != INVALID) { |
---|
268 | Parent::operator[](node).prev = node; |
---|
269 | Parent::operator[](node).firstIn = INVALID; |
---|
270 | Parent::operator[](node).firstOut = INVALID; |
---|
271 | adaptor.Base::next(node); |
---|
272 | } |
---|
273 | } |
---|
274 | |
---|
275 | virtual void clear() { |
---|
276 | adaptor.firstNode = INVALID; |
---|
277 | Parent::clear(); |
---|
278 | } |
---|
279 | |
---|
280 | virtual void add(const Node& node) { |
---|
281 | Parent::add(node); |
---|
282 | Parent::operator[](node).prev = node; |
---|
283 | Parent::operator[](node).firstIn = INVALID; |
---|
284 | Parent::operator[](node).firstOut = INVALID; |
---|
285 | } |
---|
286 | |
---|
287 | virtual void add(const std::vector<Node>& nodes) { |
---|
288 | Parent::add(nodes); |
---|
289 | for (int i = 0; i < (int)nodes.size(); ++i) { |
---|
290 | Parent::operator[](nodes[i]).prev = nodes[i]; |
---|
291 | Parent::operator[](nodes[i]).firstIn = INVALID; |
---|
292 | Parent::operator[](nodes[i]).firstOut = INVALID; |
---|
293 | } |
---|
294 | } |
---|
295 | |
---|
296 | virtual void erase(const Node& node) { |
---|
297 | adaptor.hide(node); |
---|
298 | Parent::erase(node); |
---|
299 | } |
---|
300 | |
---|
301 | virtual void erase(const std::vector<Node>& nodes) { |
---|
302 | for (int i = 0; i < (int)nodes.size(); ++i) { |
---|
303 | adaptor.hide(nodes[i]); |
---|
304 | } |
---|
305 | Parent::erase(nodes); |
---|
306 | } |
---|
307 | |
---|
308 | private: |
---|
309 | SubGraph& adaptor; |
---|
310 | }; |
---|
311 | |
---|
312 | struct EdgeT { |
---|
313 | Edge prevOut, nextOut; |
---|
314 | Edge prevIn, nextIn; |
---|
315 | }; |
---|
316 | class EdgesImpl : public DefaultMap<Graph, Edge, EdgeT> { |
---|
317 | friend class SubGraphBase; |
---|
318 | public: |
---|
319 | typedef DefaultMap<Graph, Edge, EdgeT> Parent; |
---|
320 | |
---|
321 | EdgesImpl(SubGraph& _adaptor, const Graph& _graph) |
---|
322 | : Parent(_graph), adaptor(_adaptor) {} |
---|
323 | |
---|
324 | virtual ~EdgesImpl() {} |
---|
325 | |
---|
326 | virtual void build() { |
---|
327 | Parent::build(); |
---|
328 | Edge edge; |
---|
329 | adaptor.Base::first(edge); |
---|
330 | while (edge != INVALID) { |
---|
331 | Parent::operator[](edge).prevOut = edge; |
---|
332 | adaptor.Base::next(edge); |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | virtual void clear() { |
---|
337 | Node node; |
---|
338 | adaptor.first(node); |
---|
339 | while (node != INVALID) { |
---|
340 | (*adaptor.nodes).firstIn = INVALID; |
---|
341 | (*adaptor.nodes).firstOut = INVALID; |
---|
342 | adaptor.next(node); |
---|
343 | } |
---|
344 | Parent::clear(); |
---|
345 | } |
---|
346 | |
---|
347 | virtual void add(const Edge& edge) { |
---|
348 | Parent::add(edge); |
---|
349 | Parent::operator[](edge).prevOut = edge; |
---|
350 | } |
---|
351 | |
---|
352 | virtual void add(const std::vector<Edge>& edges) { |
---|
353 | Parent::add(edges); |
---|
354 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
355 | Parent::operator[](edges[i]).prevOut = edges[i]; |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | virtual void erase(const Edge& edge) { |
---|
360 | adaptor.hide(edge); |
---|
361 | Parent::erase(edge); |
---|
362 | } |
---|
363 | |
---|
364 | virtual void erase(const std::vector<Edge>& edges) { |
---|
365 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
