| 1 | /* -*- C++ -*- | 
|---|
| 2 | * | 
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library | 
|---|
| 4 | * | 
|---|
| 5 | * Copyright (C) 2003-2006 | 
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 8 | * | 
|---|
| 9 | * Permission to use, modify and distribute this software is granted | 
|---|
| 10 | * provided that this copyright notice appears in all copies. For | 
|---|
| 11 | * precise terms see the accompanying LICENSE file. | 
|---|
| 12 | * | 
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 14 | * express or implied, and with no claim as to its suitability for any | 
|---|
| 15 | * purpose. | 
|---|
| 16 | * | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | #ifndef LEMON_TOPOLOGY_H | 
|---|
| 20 | #define LEMON_TOPOLOGY_H | 
|---|
| 21 |  | 
|---|
| 22 | #include <lemon/dfs.h> | 
|---|
| 23 | #include <lemon/bfs.h> | 
|---|
| 24 | #include <lemon/graph_utils.h> | 
|---|
| 25 | #include <lemon/graph_adaptor.h> | 
|---|
| 26 | #include <lemon/maps.h> | 
|---|
| 27 |  | 
|---|
| 28 | #include <lemon/concept/graph.h> | 
|---|
| 29 | #include <lemon/concept/ugraph.h> | 
|---|
| 30 | #include <lemon/concept_check.h> | 
|---|
| 31 |  | 
|---|
| 32 | #include <lemon/bin_heap.h> | 
|---|
| 33 | #include <lemon/bucket_heap.h> | 
|---|
| 34 |  | 
|---|
| 35 | #include <stack> | 
|---|
| 36 | #include <functional> | 
|---|
| 37 |  | 
|---|
| 38 | /// \ingroup topology | 
|---|
| 39 | /// \file | 
|---|
| 40 | /// \brief Topology related algorithms | 
|---|
| 41 | /// | 
|---|
| 42 | /// Topology related algorithms | 
|---|
| 43 |  | 
|---|
| 44 | namespace lemon { | 
|---|
| 45 |  | 
|---|
| 46 | /// \ingroup topology | 
|---|
| 47 | /// | 
|---|
| 48 | /// \brief Check that the given undirected graph is connected. | 
|---|
| 49 | /// | 
|---|
| 50 | /// Check that the given undirected graph connected. | 
|---|
| 51 | /// \param graph The undirected graph. | 
|---|
| 52 | /// \return %True when there is path between any two nodes in the graph. | 
|---|
| 53 | /// \note By definition, the empty graph is connected. | 
|---|
| 54 | template <typename UGraph> | 
|---|
| 55 | bool connected(const UGraph& graph) { | 
|---|
| 56 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 57 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 58 | if (NodeIt(graph) == INVALID) return true; | 
|---|
| 59 | Dfs<UGraph> dfs(graph); | 
|---|
| 60 | dfs.run(NodeIt(graph)); | 
|---|
| 61 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 62 | if (!dfs.reached(it)) { | 
|---|
| 63 | return false; | 
|---|
| 64 | } | 
|---|
| 65 | } | 
|---|
| 66 | return true; | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | /// \ingroup topology | 
|---|
| 70 | /// | 
|---|
| 71 | /// \brief Count the number of connected components of an undirected graph | 
|---|
| 72 | /// | 
|---|
| 73 | /// Count the number of connected components of an undirected graph | 
|---|
| 74 | /// | 
|---|
| 75 | /// \param graph The graph. It should be undirected. | 
|---|
| 76 | /// \return The number of components | 
|---|
| 77 | /// \note By definition, the empty graph consists | 
|---|
| 78 | /// of zero connected components. | 
|---|
| 79 | template <typename UGraph> | 
|---|
| 80 | int countConnectedComponents(const UGraph &graph) { | 
|---|
| 81 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 82 | typedef typename UGraph::Node Node; | 
|---|
| 83 | typedef typename UGraph::Edge Edge; | 
|---|
| 84 |  | 
|---|
| 85 | typedef NullMap<Node, Edge> PredMap; | 
|---|
| 86 | typedef NullMap<Node, int> DistMap; | 
|---|
| 87 |  | 
|---|
| 88 | int compNum = 0; | 
|---|
| 89 | typename Bfs<UGraph>:: | 
|---|
| 90 | template DefPredMap<PredMap>:: | 
|---|
| 91 | template DefDistMap<DistMap>:: | 
|---|
| 92 | Create bfs(graph); | 
|---|
| 93 |  | 
|---|
| 94 | PredMap predMap; | 
|---|
| 95 | bfs.predMap(predMap); | 
|---|
| 96 |  | 
|---|
| 97 | DistMap distMap; | 
|---|
| 98 | bfs.distMap(distMap); | 
|---|
| 99 |  | 
|---|
| 100 | bfs.init(); | 
|---|
| 101 | for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) { | 
|---|
| 102 | if (!bfs.reached(n)) { | 
|---|
| 103 | bfs.addSource(n); | 
|---|
| 104 | bfs.start(); | 
|---|
| 105 | ++compNum; | 
|---|
| 106 | } | 
|---|
| 107 | } | 
|---|
| 108 | return compNum; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | /// \ingroup topology | 
|---|
| 112 | /// | 
|---|
| 113 | /// \brief Find the connected components of an undirected graph | 
|---|
| 114 | /// | 
|---|
| 115 | /// Find the connected components of an undirected graph. | 
|---|
| 116 | /// | 
|---|
| 117 | /// \image html connected_components.png | 
|---|
| 118 | /// \image latex connected_components.eps "Connected components" width=\textwidth | 
|---|
| 119 | /// | 
|---|
| 120 | /// \param graph The graph. It should be undirected. | 
|---|
| 121 | /// \retval compMap A writable node map. The values will be set from 0 to | 
|---|
| 122 | /// the number of the connected components minus one. Each values of the map | 
|---|
| 123 | /// will be set exactly once, the values of a certain component will be | 
|---|
| 124 | /// set continuously. | 
|---|
| 125 | /// \return The number of components | 
|---|
| 126 | /// | 
|---|
| 127 | template <class UGraph, class NodeMap> | 
|---|
| 128 | int connectedComponents(const UGraph &graph, NodeMap &compMap) { | 
|---|
| 129 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 130 | typedef typename UGraph::Node Node; | 
|---|
| 131 | typedef typename UGraph::Edge Edge; | 
|---|
| 132 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); | 
|---|
| 133 |  | 
|---|
| 134 | typedef NullMap<Node, Edge> PredMap; | 
|---|
| 135 | typedef NullMap<Node, int> DistMap; | 
|---|
| 136 |  | 
|---|
| 137 | int compNum = 0; | 
|---|
| 138 | typename Bfs<UGraph>:: | 
|---|
| 139 | template DefPredMap<PredMap>:: | 
|---|
| 140 | template DefDistMap<DistMap>:: | 
|---|
| 141 | Create bfs(graph); | 
|---|
| 142 |  | 
|---|
| 143 | PredMap predMap; | 
|---|
| 144 | bfs.predMap(predMap); | 
|---|
| 145 |  | 
|---|
| 146 | DistMap distMap; | 
|---|
| 147 | bfs.distMap(distMap); | 
|---|
| 148 |  | 
|---|
| 149 | bfs.init(); | 
|---|
| 150 | for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) { | 
|---|
| 151 | if(!bfs.reached(n)) { | 
|---|
| 152 | bfs.addSource(n); | 
|---|
| 153 | while (!bfs.emptyQueue()) { | 
|---|
| 154 | compMap.set(bfs.nextNode(), compNum); | 
|---|
| 155 | bfs.processNextNode(); | 
|---|
| 156 | } | 
|---|
| 157 | ++compNum; | 
|---|
| 158 | } | 
|---|
| 159 | } | 
|---|
| 160 | return compNum; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | namespace _topology_bits { | 
|---|
| 164 |  | 
|---|
| 165 | template <typename Graph, typename Iterator > | 
|---|
| 166 | struct LeaveOrderVisitor : public DfsVisitor<Graph> { | 
|---|
| 167 | public: | 
|---|
| 168 | typedef typename Graph::Node Node; | 
|---|
| 169 | LeaveOrderVisitor(Iterator it) : _it(it) {} | 
|---|
| 170 |  | 
|---|
| 171 | void leave(const Node& node) { | 
|---|
| 172 | *(_it++) = node; | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | private: | 
|---|
| 176 | Iterator _it; | 
|---|
| 177 | }; | 
|---|
| 178 |  | 
|---|
| 179 | template <typename Graph, typename Map> | 
|---|
| 180 | struct FillMapVisitor : public DfsVisitor<Graph> { | 
|---|
| 181 | public: | 
|---|
| 182 | typedef typename Graph::Node Node; | 
|---|
| 183 | typedef typename Map::Value Value; | 
|---|
| 184 |  | 
|---|
| 185 | FillMapVisitor(Map& map, Value& value) | 
|---|
| 186 | : _map(map), _value(value) {} | 
|---|
| 187 |  | 
|---|
| 188 | void reach(const Node& node) { | 
|---|
| 189 | _map.set(node, _value); | 
|---|
| 190 | } | 
|---|
| 191 | private: | 
