1 | /* -*- C++ -*- |
---|
2 | * lemon/topology.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_TOPOLOGY_H |
---|
18 | #define LEMON_TOPOLOGY_H |
---|
19 | |
---|
20 | #include <lemon/dfs.h> |
---|
21 | #include <lemon/bfs.h> |
---|
22 | #include <lemon/graph_utils.h> |
---|
23 | #include <lemon/graph_adaptor.h> |
---|
24 | #include <lemon/maps.h> |
---|
25 | |
---|
26 | #include <lemon/concept/graph.h> |
---|
27 | #include <lemon/concept/undir_graph.h> |
---|
28 | #include <lemon/concept_check.h> |
---|
29 | |
---|
30 | #include <lemon/bin_heap.h> |
---|
31 | #include <lemon/linear_heap.h> |
---|
32 | |
---|
33 | #include <stack> |
---|
34 | #include <functional> |
---|
35 | |
---|
36 | /// \ingroup topology |
---|
37 | /// \file |
---|
38 | /// \brief Topology related algorithms |
---|
39 | /// |
---|
40 | /// Topology related algorithms |
---|
41 | |
---|
42 | namespace lemon { |
---|
43 | |
---|
44 | /// \ingroup topology |
---|
45 | /// |
---|
46 | /// \brief Check that the given undirected graph is connected. |
---|
47 | /// |
---|
48 | /// Check that the given undirected graph connected. |
---|
49 | /// \param graph The undirected graph. |
---|
50 | /// \return %True when there is path between any two nodes in the graph. |
---|
51 | /// \warning The empty graph is not connected. |
---|
52 | template <typename UndirGraph> |
---|
53 | bool connected(const UndirGraph& graph) { |
---|
54 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
55 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
56 | if (NodeIt(graph) == INVALID) return false; |
---|
57 | Dfs<UndirGraph> dfs(graph); |
---|
58 | dfs.run(NodeIt(graph)); |
---|
59 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
60 | if (!dfs.reached(it)) { |
---|
61 | return false; |
---|
62 | } |
---|
63 | } |
---|
64 | return true; |
---|
65 | } |
---|
66 | |
---|
67 | /// \ingroup topology |
---|
68 | /// |
---|
69 | /// \brief Count the number of connected components of an undirected graph |
---|
70 | /// |
---|
71 | /// Count the number of connected components of an undirected graph |
---|
72 | /// |
---|
73 | /// \param g The graph. In must be undirected. |
---|
74 | /// \return The number of components |
---|
75 | template <typename UndirGraph> |
---|
76 | int countConnectedComponents(const UndirGraph &graph) { |
---|
77 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
78 | typedef typename UndirGraph::Node Node; |
---|
79 | typedef typename UndirGraph::Edge Edge; |
---|
80 | |
---|
81 | typedef NullMap<Node, Edge> PredMap; |
---|
82 | typedef NullMap<Node, int> DistMap; |
---|
83 | |
---|
84 | int compNum = 0; |
---|
85 | typename Bfs<UndirGraph>:: |
---|
86 | template DefPredMap<PredMap>:: |
---|
87 | template DefDistMap<DistMap>:: |
---|
88 | Create bfs(graph); |
---|
89 | |
---|
90 | PredMap predMap; |
---|
91 | bfs.predMap(predMap); |
---|
92 | |
---|
93 | DistMap distMap; |
---|
94 | bfs.distMap(distMap); |
---|
95 | |
---|
96 | bfs.init(); |
---|
97 | for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) { |
---|
98 | if (!bfs.reached(n)) { |
---|
99 | bfs.addSource(n); |
---|
100 | bfs.start(); |
---|
101 | ++compNum; |
---|
102 | } |
---|
103 | } |
---|
104 | return compNum; |
---|
105 | } |
---|
106 | |
---|
107 | /// \ingroup topology |
---|
108 | /// |
---|
109 | /// \brief Find the connected components of an undirected graph |
---|
110 | /// |
---|
111 | /// Find the connected components of an undirected graph. |
---|
112 | /// |
---|
113 | /// \param g The graph. In must be undirected. |
---|
114 | /// \retval comp A writable node map. The values will be set from 0 to |
---|
115 | /// the number of the connected components minus one. Each values of the map |
---|
116 | /// will be set exactly once, the values of a certain component will be |
---|
117 | /// set continuously. |
---|
118 | /// \return The number of components |
---|
119 | template <class UndirGraph, class NodeMap> |
---|
120 | int connectedComponents(const UndirGraph &graph, NodeMap &compMap) { |
---|
121 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
122 | typedef typename UndirGraph::Node Node; |
---|
123 | typedef typename UndirGraph::Edge Edge; |
---|
124 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); |
---|
125 | |
---|
126 | typedef NullMap<Node, Edge> PredMap; |
---|
127 | typedef NullMap<Node, int> DistMap; |
---|
128 | |
---|
129 | int compNum = 0; |
---|
130 | typename Bfs<UndirGraph>:: |
---|
131 | template DefPredMap<PredMap>:: |
---|
132 | template DefDistMap<DistMap>:: |
---|
133 | Create bfs(graph); |
---|
134 | |
---|
135 | PredMap predMap; |
---|
136 | bfs.predMap(predMap); |
---|
137 | |
---|
138 | DistMap distMap; |
---|
139 | bfs.distMap(distMap); |
---|
140 | |
---|
141 | bfs.init(); |
---|
142 | for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) { |
---|
143 | if(!bfs.reached(n)) { |
---|
144 | bfs.addSource(n); |
---|
145 | while (!bfs.emptyQueue()) { |
---|
146 | compMap.set(bfs.nextNode(), compNum); |
---|
147 | bfs.processNextNode(); |
---|
148 | } |
---|
149 | ++compNum; |
---|
150 | } |
---|
151 | } |
---|
152 | return compNum; |
---|
153 | } |
---|
154 | |
---|
155 | namespace _topology_bits { |
---|
156 | |
---|
157 | template <typename Graph, typename Iterator > |
---|
158 | struct LeaveOrderVisitor : public DfsVisitor<Graph> { |
---|
159 | public: |
---|
160 | typedef typename Graph::Node Node; |
---|
161 | LeaveOrderVisitor(Iterator it) : _it(it) {} |
---|
162 | |
---|
163 | void leave(const Node& node) { |
---|
164 | *(_it++) = node; |
---|
165 | } |
---|
166 | |
---|
167 | private: |
---|
168 | Iterator _it; |
---|
169 | }; |
---|
170 | |
---|
171 | template <typename Graph, typename Map> |
---|
172 | struct FillMapVisitor : public DfsVisitor<Graph> { |
---|
173 | public: |
---|
174 | typedef typename Graph::Node Node; |
---|
175 | typedef typename Map::Value Value; |
---|
176 | |
---|
177 | FillMapVisitor(Map& map, Value& value) |
---|
178 | : _map(map), _value(value) {} |
---|
179 | |
---|
180 | void reach(const Node& node) { |
---|
181 | _map.set(node, _value); |
---|
182 | } |
---|
183 | private: |
---|
184 | Map& _map; |
---|
185 | Value& _value; |
---|
186 | }; |
---|
187 | |
---|
188 | template <typename Graph, typename EdgeMap> |
---|
189 | struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> { |
---|
190 | public: |
---|
191 | typedef typename Graph::Node Node; |
---|
192 | typedef typename Graph::Edge Edge; |
---|
193 | |
---|
194 | StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, |
---|
195 | int& cutNum) |
---|
196 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
197 | _compMap(graph), _num(0) { |
---|
198 | } |
