COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/xy.h @ 1866:c2de2ed28e59

Last change on this file since 1866:c2de2ed28e59 was 1706:163746ec3094, checked in by Balazs Dezso, 14 years ago

Removing NeedCopy?

File size: 12.3 KB
Line 
1/* -*- C++ -*-
2 * lemon/xy.h - Part of LEMON, a generic C++ optimization library
3 *
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
17#ifndef LEMON_XY_H
18#define LEMON_XY_H
19
20#include <iostream>
21#include <lemon/utility.h>
22
23///\ingroup misc
24///\file
25///\brief A simple two dimensional vector and a bounding box implementation
26///
27/// The class \ref lemon::xy "xy" implements
28///a two dimensional vector with the usual
29/// operations.
30///
31/// The class \ref lemon::BoundingBox "BoundingBox" can be used to determine
32/// the rectangular bounding box of a set of \ref lemon::xy "xy"'s.
33///
34///\author Attila Bernath
35
36
37namespace lemon {
38
39  /// \addtogroup misc
40  /// @{
41
42  /// A simple two dimensional vector (plainvector) implementation
43
44  /// A simple two dimensional vector (plainvector) implementation
45  ///with the usual vector
46  /// operators.
47  ///
48  ///\author Attila Bernath
49  template<typename T>
50    class xy {
51
52    public:
53
54      typedef T Value;
55
56      T x,y;     
57     
58      ///Default constructor
59      xy() {}
60
61      ///Constructing the instance from coordinates
62      xy(T a, T b) : x(a), y(b) { }
63
64
65      ///Conversion constructor
66      template<class TT> xy(const xy<TT> &p) : x(p.x), y(p.y) {}
67
68      ///Gives back the square of the norm of the vector
69      T normSquare() const {
70        return x*x+y*y;
71      }
72 
73      ///Increments the left hand side by u
74      xy<T>& operator +=(const xy<T>& u) {
75        x += u.x;
76        y += u.y;
77        return *this;
78      }
79 
80      ///Decrements the left hand side by u
81      xy<T>& operator -=(const xy<T>& u) {
82        x -= u.x;
83        y -= u.y;
84        return *this;
85      }
86
87      ///Multiplying the left hand side with a scalar
88      xy<T>& operator *=(const T &u) {
89        x *= u;
90        y *= u;
91        return *this;
92      }
93
94      ///Dividing the left hand side by a scalar
95      xy<T>& operator /=(const T &u) {
96        x /= u;
97        y /= u;
98        return *this;
99      }
100 
101      ///Returns the scalar product of two vectors
102      T operator *(const xy<T>& u) const {
103        return x*u.x+y*u.y;
104      }
105 
106      ///Returns the sum of two vectors
107      xy<T> operator+(const xy<T> &u) const {
108        xy<T> b=*this;
109        return b+=u;
110      }
111
112      ///Returns the neg of the vectors
113      xy<T> operator-() const {
114        xy<T> b=*this;
115        b.x=-b.x; b.y=-b.y;
116        return b;
117      }
118
119      ///Returns the difference of two vectors
120      xy<T> operator-(const xy<T> &u) const {
121        xy<T> b=*this;
122        return b-=u;
123      }
124
125      ///Returns a vector multiplied by a scalar
126      xy<T> operator*(const T &u) const {
127        xy<T> b=*this;
128        return b*=u;
129      }
130
131      ///Returns a vector divided by a scalar
132      xy<T> operator/(const T &u) const {
133        xy<T> b=*this;
134        return b/=u;
135      }
136
137      ///Testing equality
138      bool operator==(const xy<T> &u) const {
139        return (x==u.x) && (y==u.y);
140      }
141
142      ///Testing inequality
143      bool operator!=(xy u) const {
144        return  (x!=u.x) || (y!=u.y);
145      }
146
147    };
148
149  ///Returns a vector multiplied by a scalar
150
151  ///Returns a vector multiplied by a scalar
152  ///\relates xy
153  template<typename T> xy<T> operator*(const T &u,const xy<T> &x) {
154    return x*u;
155  }
156
157  ///Read a plainvector from a stream
158
159  ///Read a plainvector from a stream
160  ///\relates xy
161  ///
162  template<typename T>
163  inline std::istream& operator>>(std::istream &is, xy<T> &z) {
164    char c;
165    if (is >> c) {
166      if (c != '(') is.putback(c);
167    } else {
168      is.clear();
169    }
170    if (!(is >> z.x)) return is;
171    if (is >> c) {
172      if (c != ',') is.putback(c);
173    } else {
174      is.clear();
175    }
176    if (!(is >> z.y)) return is;
177    if (is >> c) {
178      if (c != ')') is.putback(c);
179    } else {
180      is.clear();
181    }
182    return is;
183  }
184
185  ///Write a plainvector to a stream
186
187  ///Write a plainvector to a stream
188  ///\relates xy
189  ///
190  template<typename T>
191  inline std::ostream& operator<<(std::ostream &os, const xy<T>& z)
192  {
193    os << "(" << z.x << ", " << z.y << ")";
194    return os;
195  }
196
197  ///Rotate by 90 degrees
198
199  ///Returns its parameter rotated by 90 degrees in positive direction.
