| 1 | /* -*- C++ -*- | 
|---|
| 2 | * | 
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library | 
|---|
| 4 | * | 
|---|
| 5 | * Copyright (C) 2003-2008 | 
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 8 | * | 
|---|
| 9 | * Permission to use, modify and distribute this software is granted | 
|---|
| 10 | * provided that this copyright notice appears in all copies. For | 
|---|
| 11 | * precise terms see the accompanying LICENSE file. | 
|---|
| 12 | * | 
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 14 | * express or implied, and with no claim as to its suitability for any | 
|---|
| 15 | * purpose. | 
|---|
| 16 | * | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | #ifndef LEMON_SUURBALLE_H | 
|---|
| 20 | #define LEMON_SUURBALLE_H | 
|---|
| 21 |  | 
|---|
| 22 | ///\ingroup shortest_path | 
|---|
| 23 | ///\file | 
|---|
| 24 | ///\brief An algorithm for finding edge-disjoint paths between two | 
|---|
| 25 | /// nodes having minimum total length. | 
|---|
| 26 |  | 
|---|
| 27 | #include <vector> | 
|---|
| 28 | #include <lemon/bin_heap.h> | 
|---|
| 29 | #include <lemon/path.h> | 
|---|
| 30 |  | 
|---|
| 31 | namespace lemon { | 
|---|
| 32 |  | 
|---|
| 33 | /// \addtogroup shortest_path | 
|---|
| 34 | /// @{ | 
|---|
| 35 |  | 
|---|
| 36 | /// \brief Implementation of an algorithm for finding edge-disjoint | 
|---|
| 37 | /// paths between two nodes having minimum total length. | 
|---|
| 38 | /// | 
|---|
| 39 | /// \ref lemon::Suurballe "Suurballe" implements an algorithm for | 
|---|
| 40 | /// finding edge-disjoint paths having minimum total length (cost) | 
|---|
| 41 | /// from a given source node to a given target node in a directed | 
|---|
| 42 | /// graph. | 
|---|
| 43 | /// | 
|---|
| 44 | /// In fact, this implementation is the specialization of the | 
|---|
| 45 | /// \ref CapacityScaling "successive shortest path" algorithm. | 
|---|
| 46 | /// | 
|---|
| 47 | /// \tparam Graph The directed graph type the algorithm runs on. | 
|---|
| 48 | /// \tparam LengthMap The type of the length (cost) map. | 
|---|
| 49 | /// | 
|---|
| 50 | /// \warning Length values should be \e non-negative \e integers. | 
|---|
| 51 | /// | 
|---|
| 52 | /// \note For finding node-disjoint paths this algorithm can be used | 
|---|
| 53 | /// with \ref SplitGraphAdaptor. | 
|---|
| 54 | /// | 
|---|
| 55 | /// \author Attila Bernath and Peter Kovacs | 
|---|
| 56 |  | 
|---|
| 57 | template < typename Graph, | 
|---|
| 58 | typename LengthMap = typename Graph::template EdgeMap<int> > | 
|---|
| 59 | class Suurballe | 
|---|
| 60 | { | 
|---|
| 61 | GRAPH_TYPEDEFS(typename Graph); | 
|---|
| 62 |  | 
|---|
| 63 | typedef typename LengthMap::Value Length; | 
|---|
| 64 | typedef ConstMap<Edge, int> ConstEdgeMap; | 
|---|
| 65 | typedef typename Graph::template NodeMap<Edge> PredMap; | 
|---|
| 66 |  | 
|---|
| 67 | public: | 
|---|
| 68 |  | 
|---|
| 69 | /// The type of the flow map. | 
|---|
| 70 | typedef typename Graph::template EdgeMap<int> FlowMap; | 
|---|
| 71 | /// The type of the potential map. | 
|---|
| 72 | typedef typename Graph::template NodeMap<Length> PotentialMap; | 
|---|
| 73 | /// The type of the path structures. | 
|---|
| 74 | typedef SimplePath<Graph> Path; | 
|---|
| 75 |  | 
|---|
| 76 | private: | 
|---|
| 77 |  | 
|---|
| 78 | /// \brief Special implementation of the \ref Dijkstra algorithm | 
