| 1 | /* -*- C++ -*- | 
|---|
| 2 | * lemon/suurballe.h - Part of LEMON, a generic C++ optimization library | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 6 | * | 
|---|
| 7 | * Permission to use, modify and distribute this software is granted | 
|---|
| 8 | * provided that this copyright notice appears in all copies. For | 
|---|
| 9 | * precise terms see the accompanying LICENSE file. | 
|---|
| 10 | * | 
|---|
| 11 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 12 | * express or implied, and with no claim as to its suitability for any | 
|---|
| 13 | * purpose. | 
|---|
| 14 | * | 
|---|
| 15 | */ | 
|---|
| 16 |  | 
|---|
| 17 | #ifndef LEMON_SUURBALLE_H | 
|---|
| 18 | #define LEMON_SUURBALLE_H | 
|---|
| 19 |  | 
|---|
| 20 | ///\ingroup flowalgs | 
|---|
| 21 | ///\file | 
|---|
| 22 | ///\brief An algorithm for finding k paths of minimal total length. | 
|---|
| 23 |  | 
|---|
| 24 |  | 
|---|
| 25 | #include <lemon/maps.h> | 
|---|
| 26 | #include <vector> | 
|---|
| 27 | #include <lemon/min_cost_flow.h> | 
|---|
| 28 |  | 
|---|
| 29 | namespace lemon { | 
|---|
| 30 |  | 
|---|
| 31 | /// \addtogroup flowalgs | 
|---|
| 32 | /// @{ | 
|---|
| 33 |  | 
|---|
| 34 | ///\brief Implementation of an algorithm for finding k edge-disjoint paths between 2 nodes | 
|---|
| 35 | /// of minimal total length | 
|---|
| 36 | /// | 
|---|
| 37 | /// The class \ref lemon::Suurballe implements | 
|---|
| 38 | /// an algorithm for finding k edge-disjoint paths | 
|---|
| 39 | /// from a given source node to a given target node in an | 
|---|
| 40 | /// edge-weighted directed graph having minimal total weight (length). | 
|---|
| 41 | /// | 
|---|
| 42 | ///\warning Length values should be nonnegative! | 
|---|
| 43 | /// | 
|---|
| 44 | ///\param Graph The directed graph type the algorithm runs on. | 
|---|
| 45 | ///\param LengthMap The type of the length map (values should be nonnegative). | 
|---|
| 46 | /// | 
|---|
| 47 | ///\note It it questionable whether it is correct to call this method after | 
|---|
| 48 | ///%Suurballe for it is just a special case of Edmonds' and Karp's algorithm | 
|---|
| 49 | ///for finding minimum cost flows. In fact, this implementation just | 
|---|
| 50 | ///wraps the MinCostFlow algorithms. The paper of both %Suurballe and | 
|---|
| 51 | ///Edmonds-Karp published in 1972, therefore it is possibly right to | 
|---|
| 52 | ///state that they are | 
|---|
| 53 | ///independent results. Most frequently this special case is referred as | 
|---|
| 54 | ///%Suurballe method in the literature, especially in communication | 
|---|
| 55 | ///network context. | 
|---|
| 56 | ///\author Attila Bernath | 
|---|
| 57 | template <typename Graph, typename LengthMap> | 
|---|
| 58 | class Suurballe{ | 
|---|
| 59 |  | 
|---|
| 60 |  | 
|---|
| 61 | typedef typename LengthMap::Value Length; | 
|---|
| 62 |  | 
|---|
| 63 | typedef typename Graph::Node Node; | 
|---|
| 64 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 65 | typedef typename Graph::Edge Edge; | 
|---|
| 66 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 67 | typedef typename Graph::template EdgeMap<int> EdgeIntMap; | 
|---|
| 68 |  | 
|---|
| 69 | typedef ConstMap<Edge,int> ConstMap; | 
|---|
| 70 |  | 
|---|
| 71 | const Graph& G; | 
|---|
| 72 |  | 
|---|
| 73 | Node s; | 
|---|
| 74 | Node t; | 
|---|
| 75 |  | 
|---|
| 76 | //Auxiliary variables | 
|---|
| 77 | //This is the capacity map for the mincostflow problem | 
|---|
| 78 | ConstMap const1map; | 
|---|
| 79 | //This MinCostFlow instance will actually solve the problem | 
|---|
| 80 | MinCostFlow<Graph, LengthMap, ConstMap> min_cost_flow; | 
|---|
| 81 |  | 
|---|
| 82 | //Container to store found paths | 
|---|
| 83 | std::vector< std::vector<Edge> > paths; | 
|---|
| 84 |  | 
|---|
| 85 | public : | 
|---|
| 86 |  | 
|---|
| 87 |  | 
|---|
| 88 | /*! \brief The constructor of the class. | 
|---|
| 89 |  | 
|---|
| 90 | \param _G The directed graph the algorithm runs on. | 
|---|
| 91 | \param _length The length (weight or cost) of the edges. | 
|---|
| 92 | \param _s Source node. | 
|---|
| 93 | \param _t Target node. | 
|---|
| 94 | */ | 
|---|
| 95 | Suurballe(Graph& _G, LengthMap& _length, Node _s, Node _t) : | 
|---|
| 96 | G(_G), s(_s), t(_t), const1map(1), | 
|---|
| 97 | min_cost_flow(_G, _length, const1map, _s, _t) { } | 
|---|
| 98 |  | 
|---|
| 99 | ///Runs the algorithm. | 
|---|
| 100 |  | 
|---|
| 101 | ///Runs the algorithm. | 
|---|
| 102 | ///Returns k if there are at least k edge-disjoint paths from s to t. | 