200  ///\relates xy
201  ///
202  template<typename T>
203  inline xy<T> rot90(const xy<T> &z)
204  {
205    return xy<T>(-z.y,z.x);
206  }
207
208  ///Rotate by 270 degrees
209
210  ///Returns its parameter rotated by 90 degrees in negative direction.
211  ///\relates xy
212  ///
213  template<typename T>
214  inline xy<T> rot270(const xy<T> &z)
215  {
216    return xy<T>(z.y,-z.x);
217  }
218
219 
220
221  /// A class to calculate or store the bounding box of plainvectors.
222
223  /// A class to calculate or store the bounding box of plainvectors.
224  ///
225  ///\author Attila Bernath
226  template<typename T>
227    class BoundingBox {
228      xy<T> bottom_left, top_right;
229      bool _empty;
230    public:
231     
232      ///Default constructor: creates an empty bounding box
233      BoundingBox() { _empty = true; }
234
235      ///Constructing the instance from one point
236      BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
237
238      ///Were any points added?
239      bool empty() const {
240        return _empty;
241      }
242
243      ///Makes the BoundingBox empty
244      void clear() {
245        _empty=1;
246      }
247
248      ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined)
249      xy<T> bottomLeft() const {
250        return bottom_left;
251      }
252
253      ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined)
254      xy<T> topRight() const {
255        return top_right;
256      }
257
258      ///Gives back the bottom right corner (if the bounding box is empty, then the return value is not defined)
259      xy<T> bottomRight() const {
260        return xy<T>(top_right.x,bottom_left.y);
261      }
262
263      ///Gives back the top left corner (if the bounding box is empty, then the return value is not defined)
264      xy<T> topLeft() const {
265        return xy<T>(bottom_left.x,top_right.y);
266      }
267
268      ///Gives back the bottom of the box (if the bounding box is empty, then the return value is not defined)
269      T bottom() const {
270        return bottom_left.y;
271      }
272
273      ///Gives back the top of the box (if the bounding box is empty, then the return value is not defined)
274      T top() const {
275        return top_right.y;
276      }
277
278      ///Gives back the left side of the box (if the bounding box is empty, then the return value is not defined)
279      T left() const {
280        return bottom_left.x;
281      }
282
283      ///Gives back the right side of the box (if the bounding box is empty, then the return value is not defined)
284      T right() const {
285        return top_right.x;
286      }
287
288      ///Gives back the height of the box (if the bounding box is empty, then the return value is not defined)
289      T height() const {
290        return top_right.y-bottom_left.y;
291      }
292
293      ///Gives back the width of the box (if the bounding box is empty, then the return value is not defined)
294      T width() const {
295        return top_right.x-bottom_left.x;
296      }
297
298      ///Checks whether a point is inside a bounding box
299      bool inside(const xy<T>& u){
300        if (_empty)
301          return false;
302        else{
303          return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
304              (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
305        }
306      }
307 
308      ///Increments a bounding box with a point
309      BoundingBox& add(const xy<T>& u){
310        if (_empty){
311          bottom_left=top_right=u;
312          _empty = false;
313        }
314        else{
315          if (bottom_left.x > u.x) bottom_left.x = u.x;
