| 1 | /* -*- C++ -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2006 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_SUURBALLE_H |
|---|
| 20 | #define LEMON_SUURBALLE_H |
|---|
| 21 | |
|---|
| 22 | ///\ingroup flowalgs |
|---|
| 23 | ///\file |
|---|
| 24 | ///\brief An algorithm for finding k paths of minimal total length. |
|---|
| 25 | |
|---|
| 26 | |
|---|
| 27 | #include <lemon/maps.h> |
|---|
| 28 | #include <vector> |
|---|
| 29 | #include <lemon/min_cost_flow.h> |
|---|
| 30 | |
|---|
| 31 | namespace lemon { |
|---|
| 32 | |
|---|
| 33 | /// \addtogroup flowalgs |
|---|
| 34 | /// @{ |
|---|
| 35 | |
|---|
| 36 | ///\brief Implementation of an algorithm for finding k edge-disjoint paths between 2 nodes |
|---|
| 37 | /// of minimal total length |
|---|
| 38 | /// |
|---|
| 39 | /// The class \ref lemon::Suurballe implements |
|---|
| 40 | /// an algorithm for finding k edge-disjoint paths |
|---|
| 41 | /// from a given source node to a given target node in an |
|---|
| 42 | /// edge-weighted directed graph having minimal total weight (length). |
|---|
| 43 | /// |
|---|
| 44 | ///\warning Length values should be nonnegative! |
|---|
| 45 | /// |
|---|
| 46 | ///\param Graph The directed graph type the algorithm runs on. |
|---|
| 47 | ///\param LengthMap The type of the length map (values should be nonnegative). |
|---|
| 48 | /// |
|---|
| 49 | ///\note It it questionable whether it is correct to call this method after |
|---|
| 50 | ///%Suurballe for it is just a special case of Edmonds' and Karp's algorithm |
|---|
| 51 | ///for finding minimum cost flows. In fact, this implementation just |
|---|
| 52 | ///wraps the MinCostFlow algorithms. The paper of both %Suurballe and |
|---|
| 53 | ///Edmonds-Karp published in 1972, therefore it is possibly right to |
|---|
| 54 | ///state that they are |
|---|
| 55 | ///independent results. Most frequently this special case is referred as |
|---|
| 56 | ///%Suurballe method in the literature, especially in communication |
|---|
| 57 | ///network context. |
|---|
| 58 | ///\author Attila Bernath |
|---|
| 59 | template <typename Graph, typename LengthMap> |
|---|
| 60 | class Suurballe{ |
|---|
| 61 | |
|---|
| 62 | |
|---|
| 63 | typedef typename LengthMap::Value Length; |
|---|
| 64 | |
|---|
| 65 | typedef typename Graph::Node Node; |
|---|
| 66 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 67 | typedef typename Graph::Edge Edge; |
|---|
| 68 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
|---|
| 69 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; |
|---|
| 70 | |
|---|
| 71 | typedef ConstMap<Edge,int> ConstMap; |
|---|
| 72 | |
|---|
| 73 | const Graph& G; |
|---|
| 74 | |
|---|
| 75 | Node s; |
|---|
| 76 | Node t; |
|---|
| 77 | |
|---|
| 78 | //Auxiliary variables |
|---|
| 79 | //This is the capacity map for the mincostflow problem |
|---|
| 80 | ConstMap const1map; |
|---|
| 81 | //This MinCostFlow instance will actually solve the problem |
|---|
| 82 | MinCostFlow<Graph, LengthMap, ConstMap> min_cost_flow; |
|---|
| 83 | |
|---|
| 84 | //Container to store found paths |
|---|
| 85 | std::vector< std::vector<Edge> > paths; |
|---|
| 86 | |
|---|
| 87 | public : |
|---|
| 88 | |
|---|
| 89 | |
|---|
| 90 | /*! \brief The constructor of the class. |
|---|
| 91 | |
|---|
| 92 | \param _G The directed graph the algorithm runs on. |
|---|
| 93 | \param _length The length (weight or cost) of the edges. |
|---|
| 94 | \param _s Source node. |
|---|
| 95 | \param _t Target node. |
|---|
| 96 | */ |
|---|
| 97 | Suurballe(Graph& _G, LengthMap& _length, Node _s, Node _t) : |
|---|
| 98 | G(_G), s(_s), t(_t), const1map(1), |
|---|
| 99 | min_cost_flow(_G, _length, const1map, _s, _t) { } |
|---|
| 100 | |
|---|
| 101 | ///Runs the algorithm. |
|---|
| 102 | |
|---|
| 103 | ///Runs the algorithm. |
|---|
| 104 | ///Returns k if there are at least k edge-disjoint paths from s to t. |
|---|
| 105 | ///Otherwise it returns the number of edge-disjoint paths found |
|---|
| 106 | ///from s to t. |
|---|
| 107 | /// |
|---|
| 108 | ///\param k How many paths are we looking for? |
|---|
| 109 | /// |
