| 1 | /* -*- C++ -*- | 
|---|
| 2 | * | 
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library | 
|---|
| 4 | * | 
|---|
| 5 | * Copyright (C) 2003-2006 | 
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport | 
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). | 
|---|
| 8 | * | 
|---|
| 9 | * Permission to use, modify and distribute this software is granted | 
|---|
| 10 | * provided that this copyright notice appears in all copies. For | 
|---|
| 11 | * precise terms see the accompanying LICENSE file. | 
|---|
| 12 | * | 
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, | 
|---|
| 14 | * express or implied, and with no claim as to its suitability for any | 
|---|
| 15 | * purpose. | 
|---|
| 16 | * | 
|---|
| 17 | */ | 
|---|
| 18 |  | 
|---|
| 19 | #ifndef LEMON_TOPOLOGY_H | 
|---|
| 20 | #define LEMON_TOPOLOGY_H | 
|---|
| 21 |  | 
|---|
| 22 | #include <lemon/dfs.h> | 
|---|
| 23 | #include <lemon/bfs.h> | 
|---|
| 24 | #include <lemon/graph_utils.h> | 
|---|
| 25 | #include <lemon/graph_adaptor.h> | 
|---|
| 26 | #include <lemon/maps.h> | 
|---|
| 27 |  | 
|---|
| 28 | #include <lemon/concept/graph.h> | 
|---|
| 29 | #include <lemon/concept/ugraph.h> | 
|---|
| 30 | #include <lemon/concept_check.h> | 
|---|
| 31 |  | 
|---|
| 32 | #include <lemon/bin_heap.h> | 
|---|
| 33 | #include <lemon/linear_heap.h> | 
|---|
| 34 |  | 
|---|
| 35 | #include <stack> | 
|---|
| 36 | #include <functional> | 
|---|
| 37 |  | 
|---|
| 38 | /// \ingroup topology | 
|---|
| 39 | /// \file | 
|---|
| 40 | /// \brief Topology related algorithms | 
|---|
| 41 | /// | 
|---|
| 42 | /// Topology related algorithms | 
|---|
| 43 |  | 
|---|
| 44 | namespace lemon { | 
|---|
| 45 |  | 
|---|
| 46 | /// \ingroup topology | 
|---|
| 47 | /// | 
|---|
| 48 | /// \brief Check that the given undirected graph is connected. | 
|---|
| 49 | /// | 
|---|
| 50 | /// Check that the given undirected graph connected. | 
|---|
| 51 | /// \param graph The undirected graph. | 
|---|
| 52 | /// \return %True when there is path between any two nodes in the graph. | 
|---|
| 53 | /// \note By definition, the empty graph is connected. | 
|---|
| 54 | template <typename UGraph> | 
|---|
| 55 | bool connected(const UGraph& graph) { | 
|---|
| 56 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 57 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 58 | if (NodeIt(graph) == INVALID) return true; | 
|---|
| 59 | Dfs<UGraph> dfs(graph); | 
|---|
| 60 | dfs.run(NodeIt(graph)); | 
|---|
| 61 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 62 | if (!dfs.reached(it)) { | 
|---|
| 63 | return false; | 
|---|
| 64 | } | 
|---|
| 65 | } | 
|---|
| 66 | return true; | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | /// \ingroup topology | 
|---|
| 70 | /// | 
|---|
| 71 | /// \brief Count the number of connected components of an undirected graph | 
|---|
| 72 | /// | 
|---|
| 73 | /// Count the number of connected components of an undirected graph | 
|---|
| 74 | /// | 
|---|
| 75 | /// \param graph The graph. It should be undirected. | 
|---|
| 76 | /// \return The number of components | 
|---|
| 77 | /// \note By definition, the empty graph consists | 
|---|
| 78 | /// of zero connected components. | 
|---|
| 79 | template <typename UGraph> | 
|---|
| 80 | int countConnectedComponents(const UGraph &graph) { | 
|---|
| 81 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 82 | typedef typename UGraph::Node Node; | 
|---|
| 83 | typedef typename UGraph::Edge Edge; | 
|---|
| 84 |  | 
|---|
| 85 | typedef NullMap<Node, Edge> PredMap; | 
|---|
| 86 | typedef NullMap<Node, int> DistMap; | 
|---|
| 87 |  | 
|---|
| 88 | int compNum = 0; | 
|---|
| 89 | typename Bfs<UGraph>:: | 
|---|
| 90 | template DefPredMap<PredMap>:: | 
|---|
| 91 | template DefDistMap<DistMap>:: | 
|---|
| 92 | Create bfs(graph); | 
|---|
| 93 |  | 
|---|
| 94 | PredMap predMap; | 
|---|
| 95 | bfs.predMap(predMap); | 
|---|
| 96 |  | 
|---|
| 97 | DistMap distMap; | 
|---|
| 98 | bfs.distMap(distMap); | 
|---|
| 99 |  | 
|---|
| 100 | bfs.init(); | 
|---|
| 101 | for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) { | 
|---|
| 102 | if (!bfs.reached(n)) { | 
|---|
| 103 | bfs.addSource(n); | 
|---|
| 104 | bfs.start(); | 
|---|
| 105 | ++compNum; | 
|---|
| 106 | } | 
|---|
| 107 | } | 
|---|
| 108 | return compNum; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | /// \ingroup topology | 
|---|
| 112 | /// | 
|---|
| 113 | /// \brief Find the connected components of an undirected graph | 
|---|
| 114 | /// | 
|---|
| 115 | /// Find the connected components of an undirected graph. | 
|---|
| 116 | /// | 
|---|
| 117 | /// \image html connected_components.png | 
|---|
| 118 | /// \image latex connected_components.eps "Connected components" width=\textwidth | 
|---|
| 119 | /// | 
|---|
| 120 | /// \param graph The graph. It should be undirected. | 
|---|
| 121 | /// \retval compMap A writable node map. The values will be set from 0 to | 
|---|
| 122 | /// the number of the connected components minus one. Each values of the map | 
|---|
| 123 | /// will be set exactly once, the values of a certain component will be | 
|---|
| 124 | /// set continuously. | 
|---|
| 125 | /// \return The number of components | 
|---|
| 126 | /// | 
|---|
| 127 | template <class UGraph, class NodeMap> | 
|---|
| 128 | int connectedComponents(const UGraph &graph, NodeMap &compMap) { | 
|---|
| 129 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 130 | typedef typename UGraph::Node Node; | 
|---|
| 131 | typedef typename UGraph::Edge Edge; | 
|---|
| 132 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); | 
|---|
| 133 |  | 
|---|
| 134 | typedef NullMap<Node, Edge> PredMap; | 
|---|
| 135 | typedef NullMap<Node, int> DistMap; | 
|---|
| 136 |  | 
|---|
| 137 | int compNum = 0; | 
|---|
| 138 | typename Bfs<UGraph>:: | 
|---|
| 139 | template DefPredMap<PredMap>:: | 
|---|
| 140 | template DefDistMap<DistMap>:: | 
|---|
| 141 | Create bfs(graph); | 
|---|
| 142 |  | 
|---|
| 143 | PredMap predMap; | 
|---|
| 144 | bfs.predMap(predMap); | 
|---|
| 145 |  | 
|---|
| 146 | DistMap distMap; | 
|---|
| 147 | bfs.distMap(distMap); | 
|---|
| 148 |  | 
|---|
| 149 | bfs.init(); | 
|---|
| 150 | for(typename UGraph::NodeIt n(graph); n != INVALID; ++n) { | 
|---|
| 151 | if(!bfs.reached(n)) { | 
|---|
| 152 | bfs.addSource(n); | 
|---|
| 153 | while (!bfs.emptyQueue()) { | 
|---|
| 154 | compMap.set(bfs.nextNode(), compNum); | 
|---|
| 155 | bfs.processNextNode(); | 
|---|
| 156 | } | 
|---|
| 157 | ++compNum; | 
|---|
| 158 | } | 
|---|
| 159 | } | 
|---|
| 160 | return compNum; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | namespace _topology_bits { | 
|---|
| 164 |  | 
|---|
| 165 | template <typename Graph, typename Iterator > | 
|---|
| 166 | struct LeaveOrderVisitor : public DfsVisitor<Graph> { | 
|---|
| 167 | public: | 
|---|
| 168 | typedef typename Graph::Node Node; | 
|---|
| 169 | LeaveOrderVisitor(Iterator it) : _it(it) {} | 
|---|
| 170 |  | 
|---|
| 171 | void leave(const Node& node) { | 
|---|
| 172 | *(_it++) = node; | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | private: | 
|---|
| 176 | Iterator _it; | 
|---|
| 177 | }; | 
|---|
| 178 |  | 
|---|
| 179 | template <typename Graph, typename Map> | 
|---|
| 180 | struct FillMapVisitor : public DfsVisitor<Graph> { | 
|---|
| 181 | public: | 
|---|
| 182 | typedef typename Graph::Node Node; | 
|---|
| 183 | typedef typename Map::Value Value; | 
|---|
| 184 |  | 
|---|
| 185 | FillMapVisitor(Map& map, Value& value) | 
|---|
| 186 | : _map(map), _value(value) {} | 
|---|
| 187 |  | 
|---|
| 188 | void reach(const Node& node) { | 
|---|
| 189 | _map.set(node, _value); | 
|---|