---|
199 | |
---|
200 | void stop(const Node&) { |
---|
201 | ++_num; |
---|
202 | } |
---|
203 | |
---|
204 | void reach(const Node& node) { |
---|
205 | _compMap.set(node, _num); |
---|
206 | } |
---|
207 | |
---|
208 | void examine(const Edge& edge) { |
---|
209 | if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) { |
---|
210 | _cutMap.set(edge, true); |
---|
211 | ++_cutNum; |
---|
212 | } |
---|
213 | } |
---|
214 | private: |
---|
215 | const Graph& _graph; |
---|
216 | EdgeMap& _cutMap; |
---|
217 | int& _cutNum; |
---|
218 | |
---|
219 | typename Graph::template NodeMap<int> _compMap; |
---|
220 | int _num; |
---|
221 | }; |
---|
222 | |
---|
223 | } |
---|
224 | |
---|
225 | |
---|
226 | /// \ingroup topology |
---|
227 | /// |
---|
228 | /// \brief Check that the given directed graph is strongly connected. |
---|
229 | /// |
---|
230 | /// Check that the given directed graph is strongly connected. The |
---|
231 | /// graph is strongly connected when any two nodes of the graph are |
---|
232 | /// connected with directed pathes in both direction. |
---|
233 | /// \return %False when the graph is not strongly connected. |
---|
234 | /// \see connected |
---|
235 | /// |
---|
236 | /// \waning Empty graph is not strongly connected. |
---|
237 | template <typename Graph> |
---|
238 | bool stronglyConnected(const Graph& graph) { |
---|
239 | checkConcept<concept::StaticGraph, Graph>(); |
---|
240 | if (NodeIt(graph) == INVALID) return false; |
---|
241 | |
---|
242 | typedef typename Graph::Node Node; |
---|
243 | typedef typename Graph::NodeIt NodeIt; |
---|
244 | |
---|
245 | using namespace _topology_bits; |
---|
246 | |
---|
247 | typedef DfsVisitor<Graph> Visitor; |
---|
248 | Visitor visitor; |
---|
249 | |
---|
250 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
251 | dfs.init(); |
---|
252 | dfs.addSource(NodeIt(graph)); |
---|
253 | dfs.start(); |
---|
254 | |
---|
255 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
256 | if (!dfs.reached(it)) { |
---|
257 | return false; |
---|
258 | } |
---|
259 | } |
---|
260 | |
---|
261 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
262 | RGraph rgraph(graph); |
---|
263 | |
---|
264 | typedef DfsVisitor<Graph> RVisitor; |
---|
265 | RVisitor rvisitor; |
---|
266 | |
---|
267 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
268 | rdfs.init(); |
---|
269 | rdfs.addSource(NodeIt(graph)); |
---|
270 | rdfs.start(); |
---|
271 | |
---|
272 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
273 | if (!rdfs.reached(it)) { |
---|
274 | return false; |
---|
275 | } |
---|
276 | } |
---|
277 | |
---|
278 | return true; |
---|
279 | } |
---|
280 | |
---|
281 | /// \ingroup topology |
---|
282 | /// |
---|
283 | /// \brief Count the strongly connected components of a directed graph |
---|
284 | /// |
---|
285 | /// Count the strongly connected components of a directed graph. |
---|
286 | /// The strongly connected components are the classes of an equivalence |
---|
287 | /// relation on the nodes of the graph. Two nodes are connected with |
---|
288 | /// directed paths in both direction. |
---|
289 | /// |
---|
290 | /// \param g The graph. |
---|
291 | /// \return The number of components |
---|
292 | template <typename Graph> |
---|
293 | int countStronglyConnectedComponents(const Graph& graph) { |
---|
294 | checkConcept<concept::StaticGraph, Graph>(); |
---|
295 | |
---|
296 | using namespace _topology_bits; |
---|
297 | |
---|
298 | typedef typename Graph::Node Node; |
---|
299 | typedef typename Graph::Edge Edge; |
---|
300 | typedef typename Graph::NodeIt NodeIt; |
---|
301 | typedef typename Graph::EdgeIt EdgeIt; |
---|
302 | |
---|
303 | typedef std::vector<Node> Container; |
---|
304 | typedef typename Container::iterator Iterator; |
---|
305 | |
---|
306 | Container nodes(countNodes(graph)); |
---|
307 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; |
---|
308 | Visitor visitor(nodes.begin()); |
---|
309 | |
---|
310 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
311 | dfs.init(); |
---|
312 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
313 | if (!dfs.reached(it)) { |
---|
314 | dfs.addSource(it); |
---|
315 | dfs.start(); |
---|
316 | } |
---|
317 | } |
---|
318 | |
---|
319 | typedef typename Container::reverse_iterator RIterator; |
---|
320 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
321 | |
---|
322 | RGraph rgraph(graph); |
---|
323 | |
---|
324 | typedef DfsVisitor<Graph> RVisitor; |
---|
325 | RVisitor rvisitor; |
---|
326 | |
---|
327 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
328 | |
---|
329 | int compNum = 0; |
---|
330 | |
---|
331 | rdfs.init(); |
---|
332 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
333 | if (!rdfs.reached(*it)) { |
---|
334 | rdfs.addSource(*it); |
---|
335 | rdfs.start(); |
---|
336 | ++compNum; |
---|
337 | } |
---|
338 | } |
---|
339 | return compNum; |
---|
340 | } |
---|
341 | |
---|
342 | /// \ingroup topology |
---|
343 | /// |
---|
344 | /// \brief Find the strongly connected components of a directed graph |
---|
345 | /// |
---|
346 | /// Find the strongly connected components of a directed graph. |
---|
347 | /// The strongly connected components are the classes of an equivalence |
---|
348 | /// relation on the nodes of the graph. Two nodes are in relationship |
---|
349 | /// when there are directed paths between them in both direction. |
---|
350 | /// |
---|
351 | /// \param g The graph. |
---|
352 | /// \retval comp A writable node map. The values will be set from 0 to |
---|
353 | /// the number of the strongly connected components minus one. Each values |
---|
354 | /// of the map will be set exactly once, the values of a certain component |
---|
355 | /// will be set continuously. |
---|
356 | /// \return The number of components |
---|
357 | template <typename Graph, typename NodeMap> |
---|
358 | int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) { |
---|
359 | checkConcept<concept::StaticGraph, Graph>(); |
---|
360 | typedef typename Graph::Node Node; |
---|
361 | typedef typename Graph::NodeIt NodeIt; |
---|
362 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); |
---|
363 | |
---|
364 | using namespace _topology_bits; |
---|
365 | |
---|
366 | typedef std::vector<Node> Container; |
---|
367 | typedef typename Container::iterator Iterator; |
---|
368 | |
---|
369 | Container nodes(countNodes(graph)); |
---|
370 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; |
---|
371 | Visitor visitor(nodes.begin()); |
---|
372 | |
---|
373 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
374 | dfs.init(); |
---|
375 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
