| 1 | /* -*- C++ -*- | 
|---|
| 2 | * lemon/topology.h - Part of LEMON, a generic C++ optimization library | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 6 | * | 
|---|
| 7 | * Permission to use, modify and distribute this software is granted | 
|---|
| 8 | * provided that this copyright notice appears in all copies. For | 
|---|
| 9 | * precise terms see the accompanying LICENSE file. | 
|---|
| 10 | * | 
|---|
| 11 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 12 | * express or implied, and with no claim as to its suitability for any | 
|---|
| 13 | * purpose. | 
|---|
| 14 | * | 
|---|
| 15 | */ | 
|---|
| 16 |  | 
|---|
| 17 | #ifndef LEMON_TOPOLOGY_H | 
|---|
| 18 | #define LEMON_TOPOLOGY_H | 
|---|
| 19 |  | 
|---|
| 20 | #include <lemon/dfs.h> | 
|---|
| 21 | #include <lemon/graph_utils.h> | 
|---|
| 22 |  | 
|---|
| 23 | #include <lemon/concept/graph.h> | 
|---|
| 24 | #include <lemon/concept/undir_graph.h> | 
|---|
| 25 | #include <lemon/concept_check.h> | 
|---|
| 26 |  | 
|---|
| 27 | /// \ingroup flowalgs | 
|---|
| 28 | /// \file | 
|---|
| 29 | /// \brief Topology related algorithms | 
|---|
| 30 | /// | 
|---|
| 31 | /// Topology related algorithms | 
|---|
| 32 |  | 
|---|
| 33 | namespace lemon { | 
|---|
| 34 |  | 
|---|
| 35 | namespace _topology_bits { | 
|---|
| 36 |  | 
|---|
| 37 | template <typename NodeMap> | 
|---|
| 38 | class BackCounterMap { | 
|---|
| 39 | public: | 
|---|
| 40 | BackCounterMap(NodeMap& _nodeMap, int _counter) | 
|---|
| 41 | : nodeMap(_nodeMap), counter(_counter) {} | 
|---|
| 42 |  | 
|---|
| 43 | void set(typename NodeMap::Key key, bool val) { | 
|---|
| 44 | if (val) { | 
|---|
| 45 | nodeMap.set(key, --counter); | 
|---|
| 46 | } else { | 
|---|
| 47 | nodeMap.set(key, -1); | 
|---|
| 48 | } | 
|---|
| 49 | } | 
|---|
| 50 |  | 
|---|
| 51 | bool operator[](typename NodeMap::Key key) const { | 
|---|
| 52 | return nodeMap[key] != -1; | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | private: | 
|---|
| 56 | NodeMap& nodeMap; | 
|---|
| 57 | int counter; | 
|---|
| 58 | }; | 
|---|
| 59 | } | 
|---|
| 60 |  | 
|---|
| 61 | // \todo Its to special output // ReadWriteMap | 
|---|
| 62 | template <typename Graph, typename NodeMap> | 
|---|
| 63 | bool topological_sort(const Graph& graph, NodeMap& nodeMap) { | 
|---|
| 64 | using namespace _topology_bits; | 
|---|
| 65 |  | 
|---|
| 66 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 67 | checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>(); | 
|---|
| 68 |  | 
|---|
| 69 | typedef typename Graph::Node Node; | 
|---|
| 70 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 71 | typedef typename Graph::Edge Edge; | 
|---|
| 72 |  | 
|---|
| 73 | typedef BackCounterMap<NodeMap> ProcessedMap; | 
|---|
| 74 |  | 
|---|
| 75 | typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>:: | 
|---|
| 76 | Create dfs(graph); | 
|---|
| 77 |  | 
|---|
| 78 | ProcessedMap processed(nodeMap, countNodes(graph)); | 
|---|
| 79 |  | 
|---|
| 80 | dfs.processedMap(processed); | 
|---|
| 81 | dfs.init(); | 
|---|
| 82 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 83 | if (!dfs.reached(it)) { | 
|---|
| 84 | dfs.addSource(it); | 
|---|
| 85 | while (!dfs.emptyQueue()) { | 
|---|
| 86 | Edge edge = dfs.nextEdge(); | 
|---|
| 87 | Node target = graph.target(edge); | 
|---|
| 88 | if (dfs.reached(target) && !processed[target]) { | 
|---|
| 89 | return false; | 
|---|
| 90 | } | 
|---|
| 91 | dfs.processNextEdge(); | 
|---|
| 92 | } | 
|---|
| 93 | } | 
|---|
| 94 | } | 
|---|
| 95 | return true; | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 | /// \brief Check that the given graph is a DAG. | 
|---|
| 99 | /// | 
|---|
| 100 | /// Check that the given graph is a DAG. The DAG is | 
|---|
| 101 | /// an Directed Acyclic Graph. | 
|---|
| 102 | template <typename Graph> | 
|---|
| 103 | bool dag(const Graph& graph) { | 
|---|
| 104 |  | 
|---|
| 105 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 106 |  | 
|---|
| 107 | typedef typename Graph::Node Node; | 
|---|
| 108 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 109 | typedef typename Graph::Edge Edge; | 
|---|
| 110 |  | 
|---|
| 111 | typedef typename Graph::template NodeMap<bool> ProcessedMap; | 
|---|
| 112 |  | 
|---|
| 113 | typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>:: | 