| 190 | } | 
|---|
| 191 | private: | 
|---|
| 192 | Map& _map; | 
|---|
| 193 | Value& _value; | 
|---|
| 194 | }; | 
|---|
| 195 |  | 
|---|
| 196 | template <typename Graph, typename EdgeMap> | 
|---|
| 197 | struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> { | 
|---|
| 198 | public: | 
|---|
| 199 | typedef typename Graph::Node Node; | 
|---|
| 200 | typedef typename Graph::Edge Edge; | 
|---|
| 201 |  | 
|---|
| 202 | StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, | 
|---|
| 203 | int& cutNum) | 
|---|
| 204 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), | 
|---|
| 205 | _compMap(graph), _num(0) { | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | void stop(const Node&) { | 
|---|
| 209 | ++_num; | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | void reach(const Node& node) { | 
|---|
| 213 | _compMap.set(node, _num); | 
|---|
| 214 | } | 
|---|
| 215 |  | 
|---|
| 216 | void examine(const Edge& edge) { | 
|---|
| 217 | if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) { | 
|---|
| 218 | _cutMap.set(edge, true); | 
|---|
| 219 | ++_cutNum; | 
|---|
| 220 | } | 
|---|
| 221 | } | 
|---|
| 222 | private: | 
|---|
| 223 | const Graph& _graph; | 
|---|
| 224 | EdgeMap& _cutMap; | 
|---|
| 225 | int& _cutNum; | 
|---|
| 226 |  | 
|---|
| 227 | typename Graph::template NodeMap<int> _compMap; | 
|---|
| 228 | int _num; | 
|---|
| 229 | }; | 
|---|
| 230 |  | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 |  | 
|---|
| 234 | /// \ingroup topology | 
|---|
| 235 | /// | 
|---|
| 236 | /// \brief Check that the given directed graph is strongly connected. | 
|---|
| 237 | /// | 
|---|
| 238 | /// Check that the given directed graph is strongly connected. The | 
|---|
| 239 | /// graph is strongly connected when any two nodes of the graph are | 
|---|
| 240 | /// connected with directed paths in both direction. | 
|---|
| 241 | /// \return %False when the graph is not strongly connected. | 
|---|
| 242 | /// \see connected | 
|---|
| 243 | /// | 
|---|
| 244 | /// \note By definition, the empty graph is strongly connected. | 
|---|
| 245 | template <typename Graph> | 
|---|
| 246 | bool stronglyConnected(const Graph& graph) { | 
|---|
| 247 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 248 | if (NodeIt(graph) == INVALID) return true; | 
|---|
| 249 |  | 
|---|
| 250 | typedef typename Graph::Node Node; | 
|---|
| 251 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 252 |  | 
|---|
| 253 | using namespace _topology_bits; | 
|---|
| 254 |  | 
|---|
| 255 | typedef DfsVisitor<Graph> Visitor; | 
|---|
| 256 | Visitor visitor; | 
|---|
| 257 |  | 
|---|
| 258 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 259 | dfs.init(); | 
|---|
| 260 | dfs.addSource(NodeIt(graph)); | 
|---|
| 261 | dfs.start(); | 
|---|
| 262 |  | 
|---|
| 263 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 264 | if (!dfs.reached(it)) { | 
|---|
| 265 | return false; | 
|---|
| 266 | } | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 270 | RGraph rgraph(graph); | 
|---|
| 271 |  | 
|---|
| 272 | typedef DfsVisitor<Graph> RVisitor; | 
|---|
| 273 | RVisitor rvisitor; | 
|---|
| 274 |  | 
|---|
| 275 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 276 | rdfs.init(); | 
|---|
| 277 | rdfs.addSource(NodeIt(graph)); | 
|---|
| 278 | rdfs.start(); | 
|---|
| 279 |  | 
|---|
| 280 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 281 | if (!rdfs.reached(it)) { | 
|---|
| 282 | return false; | 
|---|
| 283 | } | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | return true; | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 | /// \ingroup topology | 
|---|
| 290 | /// | 
|---|
| 291 | /// \brief Count the strongly connected components of a directed graph | 
|---|
| 292 | /// | 
|---|
| 293 | /// Count the strongly connected components of a directed graph. | 
|---|
| 294 | /// The strongly connected components are the classes of an equivalence | 
|---|
| 295 | /// relation on the nodes of the graph. Two nodes are connected with | 
|---|
| 296 | /// directed paths in both direction. | 
|---|
| 297 | /// | 
|---|
| 298 | /// \param graph The graph. | 
|---|
| 299 | /// \return The number of components | 
|---|
| 300 | /// \note By definition, the empty graph has zero | 
|---|
| 301 | /// strongly connected components. | 
|---|
| 302 | template <typename Graph> | 
|---|
| 303 | int countStronglyConnectedComponents(const Graph& graph) { | 
|---|
| 304 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 305 |  | 
|---|
| 306 | using namespace _topology_bits; | 
|---|
| 307 |  | 
|---|
| 308 | typedef typename Graph::Node Node; | 
|---|
| 309 | typedef typename Graph::Edge Edge; | 
|---|
| 310 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 311 | typedef typename Graph::EdgeIt EdgeIt; | 
|---|
| 312 |  | 
|---|
| 313 | typedef std::vector<Node> Container; | 
|---|
| 314 | typedef typename Container::iterator Iterator; | 
|---|
| 315 |  | 
|---|
| 316 | Container nodes(countNodes(graph)); | 
|---|
| 317 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; | 
|---|
| 318 | Visitor visitor(nodes.begin()); | 
|---|
| 319 |  | 
|---|
| 320 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 321 | dfs.init(); | 
|---|
| 322 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 323 | if (!dfs.reached(it)) { | 
|---|
| 324 | dfs.addSource(it); | 
|---|
| 325 | dfs.start(); | 
|---|
| 326 | } | 
|---|
| 327 | } | 
|---|
| 328 |  | 
|---|
| 329 | typedef typename Container::reverse_iterator RIterator; | 
|---|
| 330 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 331 |  | 
|---|
| 332 | RGraph rgraph(graph); | 
|---|
| 333 |  | 
|---|
| 334 | typedef DfsVisitor<Graph> RVisitor; | 
|---|
| 335 | RVisitor rvisitor; | 
|---|
| 336 |  | 
|---|
| 337 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 338 |  | 
|---|
| 339 | int compNum = 0; | 
|---|
| 340 |  | 
|---|
| 341 | rdfs.init(); | 
|---|
| 342 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { | 
|---|
| 343 | if (!rdfs.reached(*it)) { | 
|---|
| 344 | rdfs.addSource(*it); | 
|---|
| 345 | rdfs.start(); | 
|---|
| 346 | ++compNum; | 
|---|
| 347 | } | 
|---|
| 348 | } | 
|---|
| 349 | return compNum; | 
|---|
| 350 | } | 
|---|
| 351 |  | 
|---|
| 352 | /// \ingroup topology | 
|---|
| 353 | /// | 
|---|
| 354 | /// \brief Find the strongly connected components of a directed graph | 
|---|
| 355 | /// | 
|---|
| 356 | /// Find the strongly connected components of a directed graph. | 
|---|
| 357 | /// The strongly connected components are the classes of an equivalence | 
|---|
| 358 | /// relation on the nodes of the graph. Two nodes are in relationship | 
|---|
| 359 | /// when there are directed paths between them in both direction. | 
|---|
| 360 | /// | 
|---|
| 361 | /// \image html strongly_connected_components.png | 
|---|
| 362 | /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth | 
|---|
| 363 | /// | 
|---|
| 364 | /// \param graph The graph. | 
|---|
| 365 | /// \retval compMap A writable node map. The values will be set from 0 to | 
|---|
| 366 | /// the number of the strongly connected components minus one. Each values | 
|---|
| 367 | /// of the map will be set exactly once, the values of a certain component | 
|---|
| 368 | /// will be set continuously. | 
|---|
| 369 | /// \return The number of components | 
|---|
| 370 | /// | 
|---|
| 371 | template <typename Graph, typename NodeMap> | 
|---|
| 372 | int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) { | 
|---|
| 373 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 374 | typedef typename Graph::Node Node; | 
|---|
| 375 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 376 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); | 