376 | if (!dfs.reached(it)) { |
---|
377 | dfs.addSource(it); |
---|
378 | dfs.start(); |
---|
379 | } |
---|
380 | } |
---|
381 | |
---|
382 | typedef typename Container::reverse_iterator RIterator; |
---|
383 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
384 | |
---|
385 | RGraph rgraph(graph); |
---|
386 | |
---|
387 | int compNum = 0; |
---|
388 | |
---|
389 | typedef FillMapVisitor<RGraph, NodeMap> RVisitor; |
---|
390 | RVisitor rvisitor(compMap, compNum); |
---|
391 | |
---|
392 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
393 | |
---|
394 | rdfs.init(); |
---|
395 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
396 | if (!rdfs.reached(*it)) { |
---|
397 | rdfs.addSource(*it); |
---|
398 | rdfs.start(); |
---|
399 | ++compNum; |
---|
400 | } |
---|
401 | } |
---|
402 | return compNum; |
---|
403 | } |
---|
404 | |
---|
405 | /// \ingroup topology |
---|
406 | /// |
---|
407 | /// \brief Find the cut edges of the strongly connected components. |
---|
408 | /// |
---|
409 | /// Find the cut edges of the strongly connected components. |
---|
410 | /// The strongly connected components are the classes of an equivalence |
---|
411 | /// relation on the nodes of the graph. Two nodes are in relationship |
---|
412 | /// when there are directed paths between them in both direction. |
---|
413 | /// The strongly connected components are separated by the cut edges. |
---|
414 | /// |
---|
415 | /// \param g The graph. |
---|
416 | /// \retval comp A writable edge map. The values will be set true when |
---|
417 | /// the edge is cut edge otherwise false. |
---|
418 | /// |
---|
419 | /// \return The number of cut edges |
---|
420 | template <typename Graph, typename EdgeMap> |
---|
421 | int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { |
---|
422 | checkConcept<concept::StaticGraph, Graph>(); |
---|
423 | typedef typename Graph::Node Node; |
---|
424 | typedef typename Graph::Edge Edge; |
---|
425 | typedef typename Graph::NodeIt NodeIt; |
---|
426 | checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>(); |
---|
427 | |
---|
428 | using namespace _topology_bits; |
---|
429 | |
---|
430 | typedef std::vector<Node> Container; |
---|
431 | typedef typename Container::iterator Iterator; |
---|
432 | |
---|
433 | Container nodes(countNodes(graph)); |
---|
434 | typedef LeaveOrderVisitor<Graph, Iterator> Visitor; |
---|
435 | Visitor visitor(nodes.begin()); |
---|
436 | |
---|
437 | DfsVisit<Graph, Visitor> dfs(graph, visitor); |
---|
438 | dfs.init(); |
---|
439 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
440 | if (!dfs.reached(it)) { |
---|
441 | dfs.addSource(it); |
---|
442 | dfs.start(); |
---|
443 | } |
---|
444 | } |
---|
445 | |
---|
446 | typedef typename Container::reverse_iterator RIterator; |
---|
447 | typedef RevGraphAdaptor<const Graph> RGraph; |
---|
448 | |
---|
449 | RGraph rgraph(graph); |
---|
450 | |
---|
451 | int cutNum = 0; |
---|
452 | |
---|
453 | typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor; |
---|
454 | RVisitor rvisitor(rgraph, cutMap, cutNum); |
---|
455 | |
---|
456 | DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor); |
---|
457 | |
---|
458 | rdfs.init(); |
---|
459 | for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { |
---|
460 | if (!rdfs.reached(*it)) { |
---|
461 | rdfs.addSource(*it); |
---|
462 | rdfs.start(); |
---|
463 | } |
---|
464 | } |
---|
465 | return cutNum; |
---|
466 | } |
---|
467 | |
---|
468 | namespace _topology_bits { |
---|
469 | |
---|
470 | template <typename Graph> |
---|
471 | class CountNodeBiconnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
472 | public: |
---|
473 | typedef typename Graph::Node Node; |
---|
474 | typedef typename Graph::Edge Edge; |
---|
475 | typedef typename Graph::UndirEdge UndirEdge; |
---|
476 | |
---|
477 | CountNodeBiconnectedComponentsVisitor(const Graph& graph, int &compNum) |
---|
478 | : _graph(graph), _compNum(compNum), |
---|
479 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
480 | |
---|
481 | void start(const Node& node) { |
---|
482 | _predMap.set(node, INVALID); |
---|
483 | } |
---|
484 | |
---|
485 | void reach(const Node& node) { |
---|
486 | _numMap.set(node, _num); |
---|
487 | _retMap.set(node, _num); |
---|
488 | ++_num; |
---|
489 | } |
---|
490 | |
---|
491 | void discover(const Edge& edge) { |
---|
492 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
---|
493 | } |
---|
494 | |
---|
495 | void examine(const Edge& edge) { |
---|
496 | if (_graph.source(edge) == _graph.target(edge) && |
---|
497 | _graph.direction(edge)) { |
---|
498 | ++_compNum; |
---|
499 | return; |
---|
500 | } |
---|
501 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) { |
---|
502 | return; |
---|
503 | } |
---|
504 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
---|
505 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
---|
506 | } |
---|
507 | } |
---|
508 | |
---|
509 | void backtrack(const Edge& edge) { |
---|
510 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
511 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
512 | } |
---|
513 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
---|
514 | ++_compNum; |
---|
515 | } |
---|
516 | } |
---|
517 | |
---|
518 | private: |
---|
519 | const Graph& _graph; |
---|
520 | int& _compNum; |
---|
521 | |
---|
522 | typename Graph::template NodeMap<int> _numMap; |
---|
523 | typename Graph::template NodeMap<int> _retMap; |
---|
524 | typename Graph::template NodeMap<Node> _predMap; |
---|
525 | int _num; |
---|
526 | }; |
---|
527 | |
---|
528 | template <typename Graph, typename EdgeMap> |
---|
529 | class NodeBiconnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
530 | public: |
---|
531 | typedef typename Graph::Node Node; |
---|
532 | typedef typename Graph::Edge Edge; |
---|
533 | typedef typename Graph::UndirEdge UndirEdge; |
---|
534 | |
---|
535 | NodeBiconnectedComponentsVisitor(const Graph& graph, |
---|
536 | EdgeMap& compMap, int &compNum) |
---|
537 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
---|
538 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
539 | |
---|
540 | void start(const Node& node) { |
---|
541 | _predMap.set(node, INVALID); |
---|
542 | } |
---|
543 | |
---|
544 | void reach(const Node& node) { |
---|
545 | _numMap.set(node, _num); |
---|
546 | _retMap.set(node, _num); |
---|
547 | ++_num; |
---|
548 | } |
---|
549 | |
---|
550 | void discover(const Edge& edge) { |
---|
551 | Node target = _graph.target(edge); |
---|
552 | _predMap.set(target, edge); |
---|
553 | _edgeStack.push(edge); |
---|
554 | } |
---|
555 | |
---|
556 | void examine(const Edge& edge) { |
---|