|---|
| 192 | Map& _map; | 
|---|
| 193 | Value& _value; | 
|---|
| 194 | }; | 
|---|
| 195 |  | 
|---|
| 196 | template <typename Graph, typename EdgeMap> | 
|---|
| 197 | struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> { | 
|---|
| 198 | public: | 
|---|
| 199 | typedef typename Graph::Node Node; | 
|---|
| 200 | typedef typename Graph::Edge Edge; | 
|---|
| 201 |  | 
|---|
| 202 | StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, | 
|---|
| 203 | int& cutNum) | 
|---|
| 204 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), | 
|---|
| 205 | _compMap(graph), _num(0) { | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | void stop(const Node&) { | 
|---|
| 209 | ++_num; | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | void reach(const Node& node) { | 
|---|
| 213 | _compMap.set(node, _num); | 
|---|
| 214 | } | 
|---|
| 215 |  | 
|---|
| 216 | void examine(const Edge& edge) { | 
|---|
| 217 | if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) { | 
|---|
| 218 | _cutMap.set(edge, true); | 
|---|
| 219 | ++_cutNum; | 
|---|
| 220 | } | 
|---|
| 221 | } | 
|---|
| 222 | private: | 
|---|
| 223 | const Graph& _graph; | 
|---|
| 224 | EdgeMap& _cutMap; | 
|---|
| 225 | int& _cutNum; | 
|---|
| 226 |  | 
|---|
| 227 | typename Graph::template NodeMap<int> _compMap; | 
|---|
| 228 | int _num; | 
|---|
| 229 | }; | 
|---|
| 230 |  | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 |  | 
|---|
| 234 | /// \ingroup topology | 
|---|
| 235 | /// | 
|---|
| 236 | /// \brief Check that the given directed graph is strongly connected. | 
|---|
| 237 | /// | 
|---|
| 238 | /// Check that the given directed graph is strongly connected. The | 
|---|
| 239 | /// graph is strongly connected when any two nodes of the graph are | 
|---|
| 240 | /// connected with directed paths in both direction. | 
|---|
| 241 | /// \return %False when the graph is not strongly connected. | 
|---|
| 242 | /// \see connected | 
|---|
| 243 | /// | 
|---|
| 244 | /// \note By definition, the empty graph is strongly connected. | 
|---|
| 245 | template <typename Graph> | 
|---|
| 246 | bool stronglyConnected(const Graph& graph) { | 
|---|
| 247 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 248 |  | 
|---|
| 249 | typedef typename Graph::Node Node; | 
|---|
| 250 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 251 |  | 
|---|
| 252 | if (NodeIt(graph) == INVALID) return true; | 
|---|
| 253 |  | 
|---|
| 254 | using namespace _topology_bits; | 
|---|
| 255 |  | 
|---|
| 256 | typedef DfsVisitor<Graph> Visitor; | 
|---|
| 257 | Visitor visitor; | 
|---|
| 258 |  | 
|---|
| 259 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 260 | dfs.init(); | 
|---|
| 261 | dfs.addSource(NodeIt(graph)); | 
|---|
| 262 | dfs.start(); | 
|---|
| 263 |  | 
|---|
| 264 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 265 | if (!dfs.reached(it)) { | 
|---|
| 266 | return false; | 
|---|
| 267 | } | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 271 | RGraph rgraph(graph); | 
|---|
| 272 |  | 
|---|
| 273 | typedef DfsVisitor<Graph> RVisitor; | 
|---|
| 274 | RVisitor rvisitor; | 
|---|
| 275 |  | 
|---|
| 276 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 277 | rdfs.init(); | 
|---|
| 278 | rdfs.addSource(NodeIt(graph)); | 
|---|
| 279 | rdfs.start(); | 
|---|
| 280 |  | 
|---|
| 281 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 282 | if (!rdfs.reached(it)) { | 
|---|
| 283 | return false; | 
|---|
| 284 | } | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | return true; | 
|---|
| 288 | } | 
|---|
| 289 |  | 
|---|
| 290 | /// \ingroup topology | 
|---|
| 291 | /// | 
|---|
| 292 | /// \brief Count the strongly connected components of a directed graph | 
|---|
| 293 | /// | 
|---|
| 294 | /// Count the strongly connected components of a directed graph. | 
|---|
| 295 | /// The strongly connected components are the classes of an equivalence | 
|---|
| 296 | /// relation on the nodes of the graph. Two nodes are connected with | 
|---|
| 297 | /// directed paths in both direction. | 
|---|
| 298 | /// | 
|---|
| 299 | /// \param graph The graph. | 
|---|
| 300 | /// \return The number of components | 
|---|
| 301 | /// \note By definition, the empty graph has zero | 
|---|
| 302 | /// strongly connected components. | 
|---|
| 303 | template <typename Graph> | 
|---|
| 304 | int countStronglyConnectedComponents(const Graph& graph) { | 
|---|
| 305 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 306 |  | 
|---|
| 307 | using namespace _topology_bits; | 
|---|
| 308 |  | 
|---|
| 309 | typedef typename Graph::Node Node; | 
|---|
| 310 | typedef typename Graph::Edge Edge; | 
|---|
| 311 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 312 | typedef typename Graph::EdgeIt EdgeIt; | 
|---|
| 313 |  | 
|---|
| 314 | typedef std::vector<Node> Container; | 
|---|
| 315 | typedef typename Container::iterator Iterator; | 
|---|
| 316 |  | 
|---|
| 317 | Container nodes(countNodes(graph)); | 
|---|
| 318 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; | 
|---|
| 319 | Visitor visitor(nodes.begin()); | 
|---|
| 320 |  | 
|---|
| 321 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 322 | dfs.init(); | 
|---|
| 323 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 324 | if (!dfs.reached(it)) { | 
|---|
| 325 | dfs.addSource(it); | 
|---|
| 326 | dfs.start(); | 
|---|
| 327 | } | 
|---|
| 328 | } | 
|---|
| 329 |  | 
|---|
| 330 | typedef typename Container::reverse_iterator RIterator; | 
|---|
| 331 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 332 |  | 
|---|
| 333 | RGraph rgraph(graph); | 
|---|
| 334 |  | 
|---|
| 335 | typedef DfsVisitor<Graph> RVisitor; | 
|---|
| 336 | RVisitor rvisitor; | 
|---|
| 337 |  | 
|---|
| 338 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 339 |  | 
|---|
| 340 | int compNum = 0; | 
|---|
| 341 |  | 
|---|
| 342 | rdfs.init(); | 
|---|
| 343 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { | 
|---|
| 344 | if (!rdfs.reached(*it)) { | 
|---|
| 345 | rdfs.addSource(*it); | 
|---|
| 346 | rdfs.start(); | 
|---|
| 347 | ++compNum; | 
|---|
| 348 | } | 
|---|
| 349 | } | 
|---|
| 350 | return compNum; | 
|---|
| 351 | } | 
|---|
| 352 |  | 
|---|
| 353 | /// \ingroup topology | 
|---|
| 354 | /// | 
|---|
| 355 | /// \brief Find the strongly connected components of a directed graph | 
|---|
| 356 | /// | 
|---|
| 357 | /// Find the strongly connected components of a directed graph. | 
|---|
| 358 | /// The strongly connected components are the classes of an equivalence | 
|---|
| 359 | /// relation on the nodes of the graph. Two nodes are in relationship | 
|---|
| 360 | /// when there are directed paths between them in both direction. | 
|---|
| 361 | /// | 
|---|
| 362 | /// \image html strongly_connected_components.png | 
|---|
| 363 | /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth | 
|---|
| 364 | /// | 
|---|
| 365 | /// \param graph The graph. | 
|---|
| 366 | /// \retval compMap A writable node map. The values will be set from 0 to | 
|---|
| 367 | /// the number of the strongly connected components minus one. Each values | 
|---|
| 368 | /// of the map will be set exactly once, the values of a certain component | 
|---|
| 369 | /// will be set continuously. | 
|---|
| 370 | /// \return The number of components | 
|---|
| 371 | /// | 
|---|
| 372 | template <typename Graph, typename NodeMap> | 
|---|
| 373 | int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) { | 
|---|
| 374 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 375 | typedef typename Graph::Node Node; | 
|---|
| 376 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 377 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); | 