|---|
| 377 |  | 
|---|
| 378 | using namespace _topology_bits; | 
|---|
| 379 |  | 
|---|
| 380 | typedef std::vector<Node> Container; | 
|---|
| 381 | typedef typename Container::iterator Iterator; | 
|---|
| 382 |  | 
|---|
| 383 | Container nodes(countNodes(graph)); | 
|---|
| 384 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; | 
|---|
| 385 | Visitor visitor(nodes.begin()); | 
|---|
| 386 |  | 
|---|
| 387 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 388 | dfs.init(); | 
|---|
| 389 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 390 | if (!dfs.reached(it)) { | 
|---|
| 391 | dfs.addSource(it); | 
|---|
| 392 | dfs.start(); | 
|---|
| 393 | } | 
|---|
| 394 | } | 
|---|
| 395 |  | 
|---|
| 396 | typedef typename Container::reverse_iterator RIterator; | 
|---|
| 397 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 398 |  | 
|---|
| 399 | RGraph rgraph(graph); | 
|---|
| 400 |  | 
|---|
| 401 | int compNum = 0; | 
|---|
| 402 |  | 
|---|
| 403 | typedef FillMapVisitor<RGraph, NodeMap> RVisitor; | 
|---|
| 404 | RVisitor rvisitor(compMap, compNum); | 
|---|
| 405 |  | 
|---|
| 406 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 407 |  | 
|---|
| 408 | rdfs.init(); | 
|---|
| 409 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { | 
|---|
| 410 | if (!rdfs.reached(*it)) { | 
|---|
| 411 | rdfs.addSource(*it); | 
|---|
| 412 | rdfs.start(); | 
|---|
| 413 | ++compNum; | 
|---|
| 414 | } | 
|---|
| 415 | } | 
|---|
| 416 | return compNum; | 
|---|
| 417 | } | 
|---|
| 418 |  | 
|---|
| 419 | /// \ingroup topology | 
|---|
| 420 | /// | 
|---|
| 421 | /// \brief Find the cut edges of the strongly connected components. | 
|---|
| 422 | /// | 
|---|
| 423 | /// Find the cut edges of the strongly connected components. | 
|---|
| 424 | /// The strongly connected components are the classes of an equivalence | 
|---|
| 425 | /// relation on the nodes of the graph. Two nodes are in relationship | 
|---|
| 426 | /// when there are directed paths between them in both direction. | 
|---|
| 427 | /// The strongly connected components are separated by the cut edges. | 
|---|
| 428 | /// | 
|---|
| 429 | /// \param graph The graph. | 
|---|
| 430 | /// \retval cutMap A writable node map. The values will be set true when the | 
|---|
| 431 | /// edge is a cut edge. | 
|---|
| 432 | /// | 
|---|
| 433 | /// \return The number of cut edges | 
|---|
| 434 | template <typename Graph, typename EdgeMap> | 
|---|
| 435 | int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { | 
|---|
| 436 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 437 | typedef typename Graph::Node Node; | 
|---|
| 438 | typedef typename Graph::Edge Edge; | 
|---|
| 439 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 440 | checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>(); | 
|---|
| 441 |  | 
|---|
| 442 | using namespace _topology_bits; | 
|---|
| 443 |  | 
|---|
| 444 | typedef std::vector<Node> Container; | 
|---|
| 445 | typedef typename Container::iterator Iterator; | 
|---|
| 446 |  | 
|---|
| 447 | Container nodes(countNodes(graph)); | 
|---|
| 448 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; | 
|---|
| 449 | Visitor visitor(nodes.begin()); | 
|---|
| 450 |  | 
|---|
| 451 | DfsVisit<Graph, Visitor> dfs(graph, visitor); | 
|---|
| 452 | dfs.init(); | 
|---|
| 453 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 454 | if (!dfs.reached(it)) { | 
|---|
| 455 | dfs.addSource(it); | 
|---|
| 456 | dfs.start(); | 
|---|
| 457 | } | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | typedef typename Container::reverse_iterator RIterator; | 
|---|
| 461 | typedef RevGraphAdaptor<const Graph> RGraph; | 
|---|
| 462 |  | 
|---|
| 463 | RGraph rgraph(graph); | 
|---|
| 464 |  | 
|---|
| 465 | int cutNum = 0; | 
|---|
| 466 |  | 
|---|
| 467 | typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor; | 
|---|
| 468 | RVisitor rvisitor(rgraph, cutMap, cutNum); | 
|---|
| 469 |  | 
|---|
| 470 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); | 
|---|
| 471 |  | 
|---|
| 472 | rdfs.init(); | 
|---|
| 473 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { | 
|---|
| 474 | if (!rdfs.reached(*it)) { | 
|---|
| 475 | rdfs.addSource(*it); | 
|---|
| 476 | rdfs.start(); | 
|---|
| 477 | } | 
|---|
| 478 | } | 
|---|
| 479 | return cutNum; | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | namespace _topology_bits { | 
|---|
| 483 |  | 
|---|
| 484 | template <typename Graph> | 
|---|
| 485 | class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 486 | public: | 
|---|
| 487 | typedef typename Graph::Node Node; | 
|---|
| 488 | typedef typename Graph::Edge Edge; | 
|---|
| 489 | typedef typename Graph::UEdge UEdge; | 
|---|
| 490 |  | 
|---|
| 491 | CountBiNodeConnectedComponentsVisitor(const Graph& graph, int &compNum) | 
|---|
| 492 | : _graph(graph), _compNum(compNum), | 
|---|
| 493 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 494 |  | 
|---|
| 495 | void start(const Node& node) { | 
|---|
| 496 | _predMap.set(node, INVALID); | 
|---|
| 497 | } | 
|---|
| 498 |  | 
|---|
| 499 | void reach(const Node& node) { | 
|---|
| 500 | _numMap.set(node, _num); | 
|---|
| 501 | _retMap.set(node, _num); | 
|---|
| 502 | ++_num; | 
|---|
| 503 | } | 
|---|
| 504 |  | 
|---|
| 505 | void discover(const Edge& edge) { | 
|---|
| 506 | _predMap.set(_graph.target(edge), _graph.source(edge)); | 
|---|
| 507 | } | 
|---|
| 508 |  | 
|---|
| 509 | void examine(const Edge& edge) { | 
|---|
| 510 | if (_graph.source(edge) == _graph.target(edge) && | 
|---|
| 511 | _graph.direction(edge)) { | 
|---|
| 512 | ++_compNum; | 
|---|
| 513 | return; | 
|---|
| 514 | } | 
|---|
| 515 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { | 
|---|
| 516 | return; | 
|---|
| 517 | } | 
|---|
| 518 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { | 
|---|
| 519 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); | 
|---|
| 520 | } | 
|---|
| 521 | } | 
|---|
| 522 |  | 
|---|
| 523 | void backtrack(const Edge& edge) { | 
|---|
| 524 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 525 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 526 | } | 
|---|
| 527 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { | 
|---|
| 528 | ++_compNum; | 
|---|
| 529 | } | 
|---|
| 530 | } | 
|---|
| 531 |  | 
|---|
| 532 | private: | 
|---|
| 533 | const Graph& _graph; | 
|---|
| 534 | int& _compNum; | 
|---|
| 535 |  | 
|---|
| 536 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 537 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 538 | typename Graph::template NodeMap<Node> _predMap; | 
|---|
| 539 | int _num; | 
|---|
| 540 | }; | 
|---|
| 541 |  | 
|---|
| 542 | template <typename Graph, typename EdgeMap> | 
|---|
| 543 | class BiNodeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 544 | public: | 
|---|
| 545 | typedef typename Graph::Node Node; | 
|---|
| 546 | typedef typename Graph::Edge Edge; | 
|---|
| 547 | typedef typename Graph::UEdge UEdge; | 
|---|
| 548 |  | 
|---|
| 549 | BiNodeConnectedComponentsVisitor(const Graph& graph, | 
|---|
| 550 | EdgeMap& compMap, int &compNum) | 
|---|
| 551 | : _graph(graph), _compMap(compMap), _compNum(compNum), | 
|---|
| 552 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 553 |  | 
|---|
| 554 | void start(const Node& node) { | 
|---|
| 555 | _predMap.set(node, INVALID); | 
|---|
| 556 | } | 
|---|
| 557 |  | 
|---|
| 558 | void reach(const Node& node) { | 
|---|
| 559 | _numMap.set(node, _num); | 
|---|
| 560 | _retMap.set(node, _num); | 
|---|
| 561 | ++_num; | 
|---|
| 562 | } | 
|---|
| 563 |  | 
|---|
| 564 | void discover(const Edge& edge) { | 
|---|
| 565 | Node target = _graph.target(edge); | 