557 | Node source = _graph.source(edge); |
---|
558 | Node target = _graph.target(edge); |
---|
559 | if (source == target && _graph.direction(edge)) { |
---|
560 | _compMap.set(edge, _compNum); |
---|
561 | ++_compNum; |
---|
562 | return; |
---|
563 | } |
---|
564 | if (_numMap[target] < _numMap[source]) { |
---|
565 | if (_predMap[source] != _graph.oppositeEdge(edge)) { |
---|
566 | _edgeStack.push(edge); |
---|
567 | } |
---|
568 | } |
---|
569 | if (_predMap[source] != INVALID && |
---|
570 | target == _graph.source(_predMap[source])) { |
---|
571 | return; |
---|
572 | } |
---|
573 | if (_retMap[source] > _numMap[target]) { |
---|
574 | _retMap.set(source, _numMap[target]); |
---|
575 | } |
---|
576 | } |
---|
577 | |
---|
578 | void backtrack(const Edge& edge) { |
---|
579 | Node source = _graph.source(edge); |
---|
580 | Node target = _graph.target(edge); |
---|
581 | if (_retMap[source] > _retMap[target]) { |
---|
582 | _retMap.set(source, _retMap[target]); |
---|
583 | } |
---|
584 | if (_numMap[source] <= _retMap[target]) { |
---|
585 | while (_edgeStack.top() != edge) { |
---|
586 | _compMap.set(_edgeStack.top(), _compNum); |
---|
587 | _edgeStack.pop(); |
---|
588 | } |
---|
589 | _compMap.set(edge, _compNum); |
---|
590 | _edgeStack.pop(); |
---|
591 | ++_compNum; |
---|
592 | } |
---|
593 | } |
---|
594 | |
---|
595 | private: |
---|
596 | const Graph& _graph; |
---|
597 | EdgeMap& _compMap; |
---|
598 | int& _compNum; |
---|
599 | |
---|
600 | typename Graph::template NodeMap<int> _numMap; |
---|
601 | typename Graph::template NodeMap<int> _retMap; |
---|
602 | typename Graph::template NodeMap<Edge> _predMap; |
---|
603 | std::stack<UndirEdge> _edgeStack; |
---|
604 | int _num; |
---|
605 | }; |
---|
606 | |
---|
607 | |
---|
608 | template <typename Graph, typename NodeMap> |
---|
609 | class NodeBiconnectedCutNodesVisitor : public DfsVisitor<Graph> { |
---|
610 | public: |
---|
611 | typedef typename Graph::Node Node; |
---|
612 | typedef typename Graph::Edge Edge; |
---|
613 | typedef typename Graph::UndirEdge UndirEdge; |
---|
614 | |
---|
615 | NodeBiconnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap, |
---|
616 | int& cutNum) |
---|
617 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
618 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
619 | |
---|
620 | void start(const Node& node) { |
---|
621 | _predMap.set(node, INVALID); |
---|
622 | rootCut = false; |
---|
623 | } |
---|
624 | |
---|
625 | void reach(const Node& node) { |
---|
626 | _numMap.set(node, _num); |
---|
627 | _retMap.set(node, _num); |
---|
628 | ++_num; |
---|
629 | } |
---|
630 | |
---|
631 | void discover(const Edge& edge) { |
---|
632 | _predMap.set(_graph.target(edge), _graph.source(edge)); |
---|
633 | } |
---|
634 | |
---|
635 | void examine(const Edge& edge) { |
---|
636 | if (_graph.source(edge) == _graph.target(edge) && |
---|
637 | _graph.direction(edge)) { |
---|
638 | if (!_cutMap[_graph.source(edge)]) { |
---|
639 | _cutMap.set(_graph.source(edge), true); |
---|
640 | ++_cutNum; |
---|
641 | } |
---|
642 | return; |
---|
643 | } |
---|
644 | if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
---|
645 | if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { |
---|
646 | _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
---|
647 | } |
---|
648 | } |
---|
649 | |
---|
650 | void backtrack(const Edge& edge) { |
---|
651 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
652 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
653 | } |
---|
654 | if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { |
---|
655 | if (_predMap[_graph.source(edge)] != INVALID) { |
---|
656 | if (!_cutMap[_graph.source(edge)]) { |
---|
657 | _cutMap.set(_graph.source(edge), true); |
---|
658 | ++_cutNum; |
---|
659 | } |
---|
660 | } else if (rootCut) { |
---|
661 | if (!_cutMap[_graph.source(edge)]) { |
---|
662 | _cutMap.set(_graph.source(edge), true); |
---|
663 | ++_cutNum; |
---|
664 | } |
---|
665 | } else { |
---|
666 | rootCut = true; |
---|
667 | } |
---|
668 | } |
---|
669 | } |
---|
670 | |
---|
671 | private: |
---|
672 | const Graph& _graph; |
---|
673 | NodeMap& _cutMap; |
---|
674 | int& _cutNum; |
---|
675 | |
---|
676 | typename Graph::template NodeMap<int> _numMap; |
---|
677 | typename Graph::template NodeMap<int> _retMap; |
---|
678 | typename Graph::template NodeMap<Node> _predMap; |
---|
679 | std::stack<UndirEdge> _edgeStack; |
---|
680 | int _num; |
---|
681 | bool rootCut; |
---|
682 | }; |
---|
683 | |
---|
684 | } |
---|
685 | |
---|
686 | template <typename UndirGraph> |
---|
687 | int countNodeBiconnectedComponents(const UndirGraph& graph); |
---|
688 | |
---|
689 | /// \ingroup topology |
---|
690 | /// |
---|
691 | /// \brief Checks the graph is node biconnected. |
---|
692 | /// |
---|
693 | /// This function checks that the undirected graph is node biconnected |
---|
694 | /// graph. The graph is node biconnected if any two undirected edge is |
---|
695 | /// on same circle. |
---|
696 | /// |
---|
697 | /// \param graph The graph. |
---|
698 | /// \return %True when the graph node biconnected. |
---|
699 | /// \todo Make it faster. |
---|
700 | template <typename UndirGraph> |
---|
701 | bool nodeBiconnected(const UndirGraph& graph) { |
---|
702 | return countNodeBiconnectedComponents(graph) == 1; |
---|
703 | } |
---|
704 | |
---|
705 | /// \ingroup topology |
---|
706 | /// |
---|
707 | /// \brief Count the biconnected components. |
---|
708 | /// |
---|
709 | /// This function finds the node biconnected components in an undirected |
---|
710 | /// graph. The biconnected components are the classes of an equivalence |
---|
711 | /// relation on the undirected edges. Two undirected edge is in relationship |
---|
712 | /// when they are on same circle. |
---|
713 | /// |
---|
714 | /// \param graph The graph. |
---|
715 | /// \return The number of components. |
---|
716 | template <typename UndirGraph> |
---|
717 | int countNodeBiconnectedComponents(const UndirGraph& graph) { |
---|
718 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
719 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
720 | |
---|
721 | using namespace _topology_bits; |
---|
722 | |
---|
723 | typedef CountNodeBiconnectedComponentsVisitor<UndirGraph> Visitor; |
---|
724 | |
---|
725 | int compNum = 0; |
---|
726 | Visitor visitor(graph, compNum); |
---|
727 | |
---|
728 | DfsVisit<UndirGraph, Visitor> dfs(graph, visitor); |
---|
729 | dfs.init(); |
---|
730 | |
---|
731 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
732 | if (!dfs.reached(it)) { |
---|
733 | dfs.addSource(it); |
---|
734 | dfs.start(); |
---|
735 | } |