|---|
| 79 | /// for finding shortest paths in the residual network. | 
|---|
| 80 | /// | 
|---|
| 81 | /// \ref ResidualDijkstra is a special implementation of the | 
|---|
| 82 | /// \ref Dijkstra algorithm for finding shortest paths in the | 
|---|
| 83 | /// residual network of the graph with respect to the reduced edge | 
|---|
| 84 | /// lengths and modifying the node potentials according to the | 
|---|
| 85 | /// distance of the nodes. | 
|---|
| 86 | class ResidualDijkstra | 
|---|
| 87 | { | 
|---|
| 88 | typedef typename Graph::template NodeMap<int> HeapCrossRef; | 
|---|
| 89 | typedef BinHeap<Length, HeapCrossRef> Heap; | 
|---|
| 90 |  | 
|---|
| 91 | private: | 
|---|
| 92 |  | 
|---|
| 93 | // The directed graph the algorithm runs on | 
|---|
| 94 | const Graph &_graph; | 
|---|
| 95 |  | 
|---|
| 96 | // The main maps | 
|---|
| 97 | const FlowMap &_flow; | 
|---|
| 98 | const LengthMap &_length; | 
|---|
| 99 | PotentialMap &_potential; | 
|---|
| 100 |  | 
|---|
| 101 | // The distance map | 
|---|
| 102 | PotentialMap _dist; | 
|---|
| 103 | // The pred edge map | 
|---|
| 104 | PredMap &_pred; | 
|---|
| 105 | // The processed (i.e. permanently labeled) nodes | 
|---|
| 106 | std::vector<Node> _proc_nodes; | 
|---|
| 107 |  | 
|---|
| 108 | Node _s; | 
|---|
| 109 | Node _t; | 
|---|
| 110 |  | 
|---|
| 111 | public: | 
|---|
| 112 |  | 
|---|
| 113 | /// Constructor. | 
|---|
| 114 | ResidualDijkstra( const Graph &graph, | 
|---|
| 115 | const FlowMap &flow, | 
|---|
| 116 | const LengthMap &length, | 
|---|
| 117 | PotentialMap &potential, | 
|---|
| 118 | PredMap &pred, | 
|---|
| 119 | Node s, Node t ) : | 
|---|
| 120 | _graph(graph), _flow(flow), _length(length), _potential(potential), | 
|---|
| 121 | _dist(graph), _pred(pred), _s(s), _t(t) {} | 
|---|
| 122 |  | 
|---|
| 123 | /// \brief Runs the algorithm. Returns \c true if a path is found | 
|---|
| 124 | /// from the source node to the target node. | 
|---|
| 125 | bool run() { | 
|---|
| 126 | HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); | 
|---|
| 127 | Heap heap(heap_cross_ref); | 
|---|
| 128 | heap.push(_s, 0); | 
|---|
| 129 | _pred[_s] = INVALID; | 
|---|
| 130 | _proc_nodes.clear(); | 
|---|
| 131 |  | 
|---|
| 132 | // Processing nodes | 
|---|
| 133 | while (!heap.empty() && heap.top() != _t) { | 
|---|
| 134 | Node u = heap.top(), v; | 
|---|
| 135 | Length d = heap.prio() + _potential[u], nd; | 
|---|
| 136 | _dist[u] = heap.prio(); | 
|---|
| 137 | heap.pop(); | 
|---|
| 138 | _proc_nodes.push_back(u); | 
|---|
| 139 |  | 
|---|
| 140 | // Traversing outgoing edges | 
|---|
| 141 | for (OutEdgeIt e(_graph, u); e != INVALID; ++e) { | 
|---|
| 142 | if (_flow[e] == 0) { | 
|---|
| 143 | v = _graph.target(e); | 
|---|
| 144 | switch(heap.state(v)) { | 
|---|
| 145 | case Heap::PRE_HEAP: | 
|---|
| 146 | heap.push(v, d + _length[e] - _potential[v]); | 
|---|
| 147 | _pred[v] = e; | 
|---|
| 148 | break; | 
|---|
| 149 | case Heap::IN_HEAP: | 
|---|
| 150 | nd = d + _length[e] - _potential[v]; | 
|---|
| 151 | if (nd < heap[v]) { | 
|---|
| 152 | heap.decrease(v, nd); | 
|---|
| 153 | _pred[v] = e; | 
|---|
| 154 | } | 
|---|
| 155 | break; | 
|---|
| 156 | case Heap::POST_HEAP: | 
|---|
| 157 | break; | 
|---|
| 158 | } | 
|---|
| 159 | } | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | // Traversing incoming edges | 