|---|
| 566 | _predMap.set(target, edge); | 
|---|
| 567 | _edgeStack.push(edge); | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 | void examine(const Edge& edge) { | 
|---|
| 571 | Node source = _graph.source(edge); | 
|---|
| 572 | Node target = _graph.target(edge); | 
|---|
| 573 | if (source == target && _graph.direction(edge)) { | 
|---|
| 574 | _compMap.set(edge, _compNum); | 
|---|
| 575 | ++_compNum; | 
|---|
| 576 | return; | 
|---|
| 577 | } | 
|---|
| 578 | if (_numMap[target] < _numMap[source]) { | 
|---|
| 579 | if (_predMap[source] != _graph.oppositeEdge(edge)) { | 
|---|
| 580 | _edgeStack.push(edge); | 
|---|
| 581 | } | 
|---|
| 582 | } | 
|---|
| 583 | if (_predMap[source] != INVALID && | 
|---|
| 584 | target == _graph.source(_predMap[source])) { | 
|---|
| 585 | return; | 
|---|
| 586 | } | 
|---|
| 587 | if (_retMap[source] > _numMap[target]) { | 
|---|
| 588 | _retMap.set(source, _numMap[target]); | 
|---|
| 589 | } | 
|---|
| 590 | } | 
|---|
| 591 |  | 
|---|
| 592 | void backtrack(const Edge& edge) { | 
|---|
| 593 | Node source = _graph.source(edge); | 
|---|
| 594 | Node target = _graph.target(edge); | 
|---|
| 595 | if (_retMap[source] > _retMap[target]) { | 
|---|
| 596 | _retMap.set(source, _retMap[target]); | 
|---|
| 597 | } | 
|---|
| 598 | if (_numMap[source] <= _retMap[target]) { | 
|---|
| 599 | while (_edgeStack.top() != edge) { | 
|---|
| 600 | _compMap.set(_edgeStack.top(), _compNum); | 
|---|
| 601 | _edgeStack.pop(); | 
|---|
| 602 | } | 
|---|
| 603 | _compMap.set(edge, _compNum); | 
|---|
| 604 | _edgeStack.pop(); | 
|---|
| 605 | ++_compNum; | 
|---|
| 606 | } | 
|---|
| 607 | } | 
|---|
| 608 |  | 
|---|
| 609 | private: | 
|---|
| 610 | const Graph& _graph; | 
|---|
| 611 | EdgeMap& _compMap; | 
|---|
| 612 | int& _compNum; | 
|---|
| 613 |  | 
|---|
| 614 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 615 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 616 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 617 | std::stack<UEdge> _edgeStack; | 
|---|
| 618 | int _num; | 
|---|
| 619 | }; | 
|---|
| 620 |  | 
|---|
| 621 |  | 
|---|
| 622 | template <typename Graph, typename NodeMap> | 
|---|
| 623 | class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Graph> { | 
|---|
| 624 | public: | 
|---|
| 625 | typedef typename Graph::Node Node; | 
|---|
| 626 | typedef typename Graph::Edge Edge; | 
|---|
| 627 | typedef typename Graph::UEdge UEdge; | 
|---|
| 628 |  | 
|---|
| 629 | BiNodeConnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap, | 
|---|
| 630 | int& cutNum) | 
|---|
| 631 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), | 
|---|
| 632 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 633 |  | 
|---|
| 634 | void start(const Node& node) { | 
|---|
| 635 | _predMap.set(node, INVALID); | 
|---|
| 636 | rootCut = false; | 
|---|
| 637 | } | 
|---|
| 638 |  | 
|---|
| 639 | void reach(const Node& node) { | 
|---|
| 640 | _numMap.set(node, _num); | 
|---|
| 641 | _retMap.set(node, _num); | 
|---|
| 642 | ++_num; | 
|---|
| 643 | } | 
|---|
| 644 |  | 
|---|
| 645 | void discover(const Edge& edge) { | 
|---|
| 646 | _predMap.set(_graph.target(edge), _graph.source(edge)); | 
|---|
| 647 | } | 
|---|
| 648 |  | 
|---|
| 649 | void examine(const Edge& edge) { | 
|---|
| 650 | if (_graph.source(edge) == _graph.target(edge) && | 
|---|
| 651 | _graph.direction(edge)) { | 
|---|
| 652 | if (!_cutMap[_graph.source(edge)]) { | 
|---|
| 653 | _cutMap.set(_graph.source(edge), true); | 
|---|
| 654 | ++_cutNum; | 
|---|
| 655 | } | 
|---|
| 656 | return; | 
|---|
| 657 | } | 
|---|
| 658 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; | 
|---|
| 659 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { | 
|---|
| 660 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); | 
|---|
| 661 | } | 
|---|
| 662 | } | 
|---|
| 663 |  | 
|---|
| 664 | void backtrack(const Edge& edge) { | 
|---|
| 665 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 666 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 667 | } | 
|---|
| 668 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { | 
|---|
| 669 | if (_predMap[_graph.source(edge)] != INVALID) { | 
|---|
| 670 | if (!_cutMap[_graph.source(edge)]) { | 
|---|
| 671 | _cutMap.set(_graph.source(edge), true); | 
|---|
| 672 | ++_cutNum; | 
|---|
| 673 | } | 
|---|
| 674 | } else if (rootCut) { | 
|---|
| 675 | if (!_cutMap[_graph.source(edge)]) { | 
|---|
| 676 | _cutMap.set(_graph.source(edge), true); | 
|---|
| 677 | ++_cutNum; | 
|---|
| 678 | } | 
|---|
| 679 | } else { | 
|---|
| 680 | rootCut = true; | 
|---|
| 681 | } | 
|---|
| 682 | } | 
|---|
| 683 | } | 
|---|
| 684 |  | 
|---|
| 685 | private: | 
|---|
| 686 | const Graph& _graph; | 
|---|
| 687 | NodeMap& _cutMap; | 
|---|
| 688 | int& _cutNum; | 
|---|
| 689 |  | 
|---|
| 690 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 691 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 692 | typename Graph::template NodeMap<Node> _predMap; | 
|---|
| 693 | std::stack<UEdge> _edgeStack; | 
|---|
| 694 | int _num; | 
|---|
| 695 | bool rootCut; | 
|---|
| 696 | }; | 
|---|
| 697 |  | 
|---|
| 698 | } | 
|---|
| 699 |  | 
|---|
| 700 | template <typename UGraph> | 
|---|
| 701 | int countBiNodeConnectedComponents(const UGraph& graph); | 
|---|
| 702 |  | 
|---|
| 703 | /// \ingroup topology | 
|---|
| 704 | /// | 
|---|
| 705 | /// \brief Checks the graph is bi-node-connected. | 
|---|
| 706 | /// | 
|---|
| 707 | /// This function checks that the undirected graph is bi-node-connected | 
|---|
| 708 | /// graph. The graph is bi-node-connected if any two undirected edge is | 
|---|
| 709 | /// on same circle. | 
|---|
| 710 | /// | 
|---|
| 711 | /// \param graph The graph. | 
|---|
| 712 | /// \return %True when the graph bi-node-connected. | 
|---|
| 713 | /// \todo Make it faster. | 
|---|
| 714 | template <typename UGraph> | 
|---|
| 715 | bool biNodeConnected(const UGraph& graph) { | 
|---|
| 716 | return countBiNodeConnectedComponents(graph) == 1; | 
|---|
| 717 | } | 
|---|
| 718 |  | 
|---|
| 719 | /// \ingroup topology | 
|---|
| 720 | /// | 
|---|
| 721 | /// \brief Count the biconnected components. | 
|---|
| 722 | /// | 
|---|
| 723 | /// This function finds the bi-node-connected components in an undirected | 
|---|
| 724 | /// graph. The biconnected components are the classes of an equivalence | 
|---|
| 725 | /// relation on the undirected edges. Two undirected edge is in relationship | 
|---|
| 726 | /// when they are on same circle. | 
|---|
| 727 | /// | 
|---|
| 728 | /// \param graph The graph. | 
|---|
| 729 | /// \return The number of components. | 
|---|
| 730 | template <typename UGraph> | 
|---|
| 731 | int countBiNodeConnectedComponents(const UGraph& graph) { | 
|---|
| 732 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 733 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 734 |  | 
|---|
| 735 | using namespace _topology_bits; | 
|---|
| 736 |  | 
|---|
| 737 | typedef CountBiNodeConnectedComponentsVisitor<UGraph> Visitor; | 
|---|
| 738 |  | 
|---|
| 739 | int compNum = 0; | 
|---|
| 740 | Visitor visitor(graph, compNum); | 
|---|
| 741 |  | 
|---|
| 742 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 743 | dfs.init(); | 
|---|
| 744 |  | 
|---|
| 745 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 746 | if (!dfs.reached(it)) { | 
|---|
| 747 | dfs.addSource(it); | 
|---|
| 748 | dfs.start(); | 
|---|
| 749 | } | 
|---|
| 750 | } | 
|---|
| 751 | return compNum; | 
|---|
| 752 | } | 
|---|
| 753 |  | 
|---|
| 754 | /// \ingroup topology | 
|---|
| 755 | /// | 
|---|
| 756 | /// \brief Find the bi-node-connected components. | 
|---|
| 757 | /// | 
|---|