|---|
| 114 | Create dfs(graph); | 
|---|
| 115 |  | 
|---|
| 116 | ProcessedMap processed(graph); | 
|---|
| 117 | dfs.processedMap(processed); | 
|---|
| 118 |  | 
|---|
| 119 | dfs.init(); | 
|---|
| 120 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 121 | if (!dfs.reached(it)) { | 
|---|
| 122 | dfs.addSource(it); | 
|---|
| 123 | while (!dfs.emptyQueue()) { | 
|---|
| 124 | Edge edge = dfs.nextEdge(); | 
|---|
| 125 | Node target = graph.target(edge); | 
|---|
| 126 | if (dfs.reached(target) && !processed[target]) { | 
|---|
| 127 | return false; | 
|---|
| 128 | } | 
|---|
| 129 | dfs.processNextEdge(); | 
|---|
| 130 | } | 
|---|
| 131 | } | 
|---|
| 132 | } | 
|---|
| 133 | return true; | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | // UndirGraph algorithms | 
|---|
| 137 |  | 
|---|
| 138 | /// \brief Check that the given undirected graph is connected. | 
|---|
| 139 | /// | 
|---|
| 140 | /// Check that the given undirected graph connected. | 
|---|
| 141 | template <typename UndirGraph> | 
|---|
| 142 | bool connected(const UndirGraph& graph) { | 
|---|
| 143 | checkConcept<concept::UndirGraph, UndirGraph>(); | 
|---|
| 144 | typedef typename UndirGraph::NodeIt NodeIt; | 
|---|
| 145 | if (NodeIt(graph) == INVALID) return false; | 
|---|
| 146 | Dfs<UndirGraph> dfs(graph); | 
|---|
| 147 | dfs.run(NodeIt(graph)); | 
|---|
| 148 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 149 | if (!dfs.reached(it)) { | 
|---|
| 150 | return false; | 
|---|
| 151 | } | 
|---|
| 152 | } | 
|---|
| 153 | return true; | 
|---|
| 154 | } | 
|---|
| 155 |  | 
|---|
| 156 | /// \brief Check that the given undirected graph is acyclic. | 
|---|
| 157 | /// | 
|---|
| 158 | /// Check that the given undirected graph acyclic. | 
|---|
| 159 | template <typename UndirGraph> | 
|---|
| 160 | bool acyclic(const UndirGraph& graph) { | 
|---|
| 161 | checkConcept<concept::UndirGraph, UndirGraph>(); | 
|---|
| 162 | typedef typename UndirGraph::Node Node; | 
|---|
| 163 | typedef typename UndirGraph::NodeIt NodeIt; | 
|---|
| 164 | typedef typename UndirGraph::Edge Edge; | 
|---|
| 165 | Dfs<UndirGraph> dfs(graph); | 
|---|
| 166 | dfs.init(); | 
|---|
| 167 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 168 | if (!dfs.reached(it)) { | 
|---|
| 169 | dfs.addSource(it); | 
|---|
| 170 | while (!dfs.emptyQueue()) { | 
|---|
| 171 | Edge edge = dfs.nextEdge(); | 
|---|
| 172 | Node source = graph.source(edge); | 
|---|
| 173 | Node target = graph.target(edge); | 
|---|
| 174 | if (dfs.reached(target) && | 
|---|
| 175 | dfs.pred(source) != graph.oppositeEdge(edge)) { | 
|---|
| 176 | return false; | 
|---|
| 177 | } | 
|---|
| 178 | dfs.processNextEdge(); | 
|---|
| 179 | } | 
|---|
| 180 | } | 
|---|
| 181 | } | 
|---|
| 182 | return true; | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 | /// \brief Check that the given undirected graph is tree. | 
|---|
| 186 | /// | 
|---|
| 187 | /// Check that the given undirected graph is tree. | 
|---|
| 188 | template <typename UndirGraph> | 
|---|
| 189 | bool tree(const UndirGraph& graph) { | 
|---|
| 190 | checkConcept<concept::UndirGraph, UndirGraph>(); | 
|---|
| 191 | typedef typename UndirGraph::Node Node; | 
|---|
| 192 | typedef typename UndirGraph::NodeIt NodeIt; | 
|---|
| 193 | typedef typename UndirGraph::Edge Edge; | 
|---|
| 194 | if (NodeIt(graph) == INVALID) return false; | 
|---|
| 195 | Dfs<UndirGraph> dfs(graph); | 
|---|
| 196 | dfs.init(); | 
|---|
| 197 | dfs.addSource(NodeIt(graph)); | 
|---|
| 198 | while (!dfs.emptyQueue()) { | 
|---|
| 199 | Edge edge = dfs.nextEdge(); | 
|---|
| 200 | Node source = graph.source(edge); | 
|---|
| 201 | Node target = graph.target(edge); | 
|---|
| 202 | if (dfs.reached(target) && | 
|---|
| 203 | dfs.pred(source) != graph.oppositeEdge(edge)) { | 
|---|
| 204 | return false; | 
|---|
| 205 | } | 
|---|
| 206 | dfs.processNextEdge(); | 
|---|
| 207 | } | 
|---|
| 208 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 209 | if (!dfs.reached(it)) { | 
|---|
| 210 | return false; | 
|---|
| 211 | } | 
|---|
| 212 | } | 
|---|
| 213 | return true; | 
|---|
| 214 | } | 
|---|
| 215 |  | 
|---|
| 216 |  | 
|---|
| 217 | } //namespace lemon | 
|---|
| 218 |  | 
|---|
| 219 | #endif //LEMON_TOPOLOGY_H | 
|---|