366 | adaptor.hide(edges[i]); |
---|
367 | } |
---|
368 | Parent::erase(edges); |
---|
369 | } |
---|
370 | |
---|
371 | private: |
---|
372 | SubGraph& adaptor; |
---|
373 | }; |
---|
374 | |
---|
375 | NodesImpl* nodes; |
---|
376 | EdgesImpl* edges; |
---|
377 | Node firstNode; |
---|
378 | }; |
---|
379 | |
---|
380 | /// \ingroup semi_adaptors |
---|
381 | /// |
---|
382 | /// \brief Graph which uses a subset of another graph's nodes and edges. |
---|
383 | /// |
---|
384 | /// Graph which uses a subset of another graph's nodes and edges. This class |
---|
385 | /// is an alternative to the SubGraphAdaptor which is created for the |
---|
386 | /// same reason. The main difference between the two class that it |
---|
387 | /// makes linked lists on the unhidden nodes and edges what cause that |
---|
388 | /// on sparse subgraphs the algorithms can be more efficient and some times |
---|
389 | /// provide better time complexity. On other way this implemetation is |
---|
390 | /// less efficient in most case when the subgraph filters out only |
---|
391 | /// a few nodes or edges. |
---|
392 | /// |
---|
393 | /// \see SubGraphAdaptor |
---|
394 | /// \see EdgeSubGraphBase |
---|
395 | template <typename Graph> |
---|
396 | class SubGraph |
---|
397 | : public GraphAdaptorExtender< SubGraphBase<Graph> > { |
---|
398 | public: |
---|
399 | typedef GraphAdaptorExtender< SubGraphBase<Graph> > Parent; |
---|
400 | public: |
---|
401 | /// \brief Constructor for sub-graph. |
---|
402 | /// |
---|
403 | /// Constructor for sub-graph. Initially all the edges and nodes |
---|
404 | /// are hidden in the graph. |
---|
405 | SubGraph(const Graph& _graph) |
---|
406 | : Parent(), nodes(*this, _graph), edges(*this, _graph) { |
---|
407 | Parent::construct(_graph, nodes, edges); |
---|
408 | } |
---|
409 | private: |
---|
410 | typename Parent::NodesImpl nodes; |
---|
411 | typename Parent::EdgesImpl edges; |
---|
412 | }; |
---|
413 | |
---|
414 | /// \brief Base for the EdgeSubGraph. |
---|
415 | /// |
---|
416 | /// Base for the EdgeSubGraph. |
---|
417 | template <typename _Graph> |
---|
418 | class EdgeSubGraphBase : public GraphAdaptorBase<const _Graph> { |
---|
419 | public: |
---|
420 | typedef _Graph Graph; |
---|
421 | typedef EdgeSubGraphBase<_Graph> SubGraph; |
---|
422 | typedef GraphAdaptorBase<const _Graph> Parent; |
---|
423 | typedef Parent Base; |
---|
424 | |
---|
425 | typedef typename Parent::Node Node; |
---|
426 | typedef typename Parent::Edge Edge; |
---|
427 | |
---|
428 | |
---|
429 | protected: |
---|
430 | |
---|
431 | class NodesImpl; |
---|
432 | class EdgesImpl; |
---|
433 | |
---|
434 | EdgeSubGraphBase() {} |
---|
435 | |
---|
436 | void construct(const Graph& _graph, NodesImpl& _nodes, EdgesImpl& _edges) { |
---|
437 | Parent::setGraph(_graph); |
---|
438 | nodes = &_nodes; |
---|
439 | edges = &_edges; |
---|
440 | |
---|
441 | Node node; |
---|
442 | Parent::first(node); |
---|
443 | while (node != INVALID) { |
---|
444 | (*nodes)[node].firstIn = INVALID; |
---|
445 | (*nodes)[node].firstOut = INVALID; |
---|
446 | Parent::next(node); |
---|
447 | } |
---|
448 | |
---|
449 | Edge edge; |
---|
450 | Parent::first(edge); |
---|
451 | while (edge != INVALID) { |
---|
452 | (*edges)[edge].prevOut = edge; |
---|
453 | Parent::next(edge); |
---|
454 | } |
---|
455 | } |
---|
456 | |
---|
457 | public: |