| 758 | /// This function finds the bi-node-connected components in an undirected | 
|---|
| 759 | /// graph. The bi-node-connected components are the classes of an equivalence | 
|---|
| 760 | /// relation on the undirected edges. Two undirected edge are in relationship | 
|---|
| 761 | /// when they are on same circle. | 
|---|
| 762 | /// | 
|---|
| 763 | /// \image html node_biconnected_components.png | 
|---|
| 764 | /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth | 
|---|
| 765 | /// | 
|---|
| 766 | /// \param graph The graph. | 
|---|
| 767 | /// \retval compMap A writable uedge map. The values will be set from 0 | 
|---|
| 768 | /// to the number of the biconnected components minus one. Each values | 
|---|
| 769 | /// of the map will be set exactly once, the values of a certain component | 
|---|
| 770 | /// will be set continuously. | 
|---|
| 771 | /// \return The number of components. | 
|---|
| 772 | /// | 
|---|
| 773 | template <typename UGraph, typename UEdgeMap> | 
|---|
| 774 | int biNodeConnectedComponents(const UGraph& graph, | 
|---|
| 775 | UEdgeMap& compMap) { | 
|---|
| 776 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 777 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 778 | typedef typename UGraph::UEdge UEdge; | 
|---|
| 779 | checkConcept<concept::WriteMap<UEdge, int>, UEdgeMap>(); | 
|---|
| 780 |  | 
|---|
| 781 | using namespace _topology_bits; | 
|---|
| 782 |  | 
|---|
| 783 | typedef BiNodeConnectedComponentsVisitor<UGraph, UEdgeMap> Visitor; | 
|---|
| 784 |  | 
|---|
| 785 | int compNum = 0; | 
|---|
| 786 | Visitor visitor(graph, compMap, compNum); | 
|---|
| 787 |  | 
|---|
| 788 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 789 | dfs.init(); | 
|---|
| 790 |  | 
|---|
| 791 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 792 | if (!dfs.reached(it)) { | 
|---|
| 793 | dfs.addSource(it); | 
|---|
| 794 | dfs.start(); | 
|---|
| 795 | } | 
|---|
| 796 | } | 
|---|
| 797 | return compNum; | 
|---|
| 798 | } | 
|---|
| 799 |  | 
|---|
| 800 | /// \ingroup topology | 
|---|
| 801 | /// | 
|---|
| 802 | /// \brief Find the bi-node-connected cut nodes. | 
|---|
| 803 | /// | 
|---|
| 804 | /// This function finds the bi-node-connected cut nodes in an undirected | 
|---|
| 805 | /// graph. The bi-node-connected components are the classes of an equivalence | 
|---|
| 806 | /// relation on the undirected edges. Two undirected edges are in | 
|---|
| 807 | /// relationship when they are on same circle. The biconnected components | 
|---|
| 808 | /// are separted by nodes which are the cut nodes of the components. | 
|---|
| 809 | /// | 
|---|
| 810 | /// \param graph The graph. | 
|---|
| 811 | /// \retval cutMap A writable edge map. The values will be set true when | 
|---|
| 812 | /// the node separate two or more components. | 
|---|
| 813 | /// \return The number of the cut nodes. | 
|---|
| 814 | template <typename UGraph, typename NodeMap> | 
|---|
| 815 | int biNodeConnectedCutNodes(const UGraph& graph, NodeMap& cutMap) { | 
|---|
| 816 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 817 | typedef typename UGraph::Node Node; | 
|---|
| 818 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 819 | checkConcept<concept::WriteMap<Node, bool>, NodeMap>(); | 
|---|
| 820 |  | 
|---|
| 821 | using namespace _topology_bits; | 
|---|
| 822 |  | 
|---|
| 823 | typedef BiNodeConnectedCutNodesVisitor<UGraph, NodeMap> Visitor; | 
|---|
| 824 |  | 
|---|
| 825 | int cutNum = 0; | 
|---|
| 826 | Visitor visitor(graph, cutMap, cutNum); | 
|---|
| 827 |  | 
|---|
| 828 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 829 | dfs.init(); | 
|---|
| 830 |  | 
|---|
| 831 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 832 | if (!dfs.reached(it)) { | 
|---|
| 833 | dfs.addSource(it); | 
|---|
| 834 | dfs.start(); | 
|---|
| 835 | } | 
|---|
| 836 | } | 
|---|
| 837 | return cutNum; | 
|---|
| 838 | } | 
|---|
| 839 |  | 
|---|
| 840 | namespace _topology_bits { | 
|---|
| 841 |  | 
|---|
| 842 | template <typename Graph> | 
|---|
| 843 | class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 844 | public: | 
|---|
| 845 | typedef typename Graph::Node Node; | 
|---|
| 846 | typedef typename Graph::Edge Edge; | 
|---|
| 847 | typedef typename Graph::UEdge UEdge; | 
|---|
| 848 |  | 
|---|
| 849 | CountBiEdgeConnectedComponentsVisitor(const Graph& graph, int &compNum) | 
|---|
| 850 | : _graph(graph), _compNum(compNum), | 
|---|
| 851 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 852 |  | 
|---|
| 853 | void start(const Node& node) { | 
|---|
| 854 | _predMap.set(node, INVALID); | 
|---|
| 855 | } | 
|---|
| 856 |  | 
|---|
| 857 | void reach(const Node& node) { | 
|---|
| 858 | _numMap.set(node, _num); | 
|---|
| 859 | _retMap.set(node, _num); | 
|---|
| 860 | ++_num; | 
|---|
| 861 | } | 
|---|
| 862 |  | 
|---|
| 863 | void leave(const Node& node) { | 
|---|
| 864 | if (_numMap[node] <= _retMap[node]) { | 
|---|
| 865 | ++_compNum; | 
|---|
| 866 | } | 
|---|
| 867 | } | 
|---|
| 868 |  | 
|---|
| 869 | void discover(const Edge& edge) { | 
|---|
| 870 | _predMap.set(_graph.target(edge), edge); | 
|---|
| 871 | } | 
|---|
| 872 |  | 
|---|
| 873 | void examine(const Edge& edge) { | 
|---|
| 874 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { | 
|---|
| 875 | return; | 
|---|
| 876 | } | 
|---|
| 877 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 878 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 879 | } | 
|---|
| 880 | } | 
|---|
| 881 |  | 
|---|
| 882 | void backtrack(const Edge& edge) { | 
|---|
| 883 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 884 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 885 | } | 
|---|
| 886 | } | 
|---|
| 887 |  | 
|---|
| 888 | private: | 
|---|
| 889 | const Graph& _graph; | 
|---|
| 890 | int& _compNum; | 
|---|
| 891 |  | 
|---|
| 892 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 893 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 894 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 895 | int _num; | 
|---|
| 896 | }; | 
|---|
| 897 |  | 
|---|
| 898 | template <typename Graph, typename NodeMap> | 
|---|
| 899 | class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Graph> { | 
|---|
| 900 | public: | 
|---|
| 901 | typedef typename Graph::Node Node; | 
|---|
| 902 | typedef typename Graph::Edge Edge; | 
|---|
| 903 | typedef typename Graph::UEdge UEdge; | 
|---|
| 904 |  | 
|---|
| 905 | BiEdgeConnectedComponentsVisitor(const Graph& graph, | 
|---|
| 906 | NodeMap& compMap, int &compNum) | 
|---|
| 907 | : _graph(graph), _compMap(compMap), _compNum(compNum), | 
|---|
| 908 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 909 |  | 
|---|
| 910 | void start(const Node& node) { | 
|---|
| 911 | _predMap.set(node, INVALID); | 
|---|
| 912 | } | 
|---|
| 913 |  | 
|---|
| 914 | void reach(const Node& node) { | 
|---|
| 915 | _numMap.set(node, _num); | 
|---|
| 916 | _retMap.set(node, _num); | 
|---|
| 917 | _nodeStack.push(node); | 
|---|
| 918 | ++_num; | 
|---|
| 919 | } | 
|---|
| 920 |  | 
|---|
| 921 | void leave(const Node& node) { | 
|---|
| 922 | if (_numMap[node] <= _retMap[node]) { | 
|---|
| 923 | while (_nodeStack.top() != node) { | 
|---|
| 924 | _compMap.set(_nodeStack.top(), _compNum); | 
|---|
| 925 | _nodeStack.pop(); | 
|---|
| 926 | } | 
|---|
| 927 | _compMap.set(node, _compNum); | 
|---|
| 928 | _nodeStack.pop(); | 
|---|
| 929 | ++_compNum; | 
|---|
| 930 | } | 
|---|
| 931 | } | 
|---|
| 932 |  | 
|---|
| 933 | void discover(const Edge& edge) { | 
|---|
| 934 | _predMap.set(_graph.target(edge), edge); | 
|---|
| 935 | } | 
|---|
| 936 |  | 
|---|
| 937 | void examine(const Edge& edge) { | 
|---|