|---|
| 378 |  | 
|---|
| 379 | using namespace _topology_bits; | 
|---|
| 380 |  | 
|---|
| 381 | typedef std::vector<Node> Container; | 
|---|
| 382 | typedef typename Container::iterator Iterator; | 
|---|
| 383 |  | 
|---|
| 384 | Container nodes(countNodes(graph)); | 
|---|
| 385 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; | 
|---|
| 386 | Visitor visitor(nodes.begin()); | 
|---|
| 387 |  | 
|---|
| 388 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 389 | dfs.init(); | 
|---|
| 390 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 391 | if (!dfs.reached(it)) { | 
|---|
| 392 | dfs.addSource(it); | 
|---|
| 393 | dfs.start(); | 
|---|
| 394 | } | 
|---|
| 395 | } | 
|---|
| 396 |  | 
|---|
| 397 | typedef typename Container::reverse_iterator RIterator; | 
|---|
| 398 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 399 |  | 
|---|
| 400 | RGraph rgraph(graph); | 
|---|
| 401 |  | 
|---|
| 402 | int compNum = 0; | 
|---|
| 403 |  | 
|---|
| 404 | typedef FillMapVisitor<RGraph, NodeMap> RVisitor; | 
|---|
| 405 | RVisitor rvisitor(compMap, compNum); | 
|---|
| 406 |  | 
|---|
| 407 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 408 |  | 
|---|
| 409 | rdfs.init(); | 
|---|
| 410 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { | 
|---|
| 411 | if (!rdfs.reached(*it)) { | 
|---|
| 412 | rdfs.addSource(*it); | 
|---|
| 413 | rdfs.start(); | 
|---|
| 414 | ++compNum; | 
|---|
| 415 | } | 
|---|
| 416 | } | 
|---|
| 417 | return compNum; | 
|---|
| 418 | } | 
|---|
| 419 |  | 
|---|
| 420 | /// \ingroup topology | 
|---|
| 421 | /// | 
|---|
| 422 | /// \brief Find the cut edges of the strongly connected components. | 
|---|
| 423 | /// | 
|---|
| 424 | /// Find the cut edges of the strongly connected components. | 
|---|
| 425 | /// The strongly connected components are the classes of an equivalence | 
|---|
| 426 | /// relation on the nodes of the graph. Two nodes are in relationship | 
|---|
| 427 | /// when there are directed paths between them in both direction. | 
|---|
| 428 | /// The strongly connected components are separated by the cut edges. | 
|---|
| 429 | /// | 
|---|
| 430 | /// \param graph The graph. | 
|---|
| 431 | /// \retval cutMap A writable node map. The values will be set true when the | 
|---|
| 432 | /// edge is a cut edge. | 
|---|
| 433 | /// | 
|---|
| 434 | /// \return The number of cut edges | 
|---|
| 435 | template <typename Graph, typename EdgeMap> | 
|---|
| 436 | int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { | 
|---|
| 437 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 438 | typedef typename Graph::Node Node; | 
|---|
| 439 | typedef typename Graph::Edge Edge; | 
|---|
| 440 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 441 | checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>(); | 
|---|
| 442 |  | 
|---|
| 443 | using namespace _topology_bits; | 
|---|
| 444 |  | 
|---|
| 445 | typedef std::vector<Node> Container; | 
|---|
| 446 | typedef typename Container::iterator Iterator; | 
|---|
| 447 |  | 
|---|
| 448 | Container nodes(countNodes(graph)); | 
|---|
| 449 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; | 
|---|
| 450 | Visitor visitor(nodes.begin()); | 
|---|
| 451 |  | 
|---|
| 452 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 453 | dfs.init(); | 
|---|
| 454 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 455 | if (!dfs.reached(it)) { | 
|---|
| 456 | dfs.addSource(it); | 
|---|
| 457 | dfs.start(); | 
|---|
| 458 | } | 
|---|
| 459 | } | 
|---|
| 460 |  | 
|---|
| 461 | typedef typename Container::reverse_iterator RIterator; | 
|---|
| 462 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 463 |  | 
|---|
| 464 | RGraph rgraph(graph); | 
|---|
| 465 |  | 
|---|
| 466 | int cutNum = 0; | 
|---|
| 467 |  | 
|---|
| 468 | typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor; | 
|---|
| 469 | RVisitor rvisitor(rgraph, cutMap, cutNum); | 
|---|
| 470 |  | 
|---|
| 471 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 472 |  | 
|---|
| 473 | rdfs.init(); | 
|---|
| 474 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { | 
|---|
| 475 | if (!rdfs.reached(*it)) { | 
|---|
| 476 | rdfs.addSource(*it); | 
|---|
| 477 | rdfs.start(); | 
|---|
| 478 | } | 
|---|
| 479 | } | 
|---|
| 480 | return cutNum; | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | namespace _topology_bits { | 
|---|
| 484 |  | 
|---|
| 485 | template <typename Graph> | 
|---|
| 486 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 487 | public: | 
|---|
| 488 | typedef typename Graph::Node Node; | 
|---|
| 489 | typedef typename Graph::Edge Edge; | 
|---|
| 490 | typedef typename Graph::UEdge UEdge; | 
|---|
| 491 |  | 
|---|
| 492 | CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) | 
|---|
| 493 | : _graph(graph), _compNum(compNum), | 
|---|
| 494 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 495 |  | 
|---|
| 496 | void start(const Node& node) { | 
|---|
| 497 | _predMap.set(node, INVALID); | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | void reach(const Node& node) { | 
|---|
| 501 | _numMap.set(node, _num); | 
|---|
| 502 | _retMap.set(node, _num); | 
|---|
| 503 | ++_num; | 
|---|
| 504 | } | 
|---|
| 505 |  | 
|---|
| 506 | void discover(const Edge& edge) { | 
|---|
| 507 | _predMap.set(_graph.target(edge), _graph.source(edge)); | 
|---|
| 508 | } | 
|---|
| 509 |  | 
|---|
| 510 | void examine(const Edge& edge) { | 
|---|
| 511 | if (_graph.source(edge) == _graph.target(edge) && | 
|---|
| 512 | _graph.direction(edge)) { | 
|---|
| 513 | ++_compNum; | 
|---|
| 514 | return; | 
|---|
| 515 | } | 
|---|
| 516 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { | 
|---|
| 517 | return; | 
|---|
| 518 | } | 
|---|
| 519 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { | 
|---|
| 520 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); | 
|---|
| 521 | } | 
|---|
| 522 | } | 
|---|
| 523 |  | 
|---|
| 524 | void backtrack(const Edge& edge) { | 
|---|
| 525 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 526 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 527 | } | 
|---|
| 528 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { | 
|---|
| 529 | ++_compNum; | 
|---|
| 530 | } | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | private: | 
|---|
| 534 | const Graph& _graph; | 
|---|
| 535 | int& _compNum; | 
|---|
| 536 |  | 
|---|
| 537 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 538 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 539 | typename Graph::template NodeMap<Node> _predMap; | 
|---|
| 540 | int _num; | 
|---|
| 541 | }; | 
|---|
| 542 |  | 
|---|
| 543 | template <typename Graph, typename EdgeMap> | 
|---|
| 544 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 545 | public: | 
|---|
| 546 | typedef typename Graph::Node Node; | 
|---|
| 547 | typedef typename Graph::Edge Edge; | 
|---|
| 548 | typedef typename Graph::UEdge UEdge; | 
|---|
| 549 |  | 
|---|
| 550 | BiNodeConnectedComponentsVisitor(const Graph& graph, | 
|---|
| 551 | EdgeMap& compMap, int &compNum) | 
|---|
| 552 | : _graph(graph), _compMap(compMap), _compNum(compNum), | 
|---|
| 553 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 554 |  | 
|---|
| 555 | void start(const Node& node) { | 
|---|
| 556 | _predMap.set(node, INVALID); | 
|---|
| 557 | } | 
|---|
| 558 |  | 
|---|
| 559 | void reach(const Node& node) { | 
|---|
| 560 | _numMap.set(node, _num); | 
|---|
| 561 | _retMap.set(node, _num); | 
|---|
| 562 | ++_num; | 
|---|
| 563 | } | 
|---|
| 564 |  | 
|---|
| 565 | void discover(const Edge& edge) { | 
|---|
| 566 | Node target = _graph.target(edge); | 