---|
458 | |
---|
459 | void first(Node& node) const { |
---|
460 | Parent::first(node); |
---|
461 | } |
---|
462 | void next(Node& node) const { |
---|
463 | Parent::next(node); |
---|
464 | } |
---|
465 | |
---|
466 | void first(Edge& edge) const { |
---|
467 | Node node; |
---|
468 | Parent::first(node); |
---|
469 | while (node != INVALID && (*nodes)[node].firstOut == INVALID) { |
---|
470 | Parent::next(node); |
---|
471 | } |
---|
472 | if (node == INVALID) { |
---|
473 | edge = INVALID; |
---|
474 | } else { |
---|
475 | edge = (*nodes)[node].firstOut; |
---|
476 | } |
---|
477 | } |
---|
478 | void next(Edge& edge) const { |
---|
479 | if ((*edges)[edge].nextOut != INVALID) { |
---|
480 | edge = (*edges)[edge].nextOut; |
---|
481 | } else { |
---|
482 | Node node = source(edge); |
---|
483 | Parent::next(node); |
---|
484 | while (node != INVALID && (*nodes)[node].firstOut == INVALID) { |
---|
485 | Parent::next(node); |
---|
486 | } |
---|
487 | if (node == INVALID) { |
---|
488 | edge = INVALID; |
---|
489 | } else { |
---|
490 | edge = (*nodes)[node].firstOut; |
---|
491 | } |
---|
492 | } |
---|
493 | } |
---|
494 | |
---|
495 | void firstOut(Edge& edge, const Node& node) const { |
---|
496 | edge = (*nodes)[node].firstOut; |
---|
497 | } |
---|
498 | void nextOut(Edge& edge) const { |
---|
499 | edge = (*edges)[edge].nextOut; |
---|
500 | } |
---|
501 | |
---|
502 | void firstIn(Edge& edge, const Node& node) const { |
---|
503 | edge = (*nodes)[node].firstIn; |
---|
504 | } |
---|
505 | void nextIn(Edge& edge) const { |
---|
506 | edge = (*edges)[edge].nextIn; |
---|
507 | } |
---|
508 | |
---|
509 | /// \brief Returns true when the given edge is hidden. |
---|
510 | /// |
---|
511 | /// Returns true when the given edge is hidden. |
---|
512 | bool hidden(const Edge& edge) const { |
---|
513 | return (*edges)[edge].prevOut == edge; |
---|
514 | } |
---|
515 | |
---|
516 | /// \brief Hide the given edge in the sub-graph. |
---|
517 | /// |
---|
518 | /// Hide the given edge in the sub graph. It just lace out from |
---|
519 | /// the linked lists the given edge. |
---|
520 | void hide(const Edge& edge) { |
---|
521 | if (hidden(edge)) return; |
---|
522 | if ((*edges)[edge].prevOut != INVALID) { |
---|
523 | (*edges)[(*edges)[edge].prevOut].nextOut = (*edges)[edge].nextOut; |
---|
524 | } else { |
---|
525 | (*nodes)[source(edge)].firstOut = (*edges)[edge].nextOut; |
---|
526 | } |
---|
527 | if ((*edges)[edge].nextOut != INVALID) { |
---|
528 | (*edges)[(*edges)[edge].nextOut].prevOut = (*edges)[edge].prevOut; |
---|
529 | } |
---|
530 | |
---|
531 | if ((*edges)[edge].prevIn != INVALID) { |
---|
532 | (*edges)[(*edges)[edge].prevIn].nextIn = (*edges)[edge].nextIn; |
---|
533 | } else { |
---|
534 | (*nodes)[target(edge)].firstIn = (*edges)[edge].nextIn; |
---|
535 | } |
---|
536 | if ((*edges)[edge].nextIn != INVALID) { |
---|
537 | (*edges)[(*edges)[edge].nextIn].prevIn = (*edges)[edge].prevIn; |
---|
538 | } |
---|
539 | (*edges)[edge].prevOut = edge; |
---|
540 | } |
---|
541 | |
---|
542 | /// \brief Unhide the given edge in the sub-graph. |
---|
543 | /// |
---|
544 | /// Unhide the given edge in the sub graph. It just lace in the given |
---|
545 | /// edge into the linked lists. |
---|
546 | void unHide(const Edge& edge) { |
---|
547 | if (!hidden(edge)) return; |
---|
548 | Node node; |
---|