---|
736 | } |
---|
737 | return compNum; |
---|
738 | } |
---|
739 | |
---|
740 | /// \ingroup topology |
---|
741 | /// |
---|
742 | /// \brief Find the node biconnected components. |
---|
743 | /// |
---|
744 | /// This function finds the node biconnected components in an undirected |
---|
745 | /// graph. The node biconnected components are the classes of an equivalence |
---|
746 | /// relation on the undirected edges. Two undirected edge are in relationship |
---|
747 | /// when they are on same circle. |
---|
748 | /// |
---|
749 | /// \param graph The graph. |
---|
750 | /// \retval comp A writable undir edge map. The values will be set from 0 to |
---|
751 | /// the number of the biconnected components minus one. Each values |
---|
752 | /// of the map will be set exactly once, the values of a certain component |
---|
753 | /// will be set continuously. |
---|
754 | /// \return The number of components. |
---|
755 | template <typename UndirGraph, typename UndirEdgeMap> |
---|
756 | int nodeBiconnectedComponents(const UndirGraph& graph, |
---|
757 | UndirEdgeMap& compMap) { |
---|
758 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
759 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
760 | typedef typename UndirGraph::UndirEdge UndirEdge; |
---|
761 | checkConcept<concept::WriteMap<UndirEdge, int>, UndirEdgeMap>(); |
---|
762 | |
---|
763 | using namespace _topology_bits; |
---|
764 | |
---|
765 | typedef NodeBiconnectedComponentsVisitor<UndirGraph, UndirEdgeMap> Visitor; |
---|
766 | |
---|
767 | int compNum = 0; |
---|
768 | Visitor visitor(graph, compMap, compNum); |
---|
769 | |
---|
770 | DfsVisit<UndirGraph, Visitor> dfs(graph, visitor); |
---|
771 | dfs.init(); |
---|
772 | |
---|
773 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
774 | if (!dfs.reached(it)) { |
---|
775 | dfs.addSource(it); |
---|
776 | dfs.start(); |
---|
777 | } |
---|
778 | } |
---|
779 | return compNum; |
---|
780 | } |
---|
781 | |
---|
782 | /// \ingroup topology |
---|
783 | /// |
---|
784 | /// \brief Find the node biconnected cut nodes. |
---|
785 | /// |
---|
786 | /// This function finds the node biconnected cut nodes in an undirected |
---|
787 | /// graph. The node biconnected components are the classes of an equivalence |
---|
788 | /// relation on the undirected edges. Two undirected edges are in |
---|
789 | /// relationship when they are on same circle. The biconnected components |
---|
790 | /// are separted by nodes which are the cut nodes of the components. |
---|
791 | /// |
---|
792 | /// \param graph The graph. |
---|
793 | /// \retval comp A writable edge map. The values will be set true when |
---|
794 | /// the node separate two or more components. |
---|
795 | /// \return The number of the cut nodes. |
---|
796 | template <typename UndirGraph, typename NodeMap> |
---|
797 | int nodeBiconnectedCutNodes(const UndirGraph& graph, NodeMap& cutMap) { |
---|
798 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
799 | typedef typename UndirGraph::Node Node; |
---|
800 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
801 | checkConcept<concept::WriteMap<Node, bool>, NodeMap>(); |
---|
802 | |
---|
803 | using namespace _topology_bits; |
---|
804 | |
---|
805 | typedef NodeBiconnectedCutNodesVisitor<UndirGraph, NodeMap> Visitor; |
---|
806 | |
---|
807 | int cutNum = 0; |
---|
808 | Visitor visitor(graph, cutMap, cutNum); |
---|
809 | |
---|
810 | DfsVisit<UndirGraph, Visitor> dfs(graph, visitor); |
---|
811 | dfs.init(); |
---|
812 | |
---|
813 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
814 | if (!dfs.reached(it)) { |
---|
815 | dfs.addSource(it); |
---|
816 | dfs.start(); |
---|
817 | } |
---|
818 | } |
---|
819 | return cutNum; |
---|
820 | } |
---|
821 | |
---|
822 | namespace _topology_bits { |
---|
823 | |
---|
824 | template <typename Graph> |
---|
825 | class CountEdgeBiconnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
826 | public: |
---|
827 | typedef typename Graph::Node Node; |
---|
828 | typedef typename Graph::Edge Edge; |
---|
829 | typedef typename Graph::UndirEdge UndirEdge; |
---|
830 | |
---|
831 | CountEdgeBiconnectedComponentsVisitor(const Graph& graph, int &compNum) |
---|
832 | : _graph(graph), _compNum(compNum), |
---|
833 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
834 | |
---|
835 | void start(const Node& node) { |
---|
836 | _predMap.set(node, INVALID); |
---|
837 | } |
---|
838 | |
---|
839 | void reach(const Node& node) { |
---|
840 | _numMap.set(node, _num); |
---|
841 | _retMap.set(node, _num); |
---|
842 | ++_num; |
---|
843 | } |
---|
844 | |
---|
845 | void leave(const Node& node) { |
---|
846 | if (_numMap[node] <= _retMap[node]) { |
---|
847 | ++_compNum; |
---|
848 | } |
---|
849 | } |
---|
850 | |
---|
851 | void discover(const Edge& edge) { |
---|
852 | _predMap.set(_graph.target(edge), edge); |
---|
853 | } |
---|
854 | |
---|
855 | void examine(const Edge& edge) { |
---|
856 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { |
---|
857 | return; |
---|
858 | } |
---|
859 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
860 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
861 | } |
---|
862 | } |
---|
863 | |
---|
864 | void backtrack(const Edge& edge) { |
---|
865 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
866 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
867 | } |
---|
868 | } |
---|
869 | |
---|
870 | private: |
---|
871 | const Graph& _graph; |
---|
872 | int& _compNum; |
---|
873 | |
---|
874 | typename Graph::template NodeMap<int> _numMap; |
---|
875 | typename Graph::template NodeMap<int> _retMap; |
---|
876 | typename Graph::template NodeMap<Edge> _predMap; |
---|
877 | int _num; |
---|
878 | }; |
---|
879 | |
---|
880 | template <typename Graph, typename NodeMap> |
---|
881 | class EdgeBiconnectedComponentsVisitor : public DfsVisitor<Graph> { |
---|
882 | public: |
---|
883 | typedef typename Graph::Node Node; |
---|
884 | typedef typename Graph::Edge Edge; |
---|
885 | typedef typename Graph::UndirEdge UndirEdge; |
---|
886 | |
---|
887 | EdgeBiconnectedComponentsVisitor(const Graph& graph, |
---|
888 | NodeMap& compMap, int &compNum) |
---|
889 | : _graph(graph), _compMap(compMap), _compNum(compNum), |
---|
890 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
891 | |
---|
892 | void start(const Node& node) { |
---|
893 | _predMap.set(node, INVALID); |
---|
894 | } |
---|
895 | |
---|
896 | void reach(const Node& node) { |
---|
897 | _numMap.set(node, _num); |
---|
898 | _retMap.set(node, _num); |
---|
899 | _nodeStack.push(node); |
---|
900 | ++_num; |
---|
901 | } |
---|
902 | |
---|
903 | void leave(const Node& node) { |