|---|
| 567 | _predMap.set(target, edge); | 
|---|
| 568 | _edgeStack.push(edge); | 
|---|
| 569 | } | 
|---|
| 570 |  | 
|---|
| 571 | void examine(const Edge& edge) { | 
|---|
| 572 | Node source = _graph.source(edge); | 
|---|
| 573 | Node target = _graph.target(edge); | 
|---|
| 574 | if (source == target && _graph.direction(edge)) { | 
|---|
| 575 | _compMap.set(edge, _compNum); | 
|---|
| 576 | ++_compNum; | 
|---|
| 577 | return; | 
|---|
| 578 | } | 
|---|
| 579 | if (_numMap[target] < _numMap[source]) { | 
|---|
| 580 | if (_predMap[source] != _graph.oppositeEdge(edge)) { | 
|---|
| 581 | _edgeStack.push(edge); | 
|---|
| 582 | } | 
|---|
| 583 | } | 
|---|
| 584 | if (_predMap[source] != INVALID && | 
|---|
| 585 | target == _graph.source(_predMap[source])) { | 
|---|
| 586 | return; | 
|---|
| 587 | } | 
|---|
| 588 | if (_retMap[source] > _numMap[target]) { | 
|---|
| 589 | _retMap.set(source, _numMap[target]); | 
|---|
| 590 | } | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | void backtrack(const Edge& edge) { | 
|---|
| 594 | Node source = _graph.source(edge); | 
|---|
| 595 | Node target = _graph.target(edge); | 
|---|
| 596 | if (_retMap[source] > _retMap[target]) { | 
|---|
| 597 | _retMap.set(source, _retMap[target]); | 
|---|
| 598 | } | 
|---|
| 599 | if (_numMap[source] <= _retMap[target]) { | 
|---|
| 600 | while (_edgeStack.top() != edge) { | 
|---|
| 601 | _compMap.set(_edgeStack.top(), _compNum); | 
|---|
| 602 | _edgeStack.pop(); | 
|---|
| 603 | } | 
|---|
| 604 | _compMap.set(edge, _compNum); | 
|---|
| 605 | _edgeStack.pop(); | 
|---|
| 606 | ++_compNum; | 
|---|
| 607 | } | 
|---|
| 608 | } | 
|---|
| 609 |  | 
|---|
| 610 | private: | 
|---|
| 611 | const Graph& _graph; | 
|---|
| 612 | EdgeMap& _compMap; | 
|---|
| 613 | int& _compNum; | 
|---|
| 614 |  | 
|---|
| 615 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 616 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 617 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 618 | std::stack<UEdge> _edgeStack; | 
|---|
| 619 | int _num; | 
|---|
| 620 | }; | 
|---|
| 621 |  | 
|---|
| 622 |  | 
|---|
| 623 | template <typename Graph, typename NodeMap> | 
|---|
| 624 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> { | 
|---|
| 625 | public: | 
|---|
| 626 | typedef typename Graph::Node Node; | 
|---|
| 627 | typedef typename Graph::Edge Edge; | 
|---|
| 628 | typedef typename Graph::UEdge UEdge; | 
|---|
| 629 |  | 
|---|
| 630 | BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap, | 
|---|
| 631 | int& cutNum) | 
|---|
| 632 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), | 
|---|
| 633 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 634 |  | 
|---|
| 635 | void start(const Node& node) { | 
|---|
| 636 | _predMap.set(node, INVALID); | 
|---|
| 637 | rootCut = false; | 
|---|
| 638 | } | 
|---|
| 639 |  | 
|---|
| 640 | void reach(const Node& node) { | 
|---|
| 641 | _numMap.set(node, _num); | 
|---|
| 642 | _retMap.set(node, _num); | 
|---|
| 643 | ++_num; | 
|---|
| 644 | } | 
|---|
| 645 |  | 
|---|
| 646 | void discover(const Edge& edge) { | 
|---|
| 647 | _predMap.set(_graph.target(edge), _graph.source(edge)); | 
|---|
| 648 | } | 
|---|
| 649 |  | 
|---|
| 650 | void examine(const Edge& edge) { | 
|---|
| 651 | if (_graph.source(edge) == _graph.target(edge) && | 
|---|
| 652 | _graph.direction(edge)) { | 
|---|
| 653 | if (!_cutMap[_graph.source(edge)]) { | 
|---|
| 654 | _cutMap.set(_graph.source(edge), true); | 
|---|
| 655 | ++_cutNum; | 
|---|
| 656 | } | 
|---|
| 657 | return; | 
|---|
| 658 | } | 
|---|
| 659 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; | 
|---|
| 660 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { | 
|---|
| 661 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); | 
|---|
| 662 | } | 
|---|
| 663 | } | 
|---|
| 664 |  | 
|---|
| 665 | void backtrack(const Edge& edge) { | 
|---|
| 666 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 667 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 668 | } | 
|---|
| 669 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { | 
|---|
| 670 | if (_predMap[_graph.source(edge)] != INVALID) { | 
|---|
| 671 | if (!_cutMap[_graph.source(edge)]) { | 
|---|
| 672 | _cutMap.set(_graph.source(edge), true); | 
|---|
| 673 | ++_cutNum; | 
|---|
| 674 | } | 
|---|
| 675 | } else if (rootCut) { | 
|---|
| 676 | if (!_cutMap[_graph.source(edge)]) { | 
|---|
| 677 | _cutMap.set(_graph.source(edge), true); | 
|---|
| 678 | ++_cutNum; | 
|---|
| 679 | } | 
|---|
| 680 | } else { | 
|---|
| 681 | rootCut = true; | 
|---|
| 682 | } | 
|---|
| 683 | } | 
|---|
| 684 | } | 
|---|
| 685 |  | 
|---|
| 686 | private: | 
|---|
| 687 | const Graph& _graph; | 
|---|
| 688 | NodeMap& _cutMap; | 
|---|
| 689 | int& _cutNum; | 
|---|
| 690 |  | 
|---|
| 691 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 692 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 693 | typename Graph::template NodeMap<Node> _predMap; | 
|---|
| 694 | std::stack<UEdge> _edgeStack; | 
|---|
| 695 | int _num; | 
|---|
| 696 | bool rootCut; | 
|---|
| 697 | }; | 
|---|
| 698 |  | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | template <typename UGraph> | 
|---|
| 702 | int countBiNodeConnectedComponents(const UGraph& graph); | 
|---|
| 703 |  | 
|---|
| 704 | /// \ingroup topology | 
|---|
| 705 | /// | 
|---|
| 706 | /// \brief Checks the graph is bi-node-connected. | 
|---|
| 707 | /// | 
|---|
| 708 | /// This function checks that the undirected graph is bi-node-connected | 
|---|
| 709 | /// graph. The graph is bi-node-connected if any two undirected edge is | 
|---|
| 710 | /// on same circle. | 
|---|
| 711 | /// | 
|---|
| 712 | /// \param graph The graph. | 
|---|
| 713 | /// \return %True when the graph bi-node-connected. | 
|---|
| 714 | /// \todo Make it faster. | 
|---|
| 715 | template <typename UGraph> | 
|---|
| 716 | bool biNodeConnected(const UGraph& graph) { | 
|---|
| 717 | return countBiNodeConnectedComponents(graph) == 1; | 
|---|
| 718 | } | 
|---|
| 719 |  | 
|---|
| 720 | /// \ingroup topology | 
|---|
| 721 | /// | 
|---|
| 722 | /// \brief Count the biconnected components. | 
|---|
| 723 | /// | 
|---|
| 724 | /// This function finds the bi-node-connected components in an undirected | 
|---|
| 725 | /// graph. The biconnected components are the classes of an equivalence | 
|---|
| 726 | /// relation on the undirected edges. Two undirected edge is in relationship | 
|---|
| 727 | /// when they are on same circle. | 
|---|
| 728 | /// | 
|---|
| 729 | /// \param graph The graph. | 
|---|
| 730 | /// \return The number of components. | 
|---|
| 731 | template <typename UGraph> | 
|---|
| 732 | int countBiNodeConnectedComponents(const UGraph& graph) { | 
|---|
| 733 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 734 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 735 |  | 
|---|
| 736 | using namespace _topology_bits; | 
|---|
| 737 |  | 
|---|
| 738 | typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor; | 
|---|
| 739 |  | 
|---|
| 740 | int compNum = 0; | 
|---|
| 741 | Visitor visitor(graph, compNum); | 
|---|
| 742 |  | 
|---|
| 743 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 744 | dfs.init(); | 
|---|
| 745 |  | 
|---|
| 746 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 747 | if (!dfs.reached(it)) { | 
|---|
| 748 | dfs.addSource(it); | 
|---|
| 749 | dfs.start(); | 
|---|
| 750 | } | 
|---|
| 751 | } | 
|---|
| 752 | return compNum; | 
|---|
| 753 | } | 
|---|
| 754 |  | 
|---|
| 755 | /// \ingroup topology | 
|---|
| 756 | /// | 
|---|
| 757 | /// \brief Find the bi-node-connected components. | 