549 | |
---|
550 | node = Parent::source(edge); |
---|
551 | (*edges)[edge].nextOut = (*nodes)[node].firstOut; |
---|
552 | (*edges)[edge].prevOut = INVALID; |
---|
553 | if ((*edges)[edge].nextOut != INVALID) { |
---|
554 | (*edges)[(*edges)[edge].nextOut].prevOut = edge; |
---|
555 | } |
---|
556 | (*nodes)[node].firstOut = edge; |
---|
557 | |
---|
558 | node = Parent::target(edge); |
---|
559 | (*edges)[edge].nextIn = (*nodes)[node].firstIn; |
---|
560 | (*edges)[edge].prevIn = INVALID; |
---|
561 | if ((*edges)[edge].nextIn != INVALID) { |
---|
562 | (*edges)[(*edges)[edge].nextIn].prevIn = edge; |
---|
563 | } |
---|
564 | (*nodes)[node].firstIn = edge; |
---|
565 | } |
---|
566 | |
---|
567 | protected: |
---|
568 | struct NodeT { |
---|
569 | Edge firstIn, firstOut; |
---|
570 | }; |
---|
571 | class NodesImpl : public DefaultMap<Graph, Node, NodeT> { |
---|
572 | friend class EdgeSubGraphBase; |
---|
573 | public: |
---|
574 | typedef DefaultMap<Graph, Node, NodeT> Parent; |
---|
575 | |
---|
576 | NodesImpl(SubGraph& _adaptor, const Graph& _graph) |
---|
577 | : Parent(_graph), adaptor(_adaptor) {} |
---|
578 | |
---|
579 | virtual ~NodesImpl() {} |
---|
580 | |
---|
581 | virtual void build() { |
---|
582 | Parent::build(); |
---|
583 | Node node; |
---|
584 | adaptor.Base::first(node); |
---|
585 | while (node != INVALID) { |
---|
586 | Parent::operator[](node).firstIn = INVALID; |
---|
587 | Parent::operator[](node).firstOut = INVALID; |
---|
588 | adaptor.Base::next(node); |
---|
589 | } |
---|
590 | } |
---|
591 | |
---|
592 | virtual void add(const Node& node) { |
---|
593 | Parent::add(node); |
---|
594 | Parent::operator[](node).firstIn = INVALID; |
---|
595 | Parent::operator[](node).firstOut = INVALID; |
---|
596 | } |
---|
597 | |
---|
598 | virtual void add(const std::vector<Node>& nodes) { |
---|
599 | Parent::add(nodes); |
---|
600 | for (int i = 0; i < (int)nodes.size(); ++i) { |
---|
601 | Parent::operator[](nodes[i]).firstIn = INVALID; |
---|
602 | Parent::operator[](nodes[i]).firstOut = INVALID; |
---|
603 | } |
---|
604 | } |
---|
605 | |
---|
606 | private: |
---|
607 | SubGraph& adaptor; |
---|
608 | }; |
---|
609 | |
---|
610 | struct EdgeT { |
---|
611 | Edge prevOut, nextOut; |
---|
612 | Edge prevIn, nextIn; |
---|
613 | }; |
---|
614 | class EdgesImpl : public DefaultMap<Graph, Edge, EdgeT> { |
---|
615 | friend class EdgeSubGraphBase; |
---|
616 | public: |
---|
617 | typedef DefaultMap<Graph, Edge, EdgeT> Parent; |
---|
618 | |
---|
619 | EdgesImpl(SubGraph& _adaptor, const Graph& _graph) |
---|
620 | : Parent(_graph), adaptor(_adaptor) {} |
---|
621 | |
---|
622 | virtual ~EdgesImpl() {} |
---|
623 | |
---|
624 | virtual void build() { |
---|
625 | Parent::build(); |
---|
626 | Edge edge; |
---|
627 | adaptor.Base::first(edge); |
---|
628 | while (edge != INVALID) { |
---|
629 | Parent::operator[](edge).prevOut = edge; |
---|
630 | adaptor.Base::next(edge); |
---|
631 | } |
---|
632 | } |
---|
633 | |
---|
634 | virtual void clear() { |
---|
635 | Node node; |
---|
636 | adaptor.Base::first(node); |
---|
637 | while (node != INVALID) { |
---|
638 | (*adaptor.nodes)[node].firstIn = INVALID; |
---|
639 | (*adaptor.nodes)[node].firstOut = INVALID; |
---|
640 | adaptor.Base::next(node); |
---|
641 | } |
---|
642 | Parent::clear(); |
---|
643 | } |
---|
644 | |
---|