| 938 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { | 
|---|
| 939 | return; | 
|---|
| 940 | } | 
|---|
| 941 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 942 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 943 | } | 
|---|
| 944 | } | 
|---|
| 945 |  | 
|---|
| 946 | void backtrack(const Edge& edge) { | 
|---|
| 947 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 948 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 949 | } | 
|---|
| 950 | } | 
|---|
| 951 |  | 
|---|
| 952 | private: | 
|---|
| 953 | const Graph& _graph; | 
|---|
| 954 | NodeMap& _compMap; | 
|---|
| 955 | int& _compNum; | 
|---|
| 956 |  | 
|---|
| 957 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 958 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 959 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 960 | std::stack<Node> _nodeStack; | 
|---|
| 961 | int _num; | 
|---|
| 962 | }; | 
|---|
| 963 |  | 
|---|
| 964 |  | 
|---|
| 965 | template <typename Graph, typename EdgeMap> | 
|---|
| 966 | class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Graph> { | 
|---|
| 967 | public: | 
|---|
| 968 | typedef typename Graph::Node Node; | 
|---|
| 969 | typedef typename Graph::Edge Edge; | 
|---|
| 970 | typedef typename Graph::UEdge UEdge; | 
|---|
| 971 |  | 
|---|
| 972 | BiEdgeConnectedCutEdgesVisitor(const Graph& graph, | 
|---|
| 973 | EdgeMap& cutMap, int &cutNum) | 
|---|
| 974 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), | 
|---|
| 975 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} | 
|---|
| 976 |  | 
|---|
| 977 | void start(const Node& node) { | 
|---|
| 978 | _predMap[node] = INVALID; | 
|---|
| 979 | } | 
|---|
| 980 |  | 
|---|
| 981 | void reach(const Node& node) { | 
|---|
| 982 | _numMap.set(node, _num); | 
|---|
| 983 | _retMap.set(node, _num); | 
|---|
| 984 | ++_num; | 
|---|
| 985 | } | 
|---|
| 986 |  | 
|---|
| 987 | void leave(const Node& node) { | 
|---|
| 988 | if (_numMap[node] <= _retMap[node]) { | 
|---|
| 989 | if (_predMap[node] != INVALID) { | 
|---|
| 990 | _cutMap.set(_predMap[node], true); | 
|---|
| 991 | ++_cutNum; | 
|---|
| 992 | } | 
|---|
| 993 | } | 
|---|
| 994 | } | 
|---|
| 995 |  | 
|---|
| 996 | void discover(const Edge& edge) { | 
|---|
| 997 | _predMap.set(_graph.target(edge), edge); | 
|---|
| 998 | } | 
|---|
| 999 |  | 
|---|
| 1000 | void examine(const Edge& edge) { | 
|---|
| 1001 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { | 
|---|
| 1002 | return; | 
|---|
| 1003 | } | 
|---|
| 1004 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 1005 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 1006 | } | 
|---|
| 1007 | } | 
|---|
| 1008 |  | 
|---|
| 1009 | void backtrack(const Edge& edge) { | 
|---|
| 1010 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { | 
|---|
| 1011 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); | 
|---|
| 1012 | } | 
|---|
| 1013 | } | 
|---|
| 1014 |  | 
|---|
| 1015 | private: | 
|---|
| 1016 | const Graph& _graph; | 
|---|
| 1017 | EdgeMap& _cutMap; | 
|---|
| 1018 | int& _cutNum; | 
|---|
| 1019 |  | 
|---|
| 1020 | typename Graph::template NodeMap<int> _numMap; | 
|---|
| 1021 | typename Graph::template NodeMap<int> _retMap; | 
|---|
| 1022 | typename Graph::template NodeMap<Edge> _predMap; | 
|---|
| 1023 | int _num; | 
|---|
| 1024 | }; | 
|---|
| 1025 | } | 
|---|
| 1026 |  | 
|---|
| 1027 | template <typename UGraph> | 
|---|
| 1028 | int countbiEdgeConnectedComponents(const UGraph& graph); | 
|---|
| 1029 |  | 
|---|
| 1030 | /// \ingroup topology | 
|---|
| 1031 | /// | 
|---|
| 1032 | /// \brief Checks that the graph is bi-edge-connected. | 
|---|
| 1033 | /// | 
|---|
| 1034 | /// This function checks that the graph is bi-edge-connected. The undirected | 
|---|
| 1035 | /// graph is bi-edge-connected when any two nodes are connected with two | 
|---|
| 1036 | /// edge-disjoint paths. | 
|---|
| 1037 | /// | 
|---|
| 1038 | /// \param graph The undirected graph. | 
|---|
| 1039 | /// \return The number of components. | 
|---|
| 1040 | /// \todo Make it faster. | 
|---|
| 1041 | template <typename UGraph> | 
|---|
| 1042 | bool biEdgeConnected(const UGraph& graph) { | 
|---|
| 1043 | return countBiEdgeConnectedComponents(graph) == 1; | 
|---|
| 1044 | } | 
|---|
| 1045 |  | 
|---|
| 1046 | /// \ingroup topology | 
|---|
| 1047 | /// | 
|---|
| 1048 | /// \brief Count the bi-edge-connected components. | 
|---|
| 1049 | /// | 
|---|
| 1050 | /// This function count the bi-edge-connected components in an undirected | 
|---|
| 1051 | /// graph. The bi-edge-connected components are the classes of an equivalence | 
|---|
| 1052 | /// relation on the nodes. Two nodes are in relationship when they are | 
|---|
| 1053 | /// connected with at least two edge-disjoint paths. | 
|---|
| 1054 | /// | 
|---|
| 1055 | /// \param graph The undirected graph. | 
|---|
| 1056 | /// \return The number of components. | 
|---|
| 1057 | template <typename UGraph> | 
|---|
| 1058 | int countBiEdgeConnectedComponents(const UGraph& graph) { | 
|---|
| 1059 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1060 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1061 |  | 
|---|
| 1062 | using namespace _topology_bits; | 
|---|
| 1063 |  | 
|---|
| 1064 | typedef CountBiEdgeConnectedComponentsVisitor<UGraph> Visitor; | 
|---|
| 1065 |  | 
|---|
| 1066 | int compNum = 0; | 
|---|
| 1067 | Visitor visitor(graph, compNum); | 
|---|
| 1068 |  | 
|---|
| 1069 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 1070 | dfs.init(); | 
|---|
| 1071 |  | 
|---|
| 1072 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1073 | if (!dfs.reached(it)) { | 
|---|
| 1074 | dfs.addSource(it); | 
|---|
| 1075 | dfs.start(); | 
|---|
| 1076 | } | 
|---|
| 1077 | } | 
|---|
| 1078 | return compNum; | 
|---|
| 1079 | } | 
|---|
| 1080 |  | 
|---|
| 1081 | /// \ingroup topology | 
|---|
| 1082 | /// | 
|---|
| 1083 | /// \brief Find the bi-edge-connected components. | 
|---|
| 1084 | /// | 
|---|
| 1085 | /// This function finds the bi-edge-connected components in an undirected | 
|---|
| 1086 | /// graph. The bi-edge-connected components are the classes of an equivalence | 
|---|
| 1087 | /// relation on the nodes. Two nodes are in relationship when they are | 
|---|
| 1088 | /// connected at least two edge-disjoint paths. | 
|---|
| 1089 | /// | 
|---|
| 1090 | /// \image html edge_biconnected_components.png | 
|---|
| 1091 | /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth | 
|---|
| 1092 | /// | 
|---|
| 1093 | /// \param graph The graph. | 
|---|
| 1094 | /// \retval compMap A writable node map. The values will be set from 0 to | 
|---|
| 1095 | /// the number of the biconnected components minus one. Each values | 
|---|
| 1096 | /// of the map will be set exactly once, the values of a certain component | 
|---|
| 1097 | /// will be set continuously. | 
|---|
| 1098 | /// \return The number of components. | 
|---|
| 1099 | /// | 
|---|
| 1100 | template <typename UGraph, typename NodeMap> | 
|---|
| 1101 | int biEdgeConnectedComponents(const UGraph& graph, NodeMap& compMap) { | 
|---|
| 1102 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1103 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1104 | typedef typename UGraph::Node Node; | 
|---|
| 1105 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); | 
|---|
| 1106 |  | 
|---|
| 1107 | using namespace _topology_bits; | 
|---|
| 1108 |  | 
|---|
| 1109 | typedef BiEdgeConnectedComponentsVisitor<UGraph, NodeMap> Visitor; | 
|---|
| 1110 |  | 
|---|
| 1111 | int compNum = 0; | 
|---|
| 1112 | Visitor visitor(graph, compMap, compNum); | 
|---|
| 1113 |  | 
|---|
| 1114 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 1115 | dfs.init(); | 