|---|
| 103 | ///Otherwise it returns the number of edge-disjoint paths found | 
|---|
| 104 | ///from s to t. | 
|---|
| 105 | /// | 
|---|
| 106 | ///\param k How many paths are we looking for? | 
|---|
| 107 | /// | 
|---|
| 108 | int run(int k) { | 
|---|
| 109 | int i = min_cost_flow.run(k); | 
|---|
| 110 |  | 
|---|
| 111 | //Let's find the paths | 
|---|
| 112 | //We put the paths into stl vectors (as an inner representation). | 
|---|
| 113 | //In the meantime we lose the information stored in 'reversed'. | 
|---|
| 114 | //We suppose the lengths to be positive now. | 
|---|
| 115 |  | 
|---|
| 116 | //We don't want to change the flow of min_cost_flow, so we make a copy | 
|---|
| 117 | //The name here suggests that the flow has only 0/1 values. | 
|---|
| 118 | EdgeIntMap reversed(G); | 
|---|
| 119 |  | 
|---|
| 120 | for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) | 
|---|
| 121 | reversed[e] = min_cost_flow.getFlow()[e]; | 
|---|
| 122 |  | 
|---|
| 123 | paths.clear(); | 
|---|
| 124 | paths.resize(k); | 
|---|
| 125 | for (int j=0; j<i; ++j){ | 
|---|
| 126 | Node n=s; | 
|---|
| 127 |  | 
|---|
| 128 | while (n!=t){ | 
|---|
| 129 |  | 
|---|
| 130 | OutEdgeIt e(G, n); | 
|---|
| 131 |  | 
|---|
| 132 | while (!reversed[e]){ | 
|---|
| 133 | ++e; | 
|---|
| 134 | } | 
|---|
| 135 | n = G.target(e); | 
|---|
| 136 | paths[j].push_back(e); | 
|---|
| 137 | reversed[e] = 1-reversed[e]; | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | } | 
|---|
| 141 | return i; | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 |  | 
|---|
| 145 | ///Returns the total length of the paths. | 
|---|
| 146 |  | 
|---|
| 147 | ///This function gives back the total length of the found paths. | 
|---|
| 148 | Length totalLength(){ | 
|---|
| 149 | return min_cost_flow.totalLength(); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | ///Returns the found flow. | 
|---|
| 153 |  | 
|---|
| 154 | ///This function returns a const reference to the EdgeMap \c flow. | 
|---|
| 155 | const EdgeIntMap &getFlow() const { return min_cost_flow.flow;} | 
|---|
| 156 |  | 
|---|
| 157 | /// Returns the optimal dual solution | 
|---|
| 158 |  | 
|---|
| 159 | ///This function returns a const reference to the NodeMap | 
|---|
| 160 | ///\c potential (the dual solution). | 
|---|
| 161 | const EdgeIntMap &getPotential() const { return min_cost_flow.potential;} | 
|---|
| 162 |  | 
|---|
| 163 | ///Checks whether the complementary slackness holds. | 
|---|
| 164 |  | 
|---|
| 165 | ///This function checks, whether the given solution is optimal. | 
|---|
| 166 | ///Currently this function only checks optimality, | 
|---|
| 167 | ///doesn't bother with feasibility. | 
|---|
| 168 | ///It is meant for testing purposes. | 
|---|
| 169 | bool checkComplementarySlackness(){ | 
|---|
| 170 | return min_cost_flow.checkComplementarySlackness(); | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | ///Read the found paths. | 
|---|
| 174 |  | 
|---|
| 175 | ///This function gives back the \c j-th path in argument p. | 
|---|
| 176 | ///Assumes that \c run() has been run and nothing has changed since then. | 
|---|
| 177 | /// \warning It is assumed that \c p is constructed to | 
|---|
| 178 | ///be a path of graph \c G. | 
|---|
| 179 | ///If \c j is not less than the result of previous \c run, | 
|---|
| 180 | ///then the result here will be an empty path (\c j can be 0 as well). | 
|---|
| 181 | /// | 
|---|
| 182 | ///\param Path The type of the path structure to put the result to (must meet lemon path concept). | 
|---|
| 183 | ///\param p The path to put the result to. | 
|---|
| 184 | ///\param j Which path you want to get from the found paths (in a real application you would get the found paths iteratively). | 
|---|
| 185 | template<typename Path> | 
|---|
| 186 | void getPath(Path& p, size_t j){ | 
|---|
| 187 |  | 
|---|
| 188 | p.clear(); | 
|---|
| 189 | if (j>paths.size()-1){ | 
|---|
| 190 | return; | 
|---|
| 191 | } | 
|---|
| 192 | typename Path::Builder B(p); | 
|---|
| 193 | for(typename std::vector<Edge>::iterator i=paths[j].begin(); | 
|---|
| 194 | i!=paths[j].end(); ++i ){ | 
|---|
| 195 | B.pushBack(*i); | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | B.commit(); | 
|---|
| 199 | } | 
|---|
| 200 |  | 
|---|
| 201 | }; //class Suurballe | 
|---|
| 202 |  | 
|---|
| 203 | ///@} | 
|---|
| 204 |  | 
|---|
| 205 | } //namespace lemon | 
|---|
| 206 |  | 
|---|
| 207 | #endif //LEMON_SUURBALLE_H | 
|---|