645 | virtual void add(const Edge& edge) { |
---|
646 | Parent::add(edge); |
---|
647 | Parent::operator[](edge).prevOut = edge; |
---|
648 | } |
---|
649 | |
---|
650 | virtual void add(const std::vector<Edge>& edges) { |
---|
651 | Parent::add(edges); |
---|
652 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
653 | Parent::operator[](edges[i]).prevOut = edges[i]; |
---|
654 | } |
---|
655 | } |
---|
656 | |
---|
657 | virtual void erase(const Edge& edge) { |
---|
658 | adaptor.hide(edge); |
---|
659 | Parent::erase(edge); |
---|
660 | } |
---|
661 | |
---|
662 | virtual void erase(const std::vector<Edge>& edges) { |
---|
663 | for (int i = 0; i < (int)edges.size(); ++i) { |
---|
664 | adaptor.hide(edges[i]); |
---|
665 | } |
---|
666 | Parent::erase(edges); |
---|
667 | } |
---|
668 | |
---|
669 | private: |
---|
670 | SubGraph& adaptor; |
---|
671 | }; |
---|
672 | |
---|
673 | NodesImpl* nodes; |
---|
674 | EdgesImpl* edges; |
---|
675 | }; |
---|
676 | |
---|
677 | /// \ingroup semi_adaptors |
---|
678 | /// |
---|
679 | /// \brief Graph which uses a subset of another graph's edges. |
---|
680 | /// |
---|
681 | /// Graph which uses a subset of another graph's edges. This class |
---|
682 | /// is an alternative to the EdgeSubGraphAdaptor which is created for the |
---|
683 | /// same reason. The main difference between the two class that it |
---|
684 | /// makes linked lists on the unhidden edges what cause that |
---|
685 | /// on sparse subgraphs the algorithms can be more efficient and some times |
---|
686 | /// provide better time complexity. On other way this implemetation is |
---|
687 | /// less efficient in most case when the subgraph filters out only |
---|
688 | /// a few edges. |
---|
689 | /// |
---|
690 | /// \see EdgeSubGraphAdaptor |
---|
691 | /// \see EdgeSubGraphBase |
---|
692 | template <typename Graph> |
---|
693 | class EdgeSubGraph |
---|
694 | : public GraphAdaptorExtender< EdgeSubGraphBase<Graph> > { |
---|
695 | public: |
---|
696 | typedef GraphAdaptorExtender< EdgeSubGraphBase<Graph> > Parent; |
---|
697 | public: |
---|
698 | /// \brief Constructor for sub-graph. |
---|
699 | /// |
---|
700 | /// Constructor for sub-graph. Initially all the edges are hidden in the |
---|
701 | /// graph. |
---|
702 | EdgeSubGraph(const Graph& _graph) |
---|
703 | : Parent(), nodes(*this, _graph), edges(*this, _graph) { |
---|
704 | Parent::construct(_graph, nodes, edges); |
---|
705 | } |
---|
706 | private: |
---|
707 | typename Parent::NodesImpl nodes; |
---|
708 | typename Parent::EdgesImpl edges; |
---|
709 | }; |
---|
710 | |
---|
711 | |
---|
712 | // template<typename Graph, typename Number, |
---|
713 | // typename CapacityMap, typename FlowMap> |
---|
714 | // class ResGraph |
---|
715 | // : public IterableGraphExtender<EdgeSubGraphBase< |
---|
716 | // UGraphAdaptor<Graph> > > { |
---|
717 | // public: |
---|
718 | // typedef IterableGraphExtender<EdgeSubGraphBase< |
---|
719 | // UGraphAdaptor<Graph> > > Parent; |
---|
720 | |
---|
721 | // protected: |
---|
722 | // UGraphAdaptor<Graph> u; |
---|
723 | |
---|
724 | // const CapacityMap* capacity; |
---|
725 | // FlowMap* flow; |
---|
726 | |
---|
727 | // typename Parent::NodesImpl nodes; |
---|
728 | // typename Parent::EdgesImpl edges; |
---|
729 | |
---|
730 | // void setCapacityMap(const CapacityMap& _capacity) { |
---|
731 | // capacity=&_capacity; |