---|
904 | if (_numMap[node] <= _retMap[node]) { |
---|
905 | while (_nodeStack.top() != node) { |
---|
906 | _compMap.set(_nodeStack.top(), _compNum); |
---|
907 | _nodeStack.pop(); |
---|
908 | } |
---|
909 | _compMap.set(node, _compNum); |
---|
910 | _nodeStack.pop(); |
---|
911 | ++_compNum; |
---|
912 | } |
---|
913 | } |
---|
914 | |
---|
915 | void discover(const Edge& edge) { |
---|
916 | _predMap.set(_graph.target(edge), edge); |
---|
917 | } |
---|
918 | |
---|
919 | void examine(const Edge& edge) { |
---|
920 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { |
---|
921 | return; |
---|
922 | } |
---|
923 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
924 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
925 | } |
---|
926 | } |
---|
927 | |
---|
928 | void backtrack(const Edge& edge) { |
---|
929 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
930 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
931 | } |
---|
932 | } |
---|
933 | |
---|
934 | private: |
---|
935 | const Graph& _graph; |
---|
936 | NodeMap& _compMap; |
---|
937 | int& _compNum; |
---|
938 | |
---|
939 | typename Graph::template NodeMap<int> _numMap; |
---|
940 | typename Graph::template NodeMap<int> _retMap; |
---|
941 | typename Graph::template NodeMap<Edge> _predMap; |
---|
942 | std::stack<Node> _nodeStack; |
---|
943 | int _num; |
---|
944 | }; |
---|
945 | |
---|
946 | |
---|
947 | template <typename Graph, typename EdgeMap> |
---|
948 | class EdgeBiconnectedCutEdgesVisitor : public DfsVisitor<Graph> { |
---|
949 | public: |
---|
950 | typedef typename Graph::Node Node; |
---|
951 | typedef typename Graph::Edge Edge; |
---|
952 | typedef typename Graph::UndirEdge UndirEdge; |
---|
953 | |
---|
954 | EdgeBiconnectedCutEdgesVisitor(const Graph& graph, |
---|
955 | EdgeMap& cutMap, int &cutNum) |
---|
956 | : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
---|
957 | _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} |
---|
958 | |
---|
959 | void start(const Node& node) { |
---|
960 | _predMap[node] = INVALID; |
---|
961 | } |
---|
962 | |
---|
963 | void reach(const Node& node) { |
---|
964 | _numMap.set(node, _num); |
---|
965 | _retMap.set(node, _num); |
---|
966 | ++_num; |
---|
967 | } |
---|
968 | |
---|
969 | void leave(const Node& node) { |
---|
970 | if (_numMap[node] <= _retMap[node]) { |
---|
971 | if (_predMap[node] != INVALID) { |
---|
972 | _cutMap.set(_predMap[node], true); |
---|
973 | ++_cutNum; |
---|
974 | } |
---|
975 | } |
---|
976 | } |
---|
977 | |
---|
978 | void discover(const Edge& edge) { |
---|
979 | _predMap.set(_graph.target(edge), edge); |
---|
980 | } |
---|
981 | |
---|
982 | void examine(const Edge& edge) { |
---|
983 | if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) { |
---|
984 | return; |
---|
985 | } |
---|
986 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
987 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
988 | } |
---|
989 | } |
---|
990 | |
---|
991 | void backtrack(const Edge& edge) { |
---|
992 | if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { |
---|
993 | _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
---|
994 | } |
---|
995 | } |
---|
996 | |
---|
997 | private: |
---|
998 | const Graph& _graph; |
---|
999 | EdgeMap& _cutMap; |
---|
1000 | int& _cutNum; |
---|
1001 | |
---|
1002 | typename Graph::template NodeMap<int> _numMap; |
---|
1003 | typename Graph::template NodeMap<int> _retMap; |
---|
1004 | typename Graph::template NodeMap<Edge> _predMap; |
---|
1005 | int _num; |
---|
1006 | }; |
---|
1007 | } |
---|
1008 | |
---|
1009 | template <typename UndirGraph> |
---|
1010 | int countEdgeBiconnectedComponents(const UndirGraph& graph); |
---|
1011 | |
---|
1012 | /// \ingroup topology |
---|
1013 | /// |
---|
1014 | /// \brief Checks that the graph is edge biconnected. |
---|
1015 | /// |
---|
1016 | /// This function checks that the graph is edge biconnected. The undirected |
---|
1017 | /// graph is edge biconnected when any two nodes are connected with two |
---|
1018 | /// edge-disjoint paths. |
---|
1019 | /// |
---|
1020 | /// \param graph The undirected graph. |
---|
1021 | /// \return The number of components. |
---|
1022 | /// \todo Make it faster. |
---|
1023 | template <typename UndirGraph> |
---|
1024 | bool edgeBiconnected(const UndirGraph& graph) { |
---|
1025 | return countEdgeBiconnectedComponents(graph) == 1; |
---|
1026 | } |
---|
1027 | |
---|
1028 | /// \ingroup topology |
---|
1029 | /// |
---|
1030 | /// \brief Count the edge biconnected components. |
---|
1031 | /// |
---|
1032 | /// This function count the edge biconnected components in an undirected |
---|
1033 | /// graph. The edge biconnected components are the classes of an equivalence |
---|
1034 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1035 | /// connected with at least two edge-disjoint paths. |
---|
1036 | /// |
---|
1037 | /// \param graph The undirected graph. |
---|
1038 | /// \return The number of components. |
---|
1039 | template <typename UndirGraph> |
---|
1040 | int countEdgeBiconnectedComponents(const UndirGraph& graph) { |
---|
1041 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
1042 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
1043 | |
---|
1044 | using namespace _topology_bits; |
---|
1045 | |
---|
1046 | typedef CountEdgeBiconnectedComponentsVisitor<UndirGraph> Visitor; |
---|
1047 | |
---|
1048 | int compNum = 0; |
---|
1049 | Visitor visitor(graph, compNum); |
---|
1050 | |
---|
1051 | DfsVisit<UndirGraph, Visitor> dfs(graph, visitor); |
---|
1052 | dfs.init(); |
---|
1053 | |
---|
1054 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1055 | if (!dfs.reached(it)) { |
---|
1056 | dfs.addSource(it); |
---|
1057 | dfs.start(); |
---|
1058 | } |
---|
1059 | } |
---|
1060 | return compNum; |
---|
1061 | } |
---|
1062 | |
---|
1063 | /// \ingroup topology |
---|
1064 | /// |
---|
1065 | /// \brief Find the edge biconnected components. |
---|
1066 | /// |
---|
1067 | /// This function finds the edge biconnected components in an undirected |
---|
1068 | /// graph. The edge biconnected components are the classes of an equivalence |
---|
1069 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1070 | /// connected at least two edge-disjoint paths. |
---|
1071 | /// |
---|
1072 | /// \param graph The graph. |
---|
1073 | /// \retval comp A writable node map. The values will be set from 0 to |
---|
1074 | /// the number of the biconnected components minus one. Each values |
---|
1075 | /// of the map will be set exactly once, the values of a certain component |
---|
1076 | /// will be set continuously. |
---|