|---|
| 1116 |  | 
|---|
| 1117 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1118 | if (!dfs.reached(it)) { | 
|---|
| 1119 | dfs.addSource(it); | 
|---|
| 1120 | dfs.start(); | 
|---|
| 1121 | } | 
|---|
| 1122 | } | 
|---|
| 1123 | return compNum; | 
|---|
| 1124 | } | 
|---|
| 1125 |  | 
|---|
| 1126 | /// \ingroup topology | 
|---|
| 1127 | /// | 
|---|
| 1128 | /// \brief Find the bi-edge-connected cut edges. | 
|---|
| 1129 | /// | 
|---|
| 1130 | /// This function finds the bi-edge-connected components in an undirected | 
|---|
| 1131 | /// graph. The bi-edge-connected components are the classes of an equivalence | 
|---|
| 1132 | /// relation on the nodes. Two nodes are in relationship when they are | 
|---|
| 1133 | /// connected with at least two edge-disjoint paths. The bi-edge-connected | 
|---|
| 1134 | /// components are separted by edges which are the cut edges of the | 
|---|
| 1135 | /// components. | 
|---|
| 1136 | /// | 
|---|
| 1137 | /// \param graph The graph. | 
|---|
| 1138 | /// \retval cutMap A writable node map. The values will be set true when the | 
|---|
| 1139 | /// edge is a cut edge. | 
|---|
| 1140 | /// \return The number of cut edges. | 
|---|
| 1141 | template <typename UGraph, typename UEdgeMap> | 
|---|
| 1142 | int biEdgeConnectedCutEdges(const UGraph& graph, UEdgeMap& cutMap) { | 
|---|
| 1143 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1144 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1145 | typedef typename UGraph::UEdge UEdge; | 
|---|
| 1146 | checkConcept<concept::WriteMap<UEdge, bool>, UEdgeMap>(); | 
|---|
| 1147 |  | 
|---|
| 1148 | using namespace _topology_bits; | 
|---|
| 1149 |  | 
|---|
| 1150 | typedef BiEdgeConnectedCutEdgesVisitor<UGraph, UEdgeMap> Visitor; | 
|---|
| 1151 |  | 
|---|
| 1152 | int cutNum = 0; | 
|---|
| 1153 | Visitor visitor(graph, cutMap, cutNum); | 
|---|
| 1154 |  | 
|---|
| 1155 | DfsVisit<UGraph, Visitor> dfs(graph, visitor); | 
|---|
| 1156 | dfs.init(); | 
|---|
| 1157 |  | 
|---|
| 1158 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1159 | if (!dfs.reached(it)) { | 
|---|
| 1160 | dfs.addSource(it); | 
|---|
| 1161 | dfs.start(); | 
|---|
| 1162 | } | 
|---|
| 1163 | } | 
|---|
| 1164 | return cutNum; | 
|---|
| 1165 | } | 
|---|
| 1166 |  | 
|---|
| 1167 |  | 
|---|
| 1168 | namespace _topology_bits { | 
|---|
| 1169 |  | 
|---|
| 1170 | template <typename Graph, typename IntNodeMap> | 
|---|
| 1171 | class TopologicalSortVisitor : public DfsVisitor<Graph> { | 
|---|
| 1172 | public: | 
|---|
| 1173 | typedef typename Graph::Node Node; | 
|---|
| 1174 | typedef typename Graph::Edge edge; | 
|---|
| 1175 |  | 
|---|
| 1176 | TopologicalSortVisitor(IntNodeMap& order, int num) | 
|---|
| 1177 | : _order(order), _num(num) {} | 
|---|
| 1178 |  | 
|---|
| 1179 | void leave(const Node& node) { | 
|---|
| 1180 | _order.set(node, --_num); | 
|---|
| 1181 | } | 
|---|
| 1182 |  | 
|---|
| 1183 | private: | 
|---|
| 1184 | IntNodeMap& _order; | 
|---|
| 1185 | int _num; | 
|---|
| 1186 | }; | 
|---|
| 1187 |  | 
|---|
| 1188 | } | 
|---|
| 1189 |  | 
|---|
| 1190 | /// \ingroup topology | 
|---|
| 1191 | /// | 
|---|
| 1192 | /// \brief Sort the nodes of a DAG into topolgical order. | 
|---|
| 1193 | /// | 
|---|
| 1194 | /// Sort the nodes of a DAG into topolgical order. | 
|---|
| 1195 | /// | 
|---|
| 1196 | /// \param graph The graph. It should be directed and acyclic. | 
|---|
| 1197 | /// \retval order A writable node map. The values will be set from 0 to | 
|---|
| 1198 | /// the number of the nodes in the graph minus one. Each values of the map | 
|---|
| 1199 | /// will be set exactly once, the values  will be set descending order. | 
|---|
| 1200 | /// | 
|---|
| 1201 | /// \see checkedTopologicalSort | 
|---|
| 1202 | /// \see dag | 
|---|
| 1203 | template <typename Graph, typename NodeMap> | 
|---|
| 1204 | void topologicalSort(const Graph& graph, NodeMap& order) { | 
|---|
| 1205 | using namespace _topology_bits; | 
|---|
| 1206 |  | 
|---|
| 1207 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 1208 | checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>(); | 
|---|
| 1209 |  | 
|---|
| 1210 | typedef typename Graph::Node Node; | 
|---|
| 1211 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 1212 | typedef typename Graph::Edge Edge; | 
|---|
| 1213 |  | 
|---|
| 1214 | TopologicalSortVisitor<Graph, NodeMap> | 
|---|
| 1215 | visitor(order, countNodes(graph)); | 
|---|
| 1216 |  | 
|---|
| 1217 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > | 
|---|
| 1218 | dfs(graph, visitor); | 
|---|
| 1219 |  | 
|---|
| 1220 | dfs.init(); | 
|---|
| 1221 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1222 | if (!dfs.reached(it)) { | 
|---|
| 1223 | dfs.addSource(it); | 
|---|
| 1224 | dfs.start(); | 
|---|
| 1225 | } | 
|---|
| 1226 | } | 
|---|
| 1227 | } | 
|---|
| 1228 |  | 
|---|
| 1229 | /// \ingroup topology | 
|---|
| 1230 | /// | 
|---|
| 1231 | /// \brief Sort the nodes of a DAG into topolgical order. | 
|---|
| 1232 | /// | 
|---|
| 1233 | /// Sort the nodes of a DAG into topolgical order. It also checks | 
|---|
| 1234 | /// that the given graph is DAG. | 
|---|
| 1235 | /// | 
|---|
| 1236 | /// \param graph The graph. It should be directed and acyclic. | 
|---|
| 1237 | /// \retval order A readable - writable node map. The values will be set | 
|---|
| 1238 | /// from 0 to the number of the nodes in the graph minus one. Each values | 
|---|
| 1239 | /// of the map will be set exactly once, the values will be set descending | 
|---|
| 1240 | /// order. | 
|---|
| 1241 | /// \return %False when the graph is not DAG. | 
|---|
| 1242 | /// | 
|---|
| 1243 | /// \see topologicalSort | 
|---|
| 1244 | /// \see dag | 
|---|
| 1245 | template <typename Graph, typename NodeMap> | 
|---|
| 1246 | bool checkedTopologicalSort(const Graph& graph, NodeMap& order) { | 
|---|
| 1247 | using namespace _topology_bits; | 
|---|
| 1248 |  | 
|---|
| 1249 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 1250 | checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>(); | 
|---|
| 1251 |  | 
|---|
| 1252 | typedef typename Graph::Node Node; | 
|---|
| 1253 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 1254 | typedef typename Graph::Edge Edge; | 
|---|
| 1255 |  | 
|---|
| 1256 | order = constMap<Node, int, -1>(); | 
|---|
| 1257 |  | 
|---|
| 1258 | TopologicalSortVisitor<Graph, NodeMap> | 
|---|
| 1259 | visitor(order, countNodes(graph)); | 
|---|
| 1260 |  | 
|---|
| 1261 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > | 
|---|
| 1262 | dfs(graph, visitor); | 
|---|
| 1263 |  | 
|---|
| 1264 | dfs.init(); | 
|---|
| 1265 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1266 | if (!dfs.reached(it)) { | 
|---|
| 1267 | dfs.addSource(it); | 
|---|
| 1268 | while (!dfs.emptyQueue()) { | 
|---|
| 1269 | Edge edge = dfs.nextEdge(); | 
|---|
| 1270 | Node target = graph.target(edge); | 
|---|
| 1271 | if (dfs.reached(target) && order[target] == -1) { | 
|---|
| 1272 | return false; | 
|---|
| 1273 | } | 
|---|
| 1274 | dfs.processNextEdge(); | 
|---|
| 1275 | } | 
|---|
| 1276 | } | 
|---|
| 1277 | } | 
|---|
| 1278 | return true; | 
|---|
| 1279 | } | 
|---|
| 1280 |  | 
|---|
| 1281 | /// \ingroup topology | 
|---|
| 1282 | /// | 
|---|
| 1283 | /// \brief Check that the given directed graph is a DAG. | 
|---|
| 1284 | /// | 
|---|
| 1285 | /// Check that the given directed graph is a DAG. The DAG is | 
|---|
| 1286 | /// an Directed Acyclic Graph. | 
|---|
| 1287 | /// \return %False when the graph is not DAG. | 
|---|
| 1288 | /// \see acyclic | 
|---|
| 1289 | template <typename Graph> | 
|---|
| 1290 | bool dag(const Graph& graph) { | 
|---|