---|
732 | // } |
---|
733 | |
---|
734 | // void setFlowMap(FlowMap& _flow) { |
---|
735 | // flow=&_flow; |
---|
736 | // } |
---|
737 | |
---|
738 | // public: |
---|
739 | |
---|
740 | // typedef typename UGraphAdaptor<Graph>::Node Node; |
---|
741 | // typedef typename UGraphAdaptor<Graph>::Edge Edge; |
---|
742 | // typedef typename UGraphAdaptor<Graph>::UEdge UEdge; |
---|
743 | |
---|
744 | // ResGraphAdaptor(Graph& _graph, |
---|
745 | // const CapacityMap& _capacity, FlowMap& _flow) |
---|
746 | // : Parent(), u(_graph), capacity(&_capacity), flow(&_flow), |
---|
747 | // nodes(*this, _graph), edges(*this, _graph) { |
---|
748 | // Parent::construct(u, nodes, edges); |
---|
749 | // setFlowMap(_flow); |
---|
750 | // setCapacityMap(_capacity); |
---|
751 | // typename Graph::Edge edge; |
---|
752 | // for (_graph.first(edge); edge != INVALID; _graph.next(edge)) { |
---|
753 | // if ((*flow)[edge] != (*capacity)[edge]) { |
---|
754 | // Parent::unHide(direct(edge, true)); |
---|
755 | // } |
---|
756 | // if ((*flow)[edge] != 0) { |
---|
757 | // Parent::unHide(direct(edge, false)); |
---|
758 | // } |
---|
759 | // } |
---|
760 | // } |
---|
761 | |
---|
762 | // void augment(const Edge& e, Number a) { |
---|
763 | // if (direction(e)) { |
---|
764 | // flow->set(e, (*flow)[e]+a); |
---|
765 | // } else { |
---|
766 | // flow->set(e, (*flow)[e]-a); |
---|
767 | // } |
---|
768 | // if ((*flow)[e] == (*capacity)[e]) { |
---|
769 | // Parent::hide(e); |
---|
770 | // } else { |
---|
771 | // Parent::unHide(e); |
---|
772 | // } |
---|
773 | // if ((*flow)[e] == 0) { |
---|
774 | // Parent::hide(oppositeEdge(e)); |
---|
775 | // } else { |
---|
776 | // Parent::unHide(oppositeEdge(e)); |
---|
777 | // } |
---|
778 | // } |
---|
779 | |
---|
780 | // Number resCap(const Edge& e) { |
---|
781 | // if (direction(e)) { |
---|
782 | // return (*capacity)[e]-(*flow)[e]; |
---|
783 | // } else { |
---|
784 | // return (*flow)[e]; |
---|
785 | // } |
---|
786 | // } |
---|
787 | |
---|
788 | // bool direction(const Edge& edge) const { |
---|
789 | // return Parent::getGraph().direction(edge); |
---|
790 | // } |
---|
791 | |
---|
792 | // Edge direct(const UEdge& edge, bool direction) const { |
---|
793 | // return Parent::getGraph().direct(edge, direction); |
---|
794 | // } |
---|
795 | |
---|
796 | // Edge direct(const UEdge& edge, const Node& node) const { |
---|
797 | // return Parent::getGraph().direct(edge, node); |
---|
798 | // } |
---|
799 | |
---|
800 | // Edge oppositeEdge(const Edge& edge) const { |
---|
801 | // return Parent::getGraph().oppositeEdge(edge); |
---|
802 | // } |
---|
803 | |
---|
804 | // /// \brief Residual capacity map. |
---|
805 | // /// |
---|
806 | // /// In generic residual graphs the residual capacity can be obtained |
---|
807 | // /// as a map. |
---|
808 | // class ResCap { |
---|
809 | // protected: |
---|
810 | // const ResGraphAdaptor* res_graph; |
---|
811 | // public: |
---|
812 | // typedef Number Value; |
---|
813 | // typedef Edge Key; |
---|
814 | // ResCap(const ResGraphAdaptor& _res_graph) |
---|
815 | // : res_graph(&_res_graph) {} |
---|
816 | // Number operator[](const Edge& e) const { |
---|
817 | // return res_graph->resCap(e); |
---|
818 | // } |
---|
819 | // }; |
---|
820 | // }; |
---|
821 | |
---|
822 | } |
---|
823 | |
---|
824 | #endif |
---|