|---|
| 758 | /// | 
|---|
| 759 | /// This function finds the bi-node-connected components in an undirected | 
|---|
| 760 | /// graph. The bi-node-connected components are the classes of an equivalence | 
|---|
| 761 | /// relation on the undirected edges. Two undirected edge are in relationship | 
|---|
| 762 | /// when they are on same circle. | 
|---|
| 763 | /// | 
|---|
| 764 | /// \image html node_biconnected_components.png | 
|---|
| 765 | /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth | 
|---|
| 766 | /// | 
|---|
| 767 | /// \param graph The graph. | 
|---|
| 768 | /// \retval compMap A writable uedge map. The values will be set from 0 | 
|---|
| 769 | /// to the number of the biconnected components minus one. Each values | 
|---|
| 770 | /// of the map will be set exactly once, the values of a certain component | 
|---|
| 771 | /// will be set continuously. | 
|---|
| 772 | /// \return The number of components. | 
|---|
| 773 | /// | 
|---|
| 774 | template <typename UGraph, typename UEdgeMap> | 
|---|
| 775 | int biNodeConnectedComponents(const UGraph& graph, | 
|---|
| 776 | UEdgeMap& compMap) { | 
|---|
| 777 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 778 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 779 | typedef typename UGraph::UEdge UEdge; | 
|---|
| 780 | checkConcept<concept::WriteMap<UEdge, int>, UEdgeMap>(); | 
|---|
| 781 |  | 
|---|
| 782 | using namespace _topology_bits; | 
|---|
| 783 |  | 
|---|
| 784 | typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor; | 
|---|
| 785 |  | 
|---|
| 786 | int compNum = 0; | 
|---|
| 787 | Visitor visitor(graph, compMap, compNum); | 
|---|
| 788 |  | 
|---|
| 789 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 790 | dfs.init(); | 
|---|
| 791 |  | 
|---|
| 792 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 793 | if (!dfs.reached(it)) { | 
|---|
| 794 | dfs.addSource(it); | 
|---|
| 795 | dfs.start(); | 
|---|
| 796 | } | 
|---|
| 797 | } | 
|---|
| 798 | return compNum; | 
|---|
| 799 | } | 
|---|
| 800 |  | 
|---|
| 801 | /// \ingroup topology | 
|---|
| 802 | /// | 
|---|
| 803 | /// \brief Find the bi-node-connected cut nodes. | 
|---|
| 804 | /// | 
|---|
| 805 | /// This function finds the bi-node-connected cut nodes in an undirected | 
|---|
| 806 | /// graph. The bi-node-connected components are the classes of an equivalence | 
|---|
| 807 | /// relation on the undirected edges. Two undirected edges are in | 
|---|
| 808 | /// relationship when they are on same circle. The biconnected components | 
|---|
| 809 | /// are separted by nodes which are the cut nodes of the components. | 
|---|
| 810 | /// | 
|---|
| 811 | /// \param graph The graph. | 
|---|
| 812 | /// \retval cutMap A writable edge map. The values will be set true when | 
|---|
| 813 | /// the node separate two or more components. | 
|---|
| 814 | /// \return The number of the cut nodes. | 
|---|
| 815 | template <typename UGraph, typename NodeMap> | 
|---|
| 816 | int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) { | 
|---|
| 817 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 818 | typedef typename UGraph::Node Node; | 
|---|
| 819 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 820 | checkConcept<concept::WriteMap<Node, bool>, NodeMap>(); | 
|---|
| 821 |  | 
|---|
| 822 | using namespace _topology_bits; | 
|---|
| 823 |  | 
|---|
| 824 | typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor; | 
|---|
| 825 |  | 
|---|
| 826 | int cutNum = 0; | 
|---|
| 827 | Visitor visitor(graph, cutMap, cutNum); | 
|---|
| 828 |  | 
|---|
| 829 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 830 | dfs.init(); | 
|---|
| 831 |  | 
|---|
| 832 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 833 | if (!dfs.reached(it)) { | 
|---|
| 834 | dfs.addSource(it); | 
|---|
| 835 | dfs.start(); | 
|---|
| 836 | } | 
|---|
| 837 | } | 
|---|
| 838 | return cutNum; | 
|---|
| 839 | } | 
|---|
| 840 |  | 
|---|
| 841 | namespace _topology_bits { | 
|---|
| 842 |  | 
|---|
| 843 | template <typename Graph> | 
|---|
| 844 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 845 | public: | 
|---|
| 846 | typedef typename Graph::Node Node; | 
|---|
| 847 | typedef typename Graph::Edge Edge; | 
|---|
| 848 | typedef typename Graph::UEdge UEdge; | 
|---|
| 849 |  | 
|---|
| 850 | CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) | 
|---|
| 851 | : _graph(graph), _compNum(compNum), | 
|---|
| 852 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 853 |  | 
|---|
| 854 | void start(const Node& node) { | 
|---|
| 855 | _predMap.set(node, INVALID); | 
|---|
| 856 | } | 
|---|
| 857 |  | 
|---|
| 858 | void reach(const Node& node) { | 
|---|
| 859 | _numMap.set(node, _num); | 
|---|
| 860 | _retMap.set(node, _num); | 
|---|
| 861 | ++_num; | 
|---|
| 862 | } | 
|---|
| 863 |  | 
|---|
| 864 | void leave(const Node& node) { | 
|---|
| 865 | if (_numMap[node] <= _retMap[node]) { | 
|---|
| 866 | ++_compNum; | 
|---|
| 867 | } | 
|---|
| 868 | } | 
|---|
| 869 |  | 
|---|
| 870 | void discover(const Edge& edge) { | 
|---|
| 871 | _predMap.set(_graph.target(edge), edge); | 
|---|
| 872 | } | 
|---|
| 873 |  | 
|---|
| 874 | void examine(const Edge& edge) { | 
|---|
| 875 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { | 
|---|
| 876 | return; | 
|---|
| 877 | } | 
|---|
| 878 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 879 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 880 | } | 
|---|
| 881 | } | 
|---|
| 882 |  | 
|---|
| 883 | void backtrack(const Edge& edge) { | 
|---|
| 884 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 885 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 886 | } | 
|---|
| 887 | } | 
|---|
| 888 |  | 
|---|
| 889 | private: | 
|---|
| 890 | const Graph& _graph; | 
|---|
| 891 | int& _compNum; | 
|---|
| 892 |  | 
|---|
| 893 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 894 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 895 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 896 | int _num; | 
|---|
| 897 | }; | 
|---|
| 898 |  | 
|---|
| 899 | template <typename Graph, typename NodeMap> | 
|---|
| 900 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 901 | public: | 
|---|
| 902 | typedef typename Graph::Node Node; | 
|---|
| 903 | typedef typename Graph::Edge Edge; | 
|---|
| 904 | typedef typename Graph::UEdge UEdge; | 
|---|
| 905 |  | 
|---|
| 906 | BiEdgeConnectedComponentsVisitor(const Graph& graph, | 
|---|
| 907 | NodeMap& compMap, int &compNum) | 
|---|
| 908 | : _graph(graph), _compMap(compMap), _compNum(compNum), | 
|---|
| 909 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 910 |  | 
|---|
| 911 | void start(const Node& node) { | 
|---|
| 912 | _predMap.set(node, INVALID); | 
|---|
| 913 | } | 
|---|
| 914 |  | 
|---|
| 915 | void reach(const Node& node) { | 
|---|
| 916 | _numMap.set(node, _num); | 
|---|
| 917 | _retMap.set(node, _num); | 
|---|
| 918 | _nodeStack.push(node); | 
|---|
| 919 | ++_num; | 
|---|
| 920 | } | 
|---|
| 921 |  | 
|---|
| 922 | void leave(const Node& node) { | 
|---|
| 923 | if (_numMap[node] <= _retMap[node]) { | 
|---|
| 924 | while (_nodeStack.top() != node) { | 
|---|
| 925 | _compMap.set(_nodeStack.top(), _compNum); | 
|---|
| 926 | _nodeStack.pop(); | 
|---|
| 927 | } | 
|---|
| 928 | _compMap.set(node, _compNum); | 
|---|
| 929 | _nodeStack.pop(); | 
|---|
| 930 | ++_compNum; | 
|---|
| 931 | } | 
|---|
| 932 | } | 
|---|
| 933 |  | 
|---|
| 934 | void discover(const Edge& edge) { | 
|---|
| 935 | _predMap.set(_graph.target(edge), edge); | 
|---|
| 936 | } | 
|---|
| 937 |  | 
|---|
| 938 | void examine(const Edge& edge) { | 
|---|