1077 | /// \return The number of components. |
---|
1078 | template <typename UndirGraph, typename NodeMap> |
---|
1079 | int edgeBiconnectedComponents(const UndirGraph& graph, NodeMap& compMap) { |
---|
1080 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
1081 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
1082 | typedef typename UndirGraph::Node Node; |
---|
1083 | checkConcept<concept::WriteMap<Node, int>, NodeMap>(); |
---|
1084 | |
---|
1085 | using namespace _topology_bits; |
---|
1086 | |
---|
1087 | typedef EdgeBiconnectedComponentsVisitor<UndirGraph, NodeMap> Visitor; |
---|
1088 | |
---|
1089 | int compNum = 0; |
---|
1090 | Visitor visitor(graph, compMap, compNum); |
---|
1091 | |
---|
1092 | DfsVisit<UndirGraph, Visitor> dfs(graph, visitor); |
---|
1093 | dfs.init(); |
---|
1094 | |
---|
1095 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1096 | if (!dfs.reached(it)) { |
---|
1097 | dfs.addSource(it); |
---|
1098 | dfs.start(); |
---|
1099 | } |
---|
1100 | } |
---|
1101 | return compNum; |
---|
1102 | } |
---|
1103 | |
---|
1104 | /// \ingroup topology |
---|
1105 | /// |
---|
1106 | /// \brief Find the edge biconnected cut edges. |
---|
1107 | /// |
---|
1108 | /// This function finds the edge biconnected components in an undirected |
---|
1109 | /// graph. The edge biconnected components are the classes of an equivalence |
---|
1110 | /// relation on the nodes. Two nodes are in relationship when they are |
---|
1111 | /// connected with at least two edge-disjoint paths. The edge biconnected |
---|
1112 | /// components are separted by edges which are the cut edges of the |
---|
1113 | /// components. |
---|
1114 | /// |
---|
1115 | /// \param graph The graph. |
---|
1116 | /// \retval comp A writable node map. The values will be set true when the |
---|
1117 | /// edge is a cut edge. |
---|
1118 | /// \return The number of cut edges. |
---|
1119 | template <typename UndirGraph, typename UndirEdgeMap> |
---|
1120 | int edgeBiconnectedCutEdges(const UndirGraph& graph, UndirEdgeMap& cutMap) { |
---|
1121 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
1122 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
1123 | typedef typename UndirGraph::UndirEdge UndirEdge; |
---|
1124 | checkConcept<concept::WriteMap<UndirEdge, bool>, UndirEdgeMap>(); |
---|
1125 | |
---|
1126 | using namespace _topology_bits; |
---|
1127 | |
---|
1128 | typedef EdgeBiconnectedCutEdgesVisitor<UndirGraph, UndirEdgeMap> Visitor; |
---|
1129 | |
---|
1130 | int cutNum = 0; |
---|
1131 | Visitor visitor(graph, cutMap, cutNum); |
---|
1132 | |
---|
1133 | DfsVisit<UndirGraph, Visitor> dfs(graph, visitor); |
---|
1134 | dfs.init(); |
---|
1135 | |
---|
1136 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1137 | if (!dfs.reached(it)) { |
---|
1138 | dfs.addSource(it); |
---|
1139 | dfs.start(); |
---|
1140 | } |
---|
1141 | } |
---|
1142 | return cutNum; |
---|
1143 | } |
---|
1144 | |
---|
1145 | |
---|
1146 | namespace _topology_bits { |
---|
1147 | |
---|
1148 | template <typename Graph, typename IntNodeMap> |
---|
1149 | class TopologicalSortVisitor : public DfsVisitor<Graph> { |
---|
1150 | public: |
---|
1151 | typedef typename Graph::Node Node; |
---|
1152 | typedef typename Graph::Edge edge; |
---|
1153 | |
---|
1154 | TopologicalSortVisitor(IntNodeMap& order, int num) |
---|
1155 | : _order(order), _num(num) {} |
---|
1156 | |
---|
1157 | void leave(const Node& node) { |
---|
1158 | _order.set(node, --_num); |
---|
1159 | } |
---|
1160 | |
---|
1161 | private: |
---|
1162 | IntNodeMap& _order; |
---|
1163 | int _num; |
---|
1164 | }; |
---|
1165 | |
---|
1166 | } |
---|
1167 | |
---|
1168 | /// \ingroup topology |
---|
1169 | /// |
---|
1170 | /// \brief Sort the nodes of a DAG into topolgical order. |
---|
1171 | /// |
---|
1172 | /// Sort the nodes of a DAG into topolgical order. |
---|
1173 | /// |
---|
1174 | /// \param g The graph. In must be directed and acyclic. |
---|
1175 | /// \retval comp A writable node map. The values will be set from 0 to |
---|
1176 | /// the number of the nodes in the graph minus one. Each values of the map |
---|
1177 | /// will be set exactly once, the values will be set descending order. |
---|
1178 | /// |
---|
1179 | /// \see checkedTopologicalSort |
---|
1180 | /// \see dag |
---|
1181 | template <typename Graph, typename NodeMap> |
---|
1182 | void topologicalSort(const Graph& graph, NodeMap& order) { |
---|
1183 | using namespace _topology_bits; |
---|
1184 | |
---|
1185 | checkConcept<concept::StaticGraph, Graph>(); |
---|
1186 | checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>(); |
---|
1187 | |
---|
1188 | typedef typename Graph::Node Node; |
---|
1189 | typedef typename Graph::NodeIt NodeIt; |
---|
1190 | typedef typename Graph::Edge Edge; |
---|
1191 | |
---|
1192 | TopologicalSortVisitor<Graph, NodeMap> |
---|
1193 | visitor(order, countNodes(graph)); |
---|
1194 | |
---|
1195 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > |
---|
1196 | dfs(graph, visitor); |
---|
1197 | |
---|
1198 | dfs.init(); |
---|
1199 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1200 | if (!dfs.reached(it)) { |
---|
1201 | dfs.addSource(it); |
---|
1202 | dfs.start(); |
---|
1203 | } |
---|
1204 | } |
---|
1205 | } |
---|
1206 | |
---|
1207 | /// \ingroup topology |
---|
1208 | /// |
---|
1209 | /// \brief Sort the nodes of a DAG into topolgical order. |
---|
1210 | /// |
---|
1211 | /// Sort the nodes of a DAG into topolgical order. It also checks |
---|
1212 | /// that the given graph is DAG. |
---|
1213 | /// |
---|
1214 | /// \param g The graph. In must be directed and acyclic. |
---|
1215 | /// \retval order A readable - writable node map. The values will be set |
---|
1216 | /// from 0 to the number of the nodes in the graph minus one. Each values |
---|
1217 | /// of the map will be set exactly once, the values will be set descending |
---|
1218 | /// order. |
---|
1219 | /// \return %False when the graph is not DAG. |
---|
1220 | /// |
---|
1221 | /// \see topologicalSort |
---|
1222 | /// \see dag |
---|
1223 | template <typename Graph, typename NodeMap> |
---|
1224 | bool checkedTopologicalSort(const Graph& graph, NodeMap& order) { |
---|
1225 | using namespace _topology_bits; |
---|
1226 | |
---|
1227 | checkConcept<concept::StaticGraph, Graph>(); |
---|
1228 | checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>(); |
---|
1229 | |
---|
1230 | typedef typename Graph::Node Node; |
---|
1231 | typedef typename Graph::NodeIt NodeIt; |
---|
1232 | typedef typename Graph::Edge Edge; |
---|
1233 | |
---|
1234 | order = constMap<Node, int, -1>(); |
---|
1235 | |
---|
1236 | TopologicalSortVisitor<Graph, NodeMap> |