|---|
| 163 | for (InEdgeIt e(_graph, u); e != INVALID; ++e) { | 
|---|
| 164 | if (_flow[e] == 1) { | 
|---|
| 165 | v = _graph.source(e); | 
|---|
| 166 | switch(heap.state(v)) { | 
|---|
| 167 | case Heap::PRE_HEAP: | 
|---|
| 168 | heap.push(v, d - _length[e] - _potential[v]); | 
|---|
| 169 | _pred[v] = e; | 
|---|
| 170 | break; | 
|---|
| 171 | case Heap::IN_HEAP: | 
|---|
| 172 | nd = d - _length[e] - _potential[v]; | 
|---|
| 173 | if (nd < heap[v]) { | 
|---|
| 174 | heap.decrease(v, nd); | 
|---|
| 175 | _pred[v] = e; | 
|---|
| 176 | } | 
|---|
| 177 | break; | 
|---|
| 178 | case Heap::POST_HEAP: | 
|---|
| 179 | break; | 
|---|
| 180 | } | 
|---|
| 181 | } | 
|---|
| 182 | } | 
|---|
| 183 | } | 
|---|
| 184 | if (heap.empty()) return false; | 
|---|
| 185 |  | 
|---|
| 186 | // Updating potentials of processed nodes | 
|---|
| 187 | Length t_dist = heap.prio(); | 
|---|
| 188 | for (int i = 0; i < int(_proc_nodes.size()); ++i) | 
|---|
| 189 | _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; | 
|---|
| 190 | return true; | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | }; //class ResidualDijkstra | 
|---|
| 194 |  | 
|---|
| 195 | private: | 
|---|
| 196 |  | 
|---|
| 197 | // The directed graph the algorithm runs on | 
|---|
| 198 | const Graph &_graph; | 
|---|
| 199 | // The length map | 
|---|
| 200 | const LengthMap &_length; | 
|---|
| 201 |  | 
|---|
| 202 | // Edge map of the current flow | 
|---|
| 203 | FlowMap *_flow; | 
|---|
| 204 | bool _local_flow; | 
|---|
| 205 | // Node map of the current potentials | 
|---|
| 206 | PotentialMap *_potential; | 
|---|
| 207 | bool _local_potential; | 
|---|
| 208 |  | 
|---|
| 209 | // The source node | 
|---|
| 210 | Node _source; | 
|---|
| 211 | // The target node | 
|---|
| 212 | Node _target; | 
|---|
| 213 |  | 
|---|
| 214 | // Container to store the found paths | 
|---|
| 215 | std::vector< SimplePath<Graph> > paths; | 
|---|
| 216 | int _path_num; | 
|---|
| 217 |  | 
|---|
| 218 | // The pred edge map | 
|---|
| 219 | PredMap _pred; | 
|---|
| 220 | // Implementation of the Dijkstra algorithm for finding augmenting | 
|---|
| 221 | // shortest paths in the residual network | 
|---|
| 222 | ResidualDijkstra *_dijkstra; | 
|---|
| 223 |  | 
|---|
| 224 | public: | 
|---|
| 225 |  | 
|---|
| 226 | /// \brief Constructor. | 
|---|
| 227 | /// | 
|---|
| 228 | /// Constructor. | 
|---|
| 229 | /// | 
|---|
| 230 | /// \param graph The directed graph the algorithm runs on. | 
|---|
| 231 | /// \param length The length (cost) values of the edges. | 
|---|
| 232 | /// \param s The source node. | 
|---|
| 233 | /// \param t The target node. | 
|---|
| 234 | Suurballe( const Graph &graph, | 
|---|
| 235 | const LengthMap &length, | 
|---|
| 236 | Node s, Node t ) : | 
|---|
| 237 | _graph(graph), _length(length), _flow(0), _local_flow(false), | 
|---|
| 238 | _potential(0), _local_potential(false), _source(s), _target(t), | 
|---|
| 239 | _pred(graph) {} | 
|---|
| 240 |  | 
|---|
| 241 | /// Destructor. | 
|---|
| 242 | ~Suurballe() { | 
|---|
| 243 | if (_local_flow) delete _flow; | 
|---|
| 244 | if (_local_potential) delete _potential; | 
|---|
| 245 | delete _dijkstra; | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 | /// \brief Sets the flow map. | 
|---|
| 249 | /// | 
|---|