| 939 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { | 
|---|
| 940 | return; | 
|---|
| 941 | } | 
|---|
| 942 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 943 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 944 | } | 
|---|
| 945 | } | 
|---|
| 946 |  | 
|---|
| 947 | void backtrack(const Edge& edge) { | 
|---|
| 948 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 949 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 950 | } | 
|---|
| 951 | } | 
|---|
| 952 |  | 
|---|
| 953 | private: | 
|---|
| 954 | const Graph& _graph; | 
|---|
| 955 | NodeMap& _compMap; | 
|---|
| 956 | int& _compNum; | 
|---|
| 957 |  | 
|---|
| 958 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 959 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 960 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 961 | std::stack<Node> _nodeStack; | 
|---|
| 962 | int _num; | 
|---|
| 963 | }; | 
|---|
| 964 |  | 
|---|
| 965 |  | 
|---|
| 966 | template <typename Graph, typename EdgeMap> | 
|---|
| 967 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> { | 
|---|
| 968 | public: | 
|---|
| 969 | typedef typename Graph::Node Node; | 
|---|
| 970 | typedef typename Graph::Edge Edge; | 
|---|
| 971 | typedef typename Graph::UEdge UEdge; | 
|---|
| 972 |  | 
|---|
| 973 | BiEdgeConnectedCutEdgesVisitor(const Graph& graph, | 
|---|
| 974 | EdgeMap& cutMap, int &cutNum) | 
|---|
| 975 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), | 
|---|
| 976 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 977 |  | 
|---|
| 978 | void start(const Node& node) { | 
|---|
| 979 | _predMap[node] = INVALID; | 
|---|
| 980 | } | 
|---|
| 981 |  | 
|---|
| 982 | void reach(const Node& node) { | 
|---|
| 983 | _numMap.set(node, _num); | 
|---|
| 984 | _retMap.set(node, _num); | 
|---|
| 985 | ++_num; | 
|---|
| 986 | } | 
|---|
| 987 |  | 
|---|
| 988 | void leave(const Node& node) { | 
|---|
| 989 | if (_numMap[node] <= _retMap[node]) { | 
|---|
| 990 | if (_predMap[node] != INVALID) { | 
|---|
| 991 | _cutMap.set(_predMap[node], true); | 
|---|
| 992 | ++_cutNum; | 
|---|
| 993 | } | 
|---|
| 994 | } | 
|---|
| 995 | } | 
|---|
| 996 |  | 
|---|
| 997 | void discover(const Edge& edge) { | 
|---|
| 998 | _predMap.set(_graph.target(edge), edge); | 
|---|
| 999 | } | 
|---|
| 1000 |  | 
|---|
| 1001 | void examine(const Edge& edge) { | 
|---|
| 1002 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { | 
|---|
| 1003 | return; | 
|---|
| 1004 | } | 
|---|
| 1005 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 1006 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 1007 | } | 
|---|
| 1008 | } | 
|---|
| 1009 |  | 
|---|
| 1010 | void backtrack(const Edge& edge) { | 
|---|
| 1011 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 1012 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 1013 | } | 
|---|
| 1014 | } | 
|---|
| 1015 |  | 
|---|
| 1016 | private: | 
|---|
| 1017 | const Graph& _graph; | 
|---|
| 1018 | EdgeMap& _cutMap; | 
|---|
| 1019 | int& _cutNum; | 
|---|
| 1020 |  | 
|---|
| 1021 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 1022 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 1023 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 1024 | int _num; | 
|---|
| 1025 | }; | 
|---|
| 1026 | } | 
|---|
| 1027 |  | 
|---|
| 1028 | template <typename UGraph> | 
|---|
| 1029 | int countbiEdgeConnectedComponents(const UGraph& graph); | 
|---|
| 1030 |  | 
|---|
| 1031 | /// \ingroup topology | 
|---|
| 1032 | /// | 
|---|
| 1033 | /// \brief Checks that the graph is bi-edge-connected. | 
|---|
| 1034 | /// | 
|---|
| 1035 | /// This function checks that the graph is bi-edge-connected. The undirected | 
|---|
| 1036 | /// graph is bi-edge-connected when any two nodes are connected with two | 
|---|
| 1037 | /// edge-disjoint paths. | 
|---|
| 1038 | /// | 
|---|
| 1039 | /// \param graph The undirected graph. | 
|---|
| 1040 | /// \return The number of components. | 
|---|
| 1041 | /// \todo Make it faster. | 
|---|
| 1042 | template <typename UGraph> | 
|---|
| 1043 | bool biEdgeConnected(const UGraph& graph) { | 
|---|
| 1044 | return countBiEdgeConnectedComponents(graph) == 1; | 
|---|
| 1045 | } | 
|---|
| 1046 |  | 
|---|
| 1047 | /// \ingroup topology | 
|---|
| 1048 | /// | 
|---|
| 1049 | /// \brief Count the bi-edge-connected components. | 
|---|
| 1050 | /// | 
|---|
| 1051 | /// This function count the bi-edge-connected components in an undirected | 
|---|
| 1052 | /// graph. The bi-edge-connected components are the classes of an equivalence | 
|---|
| 1053 | /// relation on the nodes. Two nodes are in relationship when they are | 
|---|
| 1054 | /// connected with at least two edge-disjoint paths. | 
|---|
| 1055 | /// | 
|---|
| 1056 | /// \param graph The undirected graph. | 
|---|
| 1057 | /// \return The number of components. | 
|---|
| 1058 | template <typename UGraph> | 
|---|
| 1059 | int countBiEdgeConnectedComponents(const UGraph& graph) { | 
|---|
| 1060 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1061 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1062 |  | 
|---|
| 1063 | using namespace _topology_bits; | 
|---|
| 1064 |  | 
|---|
| 1065 | typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor; | 
|---|
| 1066 |  | 
|---|
| 1067 | int compNum = 0; | 
|---|
| 1068 | Visitor visitor(graph, compNum); | 
|---|
| 1069 |  | 
|---|
| 1070 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 1071 | dfs.init(); | 
|---|
| 1072 |  | 
|---|
| 1073 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1074 | if (!dfs.reached(it)) { | 
|---|
| 1075 | dfs.addSource(it); | 
|---|
| 1076 | dfs.start(); | 
|---|
| 1077 | } | 
|---|
| 1078 | } | 
|---|
| 1079 | return compNum; | 
|---|
| 1080 | } | 
|---|
| 1081 |  | 
|---|
| 1082 | /// \ingroup topology | 
|---|
| 1083 | /// | 
|---|
| 1084 | /// \brief Find the bi-edge-connected components. | 
|---|
| 1085 | /// | 
|---|
| 1086 | /// This function finds the bi-edge-connected components in an undirected | 
|---|
| 1087 | /// graph. The bi-edge-connected components are the classes of an equivalence | 
|---|
| 1088 | /// relation on the nodes. Two nodes are in relationship when they are | 
|---|
| 1089 | /// connected at least two edge-disjoint paths. | 
|---|
| 1090 | /// | 
|---|
| 1091 | /// \image html edge_biconnected_components.png | 
|---|
| 1092 | /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth | 
|---|
| 1093 | /// | 
|---|
| 1094 | /// \param graph The graph. | 
|---|
| 1095 | /// \retval compMap A writable node map. The values will be set from 0 to | 
|---|
| 1096 | /// the number of the biconnected components minus one. Each values | 
|---|
| 1097 | /// of the map will be set exactly once, the values of a certain component | 
|---|
| 1098 | /// will be set continuously. | 
|---|
| 1099 | /// \return The number of components. | 
|---|
| 1100 | /// | 
|---|
| 1101 | template <typename UGraph, typename NodeMap> | 
|---|
| 1102 | int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) { | 
|---|
| 1103 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1104 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1105 | typedef typename UGraph::Node Node; | 
|---|
| 1106 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); | 
|---|
| 1107 |  | 
|---|
| 1108 | using namespace _topology_bits; | 
|---|
| 1109 |  | 
|---|
| 1110 | typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor; | 
|---|
| 1111 |  | 
|---|
| 1112 | int compNum = 0; | 
|---|
| 1113 | Visitor visitor(graph, compMap, compNum); | 
|---|
| 1114 |  | 
|---|
| 1115 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 1116 | dfs.init(); | 
|---|
| 1117 |  | 
|---|