|---|
| 110 | int run(int k) { |
|---|
| 111 | int i = min_cost_flow.run(k); |
|---|
| 112 | |
|---|
| 113 | //Let's find the paths |
|---|
| 114 | //We put the paths into stl vectors (as an inner representation). |
|---|
| 115 | //In the meantime we lose the information stored in 'reversed'. |
|---|
| 116 | //We suppose the lengths to be positive now. |
|---|
| 117 | |
|---|
| 118 | //We don't want to change the flow of min_cost_flow, so we make a copy |
|---|
| 119 | //The name here suggests that the flow has only 0/1 values. |
|---|
| 120 | EdgeIntMap reversed(G); |
|---|
| 121 | |
|---|
| 122 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) |
|---|
| 123 | reversed[e] = min_cost_flow.getFlow()[e]; |
|---|
| 124 | |
|---|
| 125 | paths.clear(); |
|---|
| 126 | paths.resize(k); |
|---|
| 127 | for (int j=0; j<i; ++j){ |
|---|
| 128 | Node n=s; |
|---|
| 129 | |
|---|
| 130 | while (n!=t){ |
|---|
| 131 | |
|---|
| 132 | OutEdgeIt e(G, n); |
|---|
| 133 | |
|---|
| 134 | while (!reversed[e]){ |
|---|
| 135 | ++e; |
|---|
| 136 | } |
|---|
| 137 | n = G.target(e); |
|---|
| 138 | paths[j].push_back(e); |
|---|
| 139 | reversed[e] = 1-reversed[e]; |
|---|
| 140 | } |
|---|
| 141 | |
|---|
| 142 | } |
|---|
| 143 | return i; |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | |
|---|
| 147 | ///Returns the total length of the paths. |
|---|
| 148 | |
|---|
| 149 | ///This function gives back the total length of the found paths. |
|---|
| 150 | Length totalLength(){ |
|---|
| 151 | return min_cost_flow.totalLength(); |
|---|
| 152 | } |
|---|
| 153 | |
|---|
| 154 | ///Returns the found flow. |
|---|
| 155 | |
|---|
| 156 | ///This function returns a const reference to the EdgeMap \c flow. |
|---|
| 157 | const EdgeIntMap &getFlow() const { return min_cost_flow.flow;} |
|---|
| 158 | |
|---|
| 159 | /// Returns the optimal dual solution |
|---|
| 160 | |
|---|
| 161 | ///This function returns a const reference to the NodeMap |
|---|
| 162 | ///\c potential (the dual solution). |
|---|
| 163 | const EdgeIntMap &getPotential() const { return min_cost_flow.potential;} |
|---|
| 164 | |
|---|
| 165 | ///Checks whether the complementary slackness holds. |
|---|
| 166 | |
|---|
| 167 | ///This function checks, whether the given solution is optimal. |
|---|
| 168 | ///Currently this function only checks optimality, |
|---|
| 169 | ///doesn't bother with feasibility. |
|---|
| 170 | ///It is meant for testing purposes. |
|---|
| 171 | bool checkComplementarySlackness(){ |
|---|
| 172 | return min_cost_flow.checkComplementarySlackness(); |
|---|
| 173 | } |
|---|
| 174 | |
|---|
| 175 | ///Read the found paths. |
|---|
| 176 | |
|---|
| 177 | ///This function gives back the \c j-th path in argument p. |
|---|
| 178 | ///Assumes that \c run() has been run and nothing has changed since then. |
|---|
| 179 | /// \warning It is assumed that \c p is constructed to |
|---|
| 180 | ///be a path of graph \c G. |
|---|
| 181 | ///If \c j is not less than the result of previous \c run, |
|---|
| 182 | ///then the result here will be an empty path (\c j can be 0 as well). |
|---|
| 183 | /// |
|---|
| 184 | ///\param Path The type of the path structure to put the result to (must meet lemon path concept). |
|---|
| 185 | ///\param p The path to put the result to. |
|---|
| 186 | ///\param j Which path you want to get from the found paths (in a real application you would get the found paths iteratively). |
|---|
| 187 | template<typename Path> |
|---|
| 188 | void getPath(Path& p, size_t j){ |
|---|
| 189 | |
|---|
| 190 | p.clear(); |
|---|
| 191 | if (j>paths.size()-1){ |
|---|
| 192 | return; |
|---|
| 193 | } |
|---|
| 194 | typename Path::Builder B(p); |
|---|
| 195 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); |
|---|
| 196 | i!=paths[j].end(); ++i ){ |
|---|
| 197 | B.pushBack(*i); |
|---|
| 198 | } |
|---|
| 199 | |
|---|
| 200 | B.commit(); |
|---|
| 201 | } |
|---|
| 202 | |
|---|
| 203 | }; //class Suurballe |
|---|
| 204 | |
|---|
| 205 | ///@} |
|---|
| 206 | |
|---|
| 207 | } //namespace lemon |
|---|
| 208 | |
|---|
| 209 | #endif //LEMON_SUURBALLE_H |
|---|