| 250 | /// Sets the flow map. | 
|---|
| 251 | /// | 
|---|
| 252 | /// The found flow contains only 0 and 1 values. It is the union of | 
|---|
| 253 | /// the found edge-disjoint paths. | 
|---|
| 254 | /// | 
|---|
| 255 | /// \return \c (*this) | 
|---|
| 256 | Suurballe& flowMap(FlowMap &map) { | 
|---|
| 257 | if (_local_flow) { | 
|---|
| 258 | delete _flow; | 
|---|
| 259 | _local_flow = false; | 
|---|
| 260 | } | 
|---|
| 261 | _flow = ↦ | 
|---|
| 262 | return *this; | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | /// \brief Sets the potential map. | 
|---|
| 266 | /// | 
|---|
| 267 | /// Sets the potential map. | 
|---|
| 268 | /// | 
|---|
| 269 | /// The potentials provide the dual solution of the underlying | 
|---|
| 270 | /// minimum cost flow problem. | 
|---|
| 271 | /// | 
|---|
| 272 | /// \return \c (*this) | 
|---|
| 273 | Suurballe& potentialMap(PotentialMap &map) { | 
|---|
| 274 | if (_local_potential) { | 
|---|
| 275 | delete _potential; | 
|---|
| 276 | _local_potential = false; | 
|---|
| 277 | } | 
|---|
| 278 | _potential = ↦ | 
|---|
| 279 | return *this; | 
|---|
| 280 | } | 
|---|
| 281 |  | 
|---|
| 282 | /// \name Execution control | 
|---|
| 283 | /// The simplest way to execute the algorithm is to call the run() | 
|---|
| 284 | /// function. | 
|---|
| 285 | /// \n | 
|---|
| 286 | /// If you only need the flow that is the union of the found | 
|---|
| 287 | /// edge-disjoint paths, you may call init() and findFlow(). | 
|---|
| 288 |  | 
|---|
| 289 | /// @{ | 
|---|
| 290 |  | 
|---|
| 291 | /// \brief Runs the algorithm. | 
|---|
| 292 | /// | 
|---|
| 293 | /// Runs the algorithm. | 
|---|
| 294 | /// | 
|---|
| 295 | /// \param k The number of paths to be found. | 
|---|
| 296 | /// | 
|---|
| 297 | /// \return \c k if there are at least \c k edge-disjoint paths | 
|---|
| 298 | /// from \c s to \c t. Otherwise it returns the number of | 
|---|
| 299 | /// edge-disjoint paths found. | 
|---|
| 300 | /// | 
|---|
| 301 | /// \note Apart from the return value, <tt>s.run(k)</tt> is just a | 
|---|
| 302 | /// shortcut of the following code. | 
|---|
| 303 | /// \code | 
|---|
| 304 | ///   s.init(); | 
|---|
| 305 | ///   s.findFlow(k); | 
|---|
| 306 | ///   s.findPaths(); | 
|---|
| 307 | /// \endcode | 
|---|
| 308 | int run(int k = 2) { | 
|---|
| 309 | init(); | 
|---|
| 310 | findFlow(k); | 
|---|
| 311 | findPaths(); | 
|---|
| 312 | return _path_num; | 
|---|
| 313 | } | 
|---|
| 314 |  | 
|---|
| 315 | /// \brief Initializes the algorithm. | 
|---|
| 316 | /// | 
|---|
| 317 | /// Initializes the algorithm. | 
|---|
| 318 | void init() { | 
|---|
| 319 | // Initializing maps | 
|---|
| 320 | if (!_flow) { | 
|---|
| 321 | _flow = new FlowMap(_graph); | 
|---|
| 322 | _local_flow = true; | 
|---|
| 323 | } | 
|---|
| 324 | if (!_potential) { | 
|---|
| 325 | _potential = new PotentialMap(_graph); | 
|---|
| 326 | _local_potential = true; | 
|---|
| 327 | } | 
|---|
| 328 | for (EdgeIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; | 
|---|
| 329 | for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; | 
|---|
| 330 |  | 
|---|
| 331 | _dijkstra = new ResidualDijkstra( _graph, *_flow, _length, | 
|---|
| 332 | *_potential, _pred, | 
|---|
| 333 | _source, _target ); | 
|---|
| 334 | } | 
|---|
| 335 |  | 
|---|
| 336 | /// \brief Executes the successive shortest path algorithm to find | 