| 1118 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1119 | if (!dfs.reached(it)) { | 
|---|
| 1120 | dfs.addSource(it); | 
|---|
| 1121 | dfs.start(); | 
|---|
| 1122 | } | 
|---|
| 1123 | } | 
|---|
| 1124 | return compNum; | 
|---|
| 1125 | } | 
|---|
| 1126 |  | 
|---|
| 1127 | /// \ingroup topology | 
|---|
| 1128 | /// | 
|---|
| 1129 | /// \brief Find the bi-edge-connected cut edges. | 
|---|
| 1130 | /// | 
|---|
| 1131 | /// This function finds the bi-edge-connected components in an undirected | 
|---|
| 1132 | /// graph. The bi-edge-connected components are the classes of an equivalence | 
|---|
| 1133 | /// relation on the nodes. Two nodes are in relationship when they are | 
|---|
| 1134 | /// connected with at least two edge-disjoint paths. The bi-edge-connected | 
|---|
| 1135 | /// components are separted by edges which are the cut edges of the | 
|---|
| 1136 | /// components. | 
|---|
| 1137 | /// | 
|---|
| 1138 | /// \param graph The graph. | 
|---|
| 1139 | /// \retval cutMap A writable node map. The values will be set true when the | 
|---|
| 1140 | /// edge is a cut edge. | 
|---|
| 1141 | /// \return The number of cut edges. | 
|---|
| 1142 | template <typename UGraph, typename UEdgeMap> | 
|---|
| 1143 | int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) { | 
|---|
| 1144 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1145 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1146 | typedef typename UGraph::UEdge UEdge; | 
|---|
| 1147 | checkConcept<concept::WriteMap<UEdge, bool>, UEdgeMap>(); | 
|---|
| 1148 |  | 
|---|
| 1149 | using namespace _topology_bits; | 
|---|
| 1150 |  | 
|---|
| 1151 | typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor; | 
|---|
| 1152 |  | 
|---|
| 1153 | int cutNum = 0; | 
|---|
| 1154 | Visitor visitor(graph, cutMap, cutNum); | 
|---|
| 1155 |  | 
|---|
| 1156 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 1157 | dfs.init(); | 
|---|
| 1158 |  | 
|---|
| 1159 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1160 | if (!dfs.reached(it)) { | 
|---|
| 1161 | dfs.addSource(it); | 
|---|
| 1162 | dfs.start(); | 
|---|
| 1163 | } | 
|---|
| 1164 | } | 
|---|
| 1165 | return cutNum; | 
|---|
| 1166 | } | 
|---|
| 1167 |  | 
|---|
| 1168 |  | 
|---|
| 1169 | namespace _topology_bits { | 
|---|
| 1170 |  | 
|---|
| 1171 | template <typename Graph, typename IntNodeMap> | 
|---|
| 1172 | class TopologicalSortVisitor : public DfsVisitor<Graph> { | 
|---|
| 1173 | public: | 
|---|
| 1174 | typedef typename Graph::Node Node; | 
|---|
| 1175 | typedef typename Graph::Edge edge; | 
|---|
| 1176 |  | 
|---|
| 1177 | TopologicalSortVisitor(IntNodeMap& order, int num) | 
|---|
| 1178 | : _order(order), _num(num) {} | 
|---|
| 1179 |  | 
|---|
| 1180 | void leave(const Node& node) { | 
|---|
| 1181 | _order.set(node, --_num); | 
|---|
| 1182 | } | 
|---|
| 1183 |  | 
|---|
| 1184 | private: | 
|---|
| 1185 | IntNodeMap& _order; | 
|---|
| 1186 | int _num; | 
|---|
| 1187 | }; | 
|---|
| 1188 |  | 
|---|
| 1189 | } | 
|---|
| 1190 |  | 
|---|
| 1191 | /// \ingroup topology | 
|---|
| 1192 | /// | 
|---|
| 1193 | /// \brief Sort the nodes of a DAG into topolgical order. | 
|---|
| 1194 | /// | 
|---|
| 1195 | /// Sort the nodes of a DAG into topolgical order. | 
|---|
| 1196 | /// | 
|---|
| 1197 | /// \param graph The graph. It should be directed and acyclic. | 
|---|
| 1198 | /// \retval order A writable node map. The values will be set from 0 to | 
|---|
| 1199 | /// the number of the nodes in the graph minus one. Each values of the map | 
|---|
| 1200 | /// will be set exactly once, the values  will be set descending order. | 
|---|
| 1201 | /// | 
|---|
| 1202 | /// \see checkedTopologicalSort | 
|---|
| 1203 | /// \see dag | 
|---|
| 1204 | template <typename Graph, typename NodeMap> | 
|---|
| 1205 | void topologicalSort(const Graph& graph, NodeMap& order) { | 
|---|
| 1206 | using namespace _topology_bits; | 
|---|
| 1207 |  | 
|---|
| 1208 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 1209 | checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>(); | 
|---|
| 1210 |  | 
|---|
| 1211 | typedef typename Graph::Node Node; | 
|---|
| 1212 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 1213 | typedef typename Graph::Edge Edge; | 
|---|
| 1214 |  | 
|---|
| 1215 | TopologicalSortVisitor<Graph, NodeMap> | 
|---|
| 1216 | visitor(order, countNodes(graph)); | 
|---|
| 1217 |  | 
|---|
| 1218 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > | 
|---|
| 1219 | dfs(graph, visitor); | 
|---|
| 1220 |  | 
|---|
| 1221 | dfs.init(); | 
|---|
| 1222 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1223 | if (!dfs.reached(it)) { | 
|---|
| 1224 | dfs.addSource(it); | 
|---|
| 1225 | dfs.start(); | 
|---|
| 1226 | } | 
|---|
| 1227 | } | 
|---|
| 1228 | } | 
|---|
| 1229 |  | 
|---|
| 1230 | /// \ingroup topology | 
|---|
| 1231 | /// | 
|---|
| 1232 | /// \brief Sort the nodes of a DAG into topolgical order. | 
|---|
| 1233 | /// | 
|---|
| 1234 | /// Sort the nodes of a DAG into topolgical order. It also checks | 
|---|
| 1235 | /// that the given graph is DAG. | 
|---|
| 1236 | /// | 
|---|
| 1237 | /// \param graph The graph. It should be directed and acyclic. | 
|---|
| 1238 | /// \retval order A readable - writable node map. The values will be set | 
|---|
| 1239 | /// from 0 to the number of the nodes in the graph minus one. Each values | 
|---|
| 1240 | /// of the map will be set exactly once, the values will be set descending | 
|---|
| 1241 | /// order. | 
|---|
| 1242 | /// \return %False when the graph is not DAG. | 
|---|
| 1243 | /// | 
|---|
| 1244 | /// \see topologicalSort | 
|---|
| 1245 | /// \see dag | 
|---|
| 1246 | template <typename Graph, typename NodeMap> | 
|---|
| 1247 | bool checkedTopologicalSort(const Graph& graph, NodeMap& order) { | 
|---|
| 1248 | using namespace _topology_bits; | 
|---|
| 1249 |  | 
|---|
| 1250 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 1251 | checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>(); | 
|---|
| 1252 |  | 
|---|
| 1253 | typedef typename Graph::Node Node; | 
|---|
| 1254 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 1255 | typedef typename Graph::Edge Edge; | 
|---|
| 1256 |  | 
|---|
| 1257 | order = constMap<Node, int, -1>(); | 
|---|
| 1258 |  | 
|---|
| 1259 | TopologicalSortVisitor<Graph, NodeMap> | 
|---|
| 1260 | visitor(order, countNodes(graph)); | 
|---|
| 1261 |  | 
|---|
| 1262 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > | 
|---|
| 1263 | dfs(graph, visitor); | 
|---|
| 1264 |  | 
|---|
| 1265 | dfs.init(); | 
|---|
| 1266 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1267 | if (!dfs.reached(it)) { | 
|---|
| 1268 | dfs.addSource(it); | 
|---|
| 1269 | while (!dfs.emptyQueue()) { | 
|---|
| 1270 | Edge edge = dfs.nextEdge(); | 
|---|
| 1271 | Node target = graph.target(edge); | 
|---|
| 1272 | if (dfs.reached(target) && order[target] == -1) { | 
|---|
| 1273 | return false; | 
|---|
| 1274 | } | 
|---|
| 1275 | dfs.processNextEdge(); | 
|---|
| 1276 | } | 
|---|
| 1277 | } | 
|---|
| 1278 | } | 
|---|
| 1279 | return true; | 
|---|
| 1280 | } | 
|---|
| 1281 |  | 
|---|
| 1282 | /// \ingroup topology | 
|---|
| 1283 | /// | 
|---|
| 1284 | /// \brief Check that the given directed graph is a DAG. | 
|---|
| 1285 | /// | 
|---|
| 1286 | /// Check that the given directed graph is a DAG. The DAG is | 
|---|
| 1287 | /// an Directed Acyclic Graph. | 
|---|
| 1288 | /// \return %False when the graph is not DAG. | 
|---|
| 1289 | /// \see acyclic | 
|---|
| 1290 | template <typename Graph> | 
|---|
| 1291 | bool dag(const Graph& graph) { | 
|---|
| 1292 |  | 
|---|