| 1291 |  | 
|---|
| 1292 | checkConcept<concept::StaticGraph, Graph>(); | 
|---|
| 1293 |  | 
|---|
| 1294 | typedef typename Graph::Node Node; | 
|---|
| 1295 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 1296 | typedef typename Graph::Edge Edge; | 
|---|
| 1297 |  | 
|---|
| 1298 | typedef typename Graph::template NodeMap<bool> ProcessedMap; | 
|---|
| 1299 |  | 
|---|
| 1300 | typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>:: | 
|---|
| 1301 | Create dfs(graph); | 
|---|
| 1302 |  | 
|---|
| 1303 | ProcessedMap processed(graph); | 
|---|
| 1304 | dfs.processedMap(processed); | 
|---|
| 1305 |  | 
|---|
| 1306 | dfs.init(); | 
|---|
| 1307 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1308 | if (!dfs.reached(it)) { | 
|---|
| 1309 | dfs.addSource(it); | 
|---|
| 1310 | while (!dfs.emptyQueue()) { | 
|---|
| 1311 | Edge edge = dfs.nextEdge(); | 
|---|
| 1312 | Node target = graph.target(edge); | 
|---|
| 1313 | if (dfs.reached(target) && !processed[target]) { | 
|---|
| 1314 | return false; | 
|---|
| 1315 | } | 
|---|
| 1316 | dfs.processNextEdge(); | 
|---|
| 1317 | } | 
|---|
| 1318 | } | 
|---|
| 1319 | } | 
|---|
| 1320 | return true; | 
|---|
| 1321 | } | 
|---|
| 1322 |  | 
|---|
| 1323 | /// \ingroup topology | 
|---|
| 1324 | /// | 
|---|
| 1325 | /// \brief Check that the given undirected graph is acyclic. | 
|---|
| 1326 | /// | 
|---|
| 1327 | /// Check that the given undirected graph acyclic. | 
|---|
| 1328 | /// \param graph The undirected graph. | 
|---|
| 1329 | /// \return %True when there is no circle in the graph. | 
|---|
| 1330 | /// \see dag | 
|---|
| 1331 | template <typename UGraph> | 
|---|
| 1332 | bool acyclic(const UGraph& graph) { | 
|---|
| 1333 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1334 | typedef typename UGraph::Node Node; | 
|---|
| 1335 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1336 | typedef typename UGraph::Edge Edge; | 
|---|
| 1337 | Dfs<UGraph> dfs(graph); | 
|---|
| 1338 | dfs.init(); | 
|---|
| 1339 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1340 | if (!dfs.reached(it)) { | 
|---|
| 1341 | dfs.addSource(it); | 
|---|
| 1342 | while (!dfs.emptyQueue()) { | 
|---|
| 1343 | Edge edge = dfs.nextEdge(); | 
|---|
| 1344 | Node source = graph.source(edge); | 
|---|
| 1345 | Node target = graph.target(edge); | 
|---|
| 1346 | if (dfs.reached(target) && | 
|---|
| 1347 | dfs.predEdge(source) != graph.oppositeEdge(edge)) { | 
|---|
| 1348 | return false; | 
|---|
| 1349 | } | 
|---|
| 1350 | dfs.processNextEdge(); | 
|---|
| 1351 | } | 
|---|
| 1352 | } | 
|---|
| 1353 | } | 
|---|
| 1354 | return true; | 
|---|
| 1355 | } | 
|---|
| 1356 |  | 
|---|
| 1357 | /// \ingroup topology | 
|---|
| 1358 | /// | 
|---|
| 1359 | /// \brief Check that the given undirected graph is tree. | 
|---|
| 1360 | /// | 
|---|
| 1361 | /// Check that the given undirected graph is tree. | 
|---|
| 1362 | /// \param graph The undirected graph. | 
|---|
| 1363 | /// \return %True when the graph is acyclic and connected. | 
|---|
| 1364 | template <typename UGraph> | 
|---|
| 1365 | bool tree(const UGraph& graph) { | 
|---|
| 1366 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1367 | typedef typename UGraph::Node Node; | 
|---|
| 1368 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1369 | typedef typename UGraph::Edge Edge; | 
|---|
| 1370 | Dfs<UGraph> dfs(graph); | 
|---|
| 1371 | dfs.init(); | 
|---|
| 1372 | dfs.addSource(NodeIt(graph)); | 
|---|
| 1373 | while (!dfs.emptyQueue()) { | 
|---|
| 1374 | Edge edge = dfs.nextEdge(); | 
|---|
| 1375 | Node source = graph.source(edge); | 
|---|
| 1376 | Node target = graph.target(edge); | 
|---|
| 1377 | if (dfs.reached(target) && | 
|---|
| 1378 | dfs.predEdge(source) != graph.oppositeEdge(edge)) { | 
|---|
| 1379 | return false; | 
|---|
| 1380 | } | 
|---|
| 1381 | dfs.processNextEdge(); | 
|---|
| 1382 | } | 
|---|
| 1383 | for (NodeIt it(graph); it != INVALID; ++it) { | 
|---|
| 1384 | if (!dfs.reached(it)) { | 
|---|
| 1385 | return false; | 
|---|
| 1386 | } | 
|---|
| 1387 | } | 
|---|
| 1388 | return true; | 
|---|
| 1389 | } | 
|---|
| 1390 |  | 
|---|
| 1391 | /// \ingroup topology | 
|---|
| 1392 | /// | 
|---|
| 1393 | /// \brief Check if the given undirected graph is bipartite or not | 
|---|
| 1394 | /// | 
|---|
| 1395 | /// The function checks if the given undirected \c graph graph is bipartite | 
|---|
| 1396 | /// or not. The \ref Bfs algorithm is used to calculate the result. | 
|---|
| 1397 | /// \param graph The undirected graph. | 
|---|
| 1398 | /// \return %True if \c graph is bipartite, %false otherwise. | 
|---|
| 1399 | /// \sa bipartitePartitions | 
|---|
| 1400 | /// | 
|---|
| 1401 | /// \author Balazs Attila Mihaly | 
|---|
| 1402 | template<typename UGraph> | 
|---|
| 1403 | inline bool bipartite(const UGraph &graph){ | 
|---|
| 1404 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1405 |  | 
|---|
| 1406 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1407 | typedef typename UGraph::EdgeIt EdgeIt; | 
|---|
| 1408 |  | 
|---|
| 1409 | Bfs<UGraph> bfs(graph); | 
|---|
| 1410 | bfs.init(); | 
|---|
| 1411 | for(NodeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1412 | if(!bfs.reached(i)){ | 
|---|
| 1413 | bfs.run(i); | 
|---|
| 1414 | } | 
|---|
| 1415 | } | 
|---|
| 1416 | for(EdgeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1417 | if(bfs.dist(graph.source(i))==bfs.dist(graph.target(i)))return false; | 
|---|
| 1418 | } | 
|---|
| 1419 | return true; | 
|---|
| 1420 | }; | 
|---|
| 1421 |  | 
|---|
| 1422 | /// \ingroup topology | 
|---|
| 1423 | /// | 
|---|
| 1424 | /// \brief Check if the given undirected graph is bipartite or not | 
|---|
| 1425 | /// | 
|---|
| 1426 | /// The function checks if the given undirected graph is bipartite | 
|---|
| 1427 | /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result. | 
|---|
| 1428 | /// During the execution, the \c partMap will be set as the two | 
|---|
| 1429 | /// partitions of the graph. | 
|---|
| 1430 | /// \param graph The undirected graph. | 
|---|
| 1431 | /// \retval partMap A writable bool map of nodes. It will be set as the | 
|---|
| 1432 | /// two partitions of the graph. | 
|---|
| 1433 | /// \return %True if \c graph is bipartite, %false otherwise. | 
|---|
| 1434 | /// | 
|---|
| 1435 | /// \author Balazs Attila Mihaly | 
|---|
| 1436 | /// | 
|---|
| 1437 | /// \image html bipartite_partitions.png | 
|---|
| 1438 | /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth | 
|---|
| 1439 | template<typename UGraph, typename NodeMap> | 
|---|
| 1440 | inline bool bipartitePartitions(const UGraph &graph, NodeMap &partMap){ | 
|---|
| 1441 | checkConcept<concept::UGraph, UGraph>(); | 
|---|
| 1442 |  | 
|---|
| 1443 | typedef typename UGraph::Node Node; | 
|---|
| 1444 | typedef typename UGraph::NodeIt NodeIt; | 
|---|
| 1445 | typedef typename UGraph::EdgeIt EdgeIt; | 
|---|
| 1446 |  | 
|---|
| 1447 | Bfs<UGraph> bfs(graph); | 
|---|
| 1448 | bfs.init(); | 
|---|
| 1449 | for(NodeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1450 | if(!bfs.reached(i)){ | 
|---|
| 1451 | bfs.addSource(i); | 
|---|
| 1452 | for(Node j=bfs.processNextNode();!bfs.emptyQueue(); | 
|---|
| 1453 | j=bfs.processNextNode()){ | 
|---|
| 1454 | partMap.set(j,bfs.dist(j)%2==0); | 
|---|
| 1455 | } | 
|---|
| 1456 | } | 
|---|
| 1457 | } | 
|---|
| 1458 | for(EdgeIt i(graph);i!=INVALID;++i){ | 
|---|
| 1459 | if(bfs.dist(graph.source(i)) == bfs.dist(graph.target(i)))return false; | 
|---|
| 1460 | } | 
|---|
| 1461 | return true; | 
|---|
| 1462 | }; | 
|---|
| 1463 |  | 
|---|
| 1464 | } //namespace lemon | 
|---|
| 1465 |  | 
|---|
| 1466 | #endif //LEMON_TOPOLOGY_H | 
|---|