|---|
| 337 | /// an optimal flow. | 
|---|
| 338 | /// | 
|---|
| 339 | /// Executes the successive shortest path algorithm to find a | 
|---|
| 340 | /// minimum cost flow, which is the union of \c k or less | 
|---|
| 341 | /// edge-disjoint paths. | 
|---|
| 342 | /// | 
|---|
| 343 | /// \return \c k if there are at least \c k edge-disjoint paths | 
|---|
| 344 | /// from \c s to \c t. Otherwise it returns the number of | 
|---|
| 345 | /// edge-disjoint paths found. | 
|---|
| 346 | /// | 
|---|
| 347 | /// \pre \ref init() must be called before using this function. | 
|---|
| 348 | int findFlow(int k = 2) { | 
|---|
| 349 | // Finding shortest paths | 
|---|
| 350 | _path_num = 0; | 
|---|
| 351 | while (_path_num < k) { | 
|---|
| 352 | // Running Dijkstra | 
|---|
| 353 | if (!_dijkstra->run()) break; | 
|---|
| 354 | ++_path_num; | 
|---|
| 355 |  | 
|---|
| 356 | // Setting the flow along the found shortest path | 
|---|
| 357 | Node u = _target; | 
|---|
| 358 | Edge e; | 
|---|
| 359 | while ((e = _pred[u]) != INVALID) { | 
|---|
| 360 | if (u == _graph.target(e)) { | 
|---|
| 361 | (*_flow)[e] = 1; | 
|---|
| 362 | u = _graph.source(e); | 
|---|
| 363 | } else { | 
|---|
| 364 | (*_flow)[e] = 0; | 
|---|
| 365 | u = _graph.target(e); | 
|---|
| 366 | } | 
|---|
| 367 | } | 
|---|
| 368 | } | 
|---|
| 369 | return _path_num; | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | /// \brief Computes the paths from the flow. | 
|---|
| 373 | /// | 
|---|
| 374 | /// Computes the paths from the flow. | 
|---|
| 375 | /// | 
|---|
| 376 | /// \pre \ref init() and \ref findFlow() must be called before using | 
|---|
| 377 | /// this function. | 
|---|
| 378 | void findPaths() { | 
|---|
| 379 | // Creating the residual flow map (the union of the paths not | 
|---|
| 380 | // found so far) | 
|---|
| 381 | FlowMap res_flow(*_flow); | 
|---|
| 382 |  | 
|---|
| 383 | paths.clear(); | 
|---|
| 384 | paths.resize(_path_num); | 
|---|
| 385 | for (int i = 0; i < _path_num; ++i) { | 
|---|
| 386 | Node n = _source; | 
|---|
| 387 | while (n != _target) { | 
|---|
| 388 | OutEdgeIt e(_graph, n); | 
|---|
| 389 | for ( ; res_flow[e] == 0; ++e) ; | 
|---|
| 390 | n = _graph.target(e); | 
|---|
| 391 | paths[i].addBack(e); | 
|---|
| 392 | res_flow[e] = 0; | 
|---|
| 393 | } | 
|---|
| 394 | } | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | /// @} | 
|---|
| 398 |  | 
|---|
| 399 | /// \name Query Functions | 
|---|
| 400 | /// The result of the algorithm can be obtained using these | 
|---|
| 401 | /// functions. | 
|---|
| 402 | /// \n The algorithm should be executed before using them. | 
|---|
| 403 |  | 
|---|
| 404 | /// @{ | 
|---|
| 405 |  | 
|---|
| 406 | /// \brief Returns a const reference to the edge map storing the | 
|---|
| 407 | /// found flow. | 
|---|
| 408 | /// | 
|---|
| 409 | /// Returns a const reference to the edge map storing the flow that | 
|---|
| 410 | /// is the union of the found edge-disjoint paths. | 
|---|
| 411 | /// | 
|---|
| 412 | /// \pre \ref run() or findFlow() must be called before using this | 
|---|
| 413 | /// function. | 
|---|
| 414 | const FlowMap& flowMap() const { | 
|---|
| 415 | return *_flow; | 
|---|
| 416 | } | 
|---|
| 417 |  | 
|---|
| 418 | /// \brief Returns a const reference to the node map storing the | 
|---|