| 1293 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 1294 |  | 
|---|
| 1295 | typedef typename Graph::Node Node; | 
|---|
| 1296 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 1297 | typedef typename Graph::Edge Edge; | 
|---|
| 1298 |  | 
|---|
| 1299 | typedef typename Graph::template NodeMap<bool> ProcessedMap; | 
|---|
| 1300 |  | 
|---|
| 1301 | typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>:: | 
|---|
| 1302 | Create dfs(graph); | 
|---|
| 1303 |  | 
|---|
| 1304 | ProcessedMap processed(graph); | 
|---|
| 1305 | dfs.processedMap(processed); | 
|---|
| 1306 |  | 
|---|
| 1307 | dfs.init(); | 
|---|
| 1308 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1309 | if (!dfs.reached(it)) { | 
|---|
| 1310 | dfs.addSource(it); | 
|---|
| 1311 | while (!dfs.emptyQueue()) { | 
|---|
| 1312 | Edge edge = dfs.nextEdge(); | 
|---|
| 1313 | Node target = graph.target(edge); | 
|---|
| 1314 | if (dfs.reached(target) && !processed[target]) { | 
|---|
| 1315 | return false; | 
|---|
| 1316 | } | 
|---|
| 1317 | dfs.processNextEdge(); | 
|---|
| 1318 | } | 
|---|
| 1319 | } | 
|---|
| 1320 | } | 
|---|
| 1321 | return true; | 
|---|
| 1322 | } | 
|---|
| 1323 |  | 
|---|
| 1324 | /// \ingroup topology | 
|---|
| 1325 | /// | 
|---|
| 1326 | /// \brief Check that the given undirected graph is acyclic. | 
|---|
| 1327 | /// | 
|---|
| 1328 | /// Check that the given undirected graph acyclic. | 
|---|
| 1329 | /// \param graph The undirected graph. | 
|---|
| 1330 | /// \return %True when there is no circle in the graph. | 
|---|
| 1331 | /// \see dag | 
|---|
| 1332 | template <typename UGraph> | 
|---|
| 1333 | bool acyclic(const UGraph& graph) { | 
|---|
| 1334 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1335 | typedef typename UGraph::Node Node; | 
|---|
| 1336 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1337 | typedef typename UGraph::Edge Edge; | 
|---|
| 1338 | Dfs<UGraph> dfs(graph); | 
|---|
| 1339 | dfs.init(); | 
|---|
| 1340 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1341 | if (!dfs.reached(it)) { | 
|---|
| 1342 | dfs.addSource(it); | 
|---|
| 1343 | while (!dfs.emptyQueue()) { | 
|---|
| 1344 | Edge edge = dfs.nextEdge(); | 
|---|
| 1345 | Node source = graph.source(edge); | 
|---|
| 1346 | Node target = graph.target(edge); | 
|---|
| 1347 | if (dfs.reached(target) && | 
|---|
| 1348 | dfs.predEdge(source) != graph.oppositeEdge(edge)) { | 
|---|
| 1349 | return false; | 
|---|
| 1350 | } | 
|---|
| 1351 | dfs.processNextEdge(); | 
|---|
| 1352 | } | 
|---|
| 1353 | } | 
|---|
| 1354 | } | 
|---|
| 1355 | return true; | 
|---|
| 1356 | } | 
|---|
| 1357 |  | 
|---|
| 1358 | /// \ingroup topology | 
|---|
| 1359 | /// | 
|---|
| 1360 | /// \brief Check that the given undirected graph is tree. | 
|---|
| 1361 | /// | 
|---|
| 1362 | /// Check that the given undirected graph is tree. | 
|---|
| 1363 | /// \param graph The undirected graph. | 
|---|
| 1364 | /// \return %True when the graph is acyclic and connected. | 
|---|
| 1365 | template <typename UGraph> | 
|---|
| 1366 | bool tree(const UGraph& graph) { | 
|---|
| 1367 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1368 | typedef typename UGraph::Node Node; | 
|---|
| 1369 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1370 | typedef typename UGraph::Edge Edge; | 
|---|
| 1371 | Dfs<UGraph> dfs(graph); | 
|---|
| 1372 | dfs.init(); | 
|---|
| 1373 | dfs.addSource(NodeIt(graph)); | 
|---|
| 1374 | while (!dfs.emptyQueue()) { | 
|---|
| 1375 | Edge edge = dfs.nextEdge(); | 
|---|
| 1376 | Node source = graph.source(edge); | 
|---|
| 1377 | Node target = graph.target(edge); | 
|---|
| 1378 | if (dfs.reached(target) && | 
|---|
| 1379 | dfs.predEdge(source) != graph.oppositeEdge(edge)) { | 
|---|
| 1380 | return false; | 
|---|
| 1381 | } | 
|---|
| 1382 | dfs.processNextEdge(); | 
|---|
| 1383 | } | 
|---|
| 1384 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1385 | if (!dfs.reached(it)) { | 
|---|
| 1386 | return false; | 
|---|
| 1387 | } | 
|---|
| 1388 | } | 
|---|
| 1389 | return true; | 
|---|
| 1390 | } | 
|---|
| 1391 |  | 
|---|
| 1392 | /// \ingroup topology | 
|---|
| 1393 | /// | 
|---|
| 1394 | /// \brief Check if the given undirected graph is bipartite or not | 
|---|
| 1395 | /// | 
|---|
| 1396 | /// The function checks if the given undirected \c graph graph is bipartite | 
|---|
| 1397 | /// or not. The \ref Bfs algorithm is used to calculate the result. | 
|---|
| 1398 | /// \param graph The undirected graph. | 
|---|
| 1399 | /// \return %True if \c graph is bipartite, %false otherwise. | 
|---|
| 1400 | /// \sa bipartitePartitions | 
|---|
| 1401 | /// | 
|---|
| 1402 | /// \author Balazs Attila Mihaly | 
|---|
| 1403 | template<typename UGraph> | 
|---|
| 1404 | inline bool bipartite(const UGraph &graph){ | 
|---|
| 1405 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1406 |  | 
|---|
| 1407 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1408 | typedef typename UGraph::EdgeIt EdgeIt; | 
|---|
| 1409 |  | 
|---|
| 1410 | Bfs<UGraph> bfs(graph); | 
|---|
| 1411 | bfs.init(); | 
|---|
| 1412 | for(NodeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1413 | if(!bfs.reached(i)){ | 
|---|
| 1414 | bfs.run(i); | 
|---|
| 1415 | } | 
|---|
| 1416 | } | 
|---|
| 1417 | for(EdgeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1418 | if(bfs.dist(graph.source(i))==bfs.dist(graph.target(i)))return false; | 
|---|
| 1419 | } | 
|---|
| 1420 | return true; | 
|---|
| 1421 | } | 
|---|
| 1422 |  | 
|---|
| 1423 | /// \ingroup topology | 
|---|
| 1424 | /// | 
|---|
| 1425 | /// \brief Check if the given undirected graph is bipartite or not | 
|---|
| 1426 | /// | 
|---|
| 1427 | /// The function checks if the given undirected graph is bipartite | 
|---|
| 1428 | /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result. | 
|---|
| 1429 | /// During the execution, the \c partMap will be set as the two | 
|---|
| 1430 | /// partitions of the graph. | 
|---|
| 1431 | /// \param graph The undirected graph. | 
|---|
| 1432 | /// \retval partMap A writable bool map of nodes. It will be set as the | 
|---|
| 1433 | /// two partitions of the graph. | 
|---|
| 1434 | /// \return %True if \c graph is bipartite, %false otherwise. | 
|---|
| 1435 | /// | 
|---|
| 1436 | /// \author Balazs Attila Mihaly | 
|---|
| 1437 | /// | 
|---|
| 1438 | /// \image html bipartite_partitions.png | 
|---|
| 1439 | /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth | 
|---|
| 1440 | template<typename UGraph, typename NodeMap> | 
|---|
| 1441 | inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){ | 
|---|
| 1442 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1443 |  | 
|---|
| 1444 | typedef typename UGraph::Node Node; | 
|---|
| 1445 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1446 | typedef typename UGraph::EdgeIt EdgeIt; | 
|---|
| 1447 |  | 
|---|
| 1448 | Bfs<UGraph> bfs(graph); | 
|---|
| 1449 | bfs.init(); | 
|---|
| 1450 | for(NodeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1451 | if(!bfs.reached(i)){ | 
|---|
| 1452 | bfs.addSource(i); | 
|---|
| 1453 | for(Node j=bfs.processNextNode();!bfs.emptyQueue(); | 
|---|
| 1454 | j=bfs.processNextNode()){ | 
|---|
| 1455 | partMap.set(j,bfs.dist(j)%2==0); | 
|---|
| 1456 | } | 
|---|
| 1457 | } | 
|---|
| 1458 | } | 
|---|
| 1459 | for(EdgeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1460 | if(bfs.dist(graph.source(i)) == bfs.dist(graph.target(i)))return false; | 
|---|
| 1461 | } | 
|---|
| 1462 | return true; | 
|---|
| 1463 | } | 
|---|
| 1464 |  | 
|---|
| 1465 | } //namespace lemon | 
|---|
| 1466 |  | 
|---|
| 1467 | #endif //LEMON_TOPOLOGY_H | 
|---|