---|
1237 | visitor(order, countNodes(graph)); |
---|
1238 | |
---|
1239 | DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> > |
---|
1240 | dfs(graph, visitor); |
---|
1241 | |
---|
1242 | dfs.init(); |
---|
1243 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1244 | if (!dfs.reached(it)) { |
---|
1245 | dfs.addSource(it); |
---|
1246 | while (!dfs.emptyQueue()) { |
---|
1247 | Edge edge = dfs.nextEdge(); |
---|
1248 | Node target = graph.target(edge); |
---|
1249 | if (dfs.reached(target) && order[target] == -1) { |
---|
1250 | return false; |
---|
1251 | } |
---|
1252 | dfs.processNextEdge(); |
---|
1253 | } |
---|
1254 | } |
---|
1255 | } |
---|
1256 | return true; |
---|
1257 | } |
---|
1258 | |
---|
1259 | /// \ingroup topology |
---|
1260 | /// |
---|
1261 | /// \brief Check that the given directed graph is a DAG. |
---|
1262 | /// |
---|
1263 | /// Check that the given directed graph is a DAG. The DAG is |
---|
1264 | /// an Directed Acyclic Graph. |
---|
1265 | /// \return %False when the graph is not DAG. |
---|
1266 | /// \see acyclic |
---|
1267 | template <typename Graph> |
---|
1268 | bool dag(const Graph& graph) { |
---|
1269 | |
---|
1270 | checkConcept<concept::StaticGraph, Graph>(); |
---|
1271 | |
---|
1272 | typedef typename Graph::Node Node; |
---|
1273 | typedef typename Graph::NodeIt NodeIt; |
---|
1274 | typedef typename Graph::Edge Edge; |
---|
1275 | |
---|
1276 | typedef typename Graph::template NodeMap<bool> ProcessedMap; |
---|
1277 | |
---|
1278 | typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>:: |
---|
1279 | Create dfs(graph); |
---|
1280 | |
---|
1281 | ProcessedMap processed(graph); |
---|
1282 | dfs.processedMap(processed); |
---|
1283 | |
---|
1284 | dfs.init(); |
---|
1285 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1286 | if (!dfs.reached(it)) { |
---|
1287 | dfs.addSource(it); |
---|
1288 | while (!dfs.emptyQueue()) { |
---|
1289 | Edge edge = dfs.nextEdge(); |
---|
1290 | Node target = graph.target(edge); |
---|
1291 | if (dfs.reached(target) && !processed[target]) { |
---|
1292 | return false; |
---|
1293 | } |
---|
1294 | dfs.processNextEdge(); |
---|
1295 | } |
---|
1296 | } |
---|
1297 | } |
---|
1298 | return true; |
---|
1299 | } |
---|
1300 | |
---|
1301 | /// \ingroup topology |
---|
1302 | /// |
---|
1303 | /// \brief Check that the given undirected graph is acyclic. |
---|
1304 | /// |
---|
1305 | /// Check that the given undirected graph acyclic. |
---|
1306 | /// \param graph The undirected graph. |
---|
1307 | /// \return %True when there is no circle in the graph. |
---|
1308 | /// \see dag |
---|
1309 | template <typename UndirGraph> |
---|
1310 | bool acyclic(const UndirGraph& graph) { |
---|
1311 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
1312 | typedef typename UndirGraph::Node Node; |
---|
1313 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
1314 | typedef typename UndirGraph::Edge Edge; |
---|
1315 | Dfs<UndirGraph> dfs(graph); |
---|
1316 | dfs.init(); |
---|
1317 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1318 | if (!dfs.reached(it)) { |
---|
1319 | dfs.addSource(it); |
---|
1320 | while (!dfs.emptyQueue()) { |
---|
1321 | Edge edge = dfs.nextEdge(); |
---|
1322 | Node source = graph.source(edge); |
---|
1323 | Node target = graph.target(edge); |
---|
1324 | if (dfs.reached(target) && |
---|
1325 | dfs.pred(source) != graph.oppositeEdge(edge)) { |
---|
1326 | return false; |
---|
1327 | } |
---|
1328 | dfs.processNextEdge(); |
---|
1329 | } |
---|
1330 | } |
---|
1331 | } |
---|
1332 | return true; |
---|
1333 | } |
---|
1334 | |
---|
1335 | /// \ingroup topology |
---|
1336 | /// |
---|
1337 | /// \brief Check that the given undirected graph is tree. |
---|
1338 | /// |
---|
1339 | /// Check that the given undirected graph is tree. |
---|
1340 | /// \param graph The undirected graph. |
---|
1341 | /// \return %True when the graph is acyclic and connected. |
---|
1342 | template <typename UndirGraph> |
---|
1343 | bool tree(const UndirGraph& graph) { |
---|
1344 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
1345 | typedef typename UndirGraph::Node Node; |
---|
1346 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
1347 | typedef typename UndirGraph::Edge Edge; |
---|
1348 | Dfs<UndirGraph> dfs(graph); |
---|
1349 | dfs.init(); |
---|
1350 | dfs.addSource(NodeIt(graph)); |
---|
1351 | while (!dfs.emptyQueue()) { |
---|
1352 | Edge edge = dfs.nextEdge(); |
---|
1353 | Node source = graph.source(edge); |
---|
1354 | Node target = graph.target(edge); |
---|
1355 | if (dfs.reached(target) && |
---|
1356 | dfs.pred(source) != graph.oppositeEdge(edge)) { |
---|
1357 | return false; |
---|
1358 | } |
---|
1359 | dfs.processNextEdge(); |
---|
1360 | } |
---|
1361 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1362 | if (!dfs.reached(it)) { |
---|
1363 | return false; |
---|
1364 | } |
---|
1365 | } |
---|
1366 | return true; |
---|
1367 | } |
---|
1368 | |
---|
1369 | /// \ingroup topology |
---|
1370 | /// |
---|
1371 | /// \brief Check that the given undirected graph is bipartite. |
---|
1372 | /// |
---|
1373 | /// Check that the given undirected graph is bipartite. |
---|
1374 | /// \param graph The undirected graph. |
---|
1375 | /// \return %True when the nodes can be separated into two sets that |
---|
1376 | /// there are not connected nodes in neither sets. |
---|
1377 | template <typename UndirGraph> |
---|
1378 | bool bipartite(const UndirGraph& graph) { |
---|
1379 | checkConcept<concept::UndirGraph, UndirGraph>(); |
---|
1380 | typedef typename UndirGraph::Node Node; |
---|
1381 | typedef typename UndirGraph::NodeIt NodeIt; |
---|
1382 | typedef typename UndirGraph::Edge Edge; |
---|
1383 | if (NodeIt(graph) == INVALID) return false; |
---|
1384 | Dfs<UndirGraph> dfs(graph); |
---|
1385 | dfs.init(); |
---|
1386 | typename UndirGraph::template NodeMap<bool> red(graph); |
---|
1387 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
1388 | if (!dfs.reached(it)) { |
---|
1389 | dfs.addSource(it); |
---|
1390 | red[it] = true; |
---|
1391 | while (!dfs.emptyQueue()) { |
---|
1392 | Edge edge = dfs.nextEdge(); |
---|
1393 | Node source = graph.source(edge); |
---|
1394 | Node target = graph.target(edge); |
---|
1395 | if (dfs.reached(target) && red[source] == red[target]) { |
---|
1396 | return false; |
---|
1397 | } else { |
---|
1398 | red[target] = !red[source]; |
---|
1399 | } |
---|
1400 | dfs.processNextEdge(); |
---|
1401 | } |
---|
1402 | } |
---|
1403 | } |
---|
1404 | return true; |
---|
1405 | } |
---|
1406 | |
---|
1407 | } //namespace lemon |
---|
1408 | |
---|
1409 | #endif //LEMON_TOPOLOGY_H |
---|