| 419 | /// found potentials (the dual solution). | 
|---|
| 420 | /// | 
|---|
| 421 | /// Returns a const reference to the node map storing the found | 
|---|
| 422 | /// potentials that provide the dual solution of the underlying | 
|---|
| 423 | /// minimum cost flow problem. | 
|---|
| 424 | /// | 
|---|
| 425 | /// \pre \ref run() or findFlow() must be called before using this | 
|---|
| 426 | /// function. | 
|---|
| 427 | const PotentialMap& potentialMap() const { | 
|---|
| 428 | return *_potential; | 
|---|
| 429 | } | 
|---|
| 430 |  | 
|---|
| 431 | /// \brief Returns the flow on the given edge. | 
|---|
| 432 | /// | 
|---|
| 433 | /// Returns the flow on the given edge. | 
|---|
| 434 | /// It is \c 1 if the edge is involved in one of the found paths, | 
|---|
| 435 | /// otherwise it is \c 0. | 
|---|
| 436 | /// | 
|---|
| 437 | /// \pre \ref run() or findFlow() must be called before using this | 
|---|
| 438 | /// function. | 
|---|
| 439 | int flow(const Edge& edge) const { | 
|---|
| 440 | return (*_flow)[edge]; | 
|---|
| 441 | } | 
|---|
| 442 |  | 
|---|
| 443 | /// \brief Returns the potential of the given node. | 
|---|
| 444 | /// | 
|---|
| 445 | /// Returns the potential of the given node. | 
|---|
| 446 | /// | 
|---|
| 447 | /// \pre \ref run() or findFlow() must be called before using this | 
|---|
| 448 | /// function. | 
|---|
| 449 | Length potential(const Node& node) const { | 
|---|
| 450 | return (*_potential)[node]; | 
|---|
| 451 | } | 
|---|
| 452 |  | 
|---|
| 453 | /// \brief Returns the total length (cost) of the found paths (flow). | 
|---|
| 454 | /// | 
|---|
| 455 | /// Returns the total length (cost) of the found paths (flow). | 
|---|
| 456 | /// The complexity of the function is \f$ O(e) \f$. | 
|---|
| 457 | /// | 
|---|
| 458 | /// \pre \ref run() or findFlow() must be called before using this | 
|---|
| 459 | /// function. | 
|---|
| 460 | Length totalLength() const { | 
|---|
| 461 | Length c = 0; | 
|---|
| 462 | for (EdgeIt e(_graph); e != INVALID; ++e) | 
|---|
| 463 | c += (*_flow)[e] * _length[e]; | 
|---|
| 464 | return c; | 
|---|
| 465 | } | 
|---|
| 466 |  | 
|---|
| 467 | /// \brief Returns the number of the found paths. | 
|---|
| 468 | /// | 
|---|
| 469 | /// Returns the number of the found paths. | 
|---|
| 470 | /// | 
|---|
| 471 | /// \pre \ref run() or findFlow() must be called before using this | 
|---|
| 472 | /// function. | 
|---|
| 473 | int pathNum() const { | 
|---|
| 474 | return _path_num; | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | /// \brief Returns a const reference to the specified path. | 
|---|
| 478 | /// | 
|---|
| 479 | /// Returns a const reference to the specified path. | 
|---|
| 480 | /// | 
|---|
| 481 | /// \param i The function returns the \c i-th path. | 
|---|
| 482 | /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. | 
|---|
| 483 | /// | 
|---|
| 484 | /// \pre \ref run() or findPaths() must be called before using this | 
|---|
| 485 | /// function. | 
|---|
| 486 | Path path(int i) const { | 
|---|
| 487 | return paths[i]; | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | /// @} | 
|---|
| 491 |  | 
|---|
| 492 | }; //class Suurballe | 
|---|
| 493 |  | 
|---|
| 494 | ///@} | 
|---|
| 495 |  | 
|---|
| 496 | } //namespace lemon | 
|---|
| 497 |  | 
|---|
| 498 | #endif //LEMON_SUURBALLE_H | 
|---|