316          if (bottom_left.y > u.y) bottom_left.y = u.y;
317          if (top_right.x < u.x) top_right.x = u.x;
318          if (top_right.y < u.y) top_right.y = u.y;
319        }
320        return *this;
321      }
322 
323//       ///Sums a bounding box and a point
324//       BoundingBox operator +(const xy<T>& u){
325//         BoundingBox b = *this;
326//         return b += u;
327//       }
328
329      ///Increments a bounding box with an other bounding box
330      BoundingBox& add(const BoundingBox &u){
331        if ( !u.empty() ){
332          this->add(u.bottomLeft());
333          this->add(u.topRight());
334        }
335        return *this;
336      }
337 
338      ///Sums two bounding boxes
339      BoundingBox operator +(const BoundingBox& u){
340        BoundingBox b = *this;
341        return b.add(u);
342      }
343
344
345      ///Intersection of two bounding boxes
346      BoundingBox operator &(const BoundingBox& u){
347        BoundingBox b;
348        b.bottom_left.x=std::max(this->bottom_left.x,u.bottom_left.x);
349        b.bottom_left.y=std::max(this->bottom_left.y,u.bottom_left.y);
350        b.top_right.x=std::min(this->top_right.x,u.top_right.x);
351        b.top_right.y=std::min(this->top_right.y,u.top_right.y);
352        b._empty = this->_empty || u._empty ||
353          b.bottom_left.x>top_right.x && b.bottom_left.y>top_right.y;
354        return b;
355      }
356
357    };//class Boundingbox
358
359
360  ///Map of x-coordinates of an xy<>-map
361
362  ///\ingroup maps
363  ///
364  template<class M>
365  class XMap
366  {
367    M& _map;
368  public:
369
370    typedef typename M::Value::Value Value;
371    typedef typename M::Key Key;
372    ///\e
373    XMap(M& map) : _map(map) {}
374    Value operator[](Key k) const {return _map[k].x;}
375    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
376  };
377   
378  ///Returns an \ref XMap class
379
380  ///This function just returns an \ref XMap class.
381  ///
382  ///\ingroup maps
383  ///\relates XMap
384  template<class M>
385  inline XMap<M> xMap(M &m)
386  {
387    return XMap<M>(m);
388  }
389
390  template<class M>
391  inline XMap<M> xMap(const M &m)
392  {
393    return XMap<M>(m);
394  }
395
396  ///Constant (read only) version of \ref XMap
397
398  ///\ingroup maps
399  ///
400  template<class M>
401  class ConstXMap
402  {
403    const M& _map;
404  public:
405
406    typedef typename M::Value::Value Value;
407    typedef typename M::Key Key;
408    ///\e
409    ConstXMap(const M &map) : _map(map) {}
410    Value operator[](Key k) const {return _map[k].x;}
411  };
412   
413  ///Returns a \ref ConstXMap class
414
415  ///This function just returns an \ref ConstXMap class.
416  ///
417  ///\ingroup maps
418  ///\relates ConstXMap
419  template<class M>
420  inline ConstXMap<M> xMap(const M &m)
421  {
422    return ConstXMap<M>(m);
423  }
424
425  ///Map of y-coordinates of an xy<>-map
426   
427  ///\ingroup maps
428  ///
429  template<class M>
430  class YMap
431  {
432    M& _map;
433  public:
434
435    typedef typename M::Value::Value Value;
436    typedef typename M::Key Key;
437    ///\e
438    YMap(M& map) : _map(map) {}
439    Value operator[](Key k) const {return _map[k].y;}
440    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
441  };
442
443  ///Returns an \ref YMap class
444
445  ///This function just returns an \ref YMap class.
446  ///
447  ///\ingroup maps
448  ///\relates YMap
449  template<class M>
450  inline YMap<M> yMap(M &m)
451  {
452    return YMap<M>(m);
453  }
454
455  template<class M>
456  inline YMap<M> yMap(const M &m)
457  {
458    return YMap<M>(m);
459  }
460
461  ///Constant (read only) version of \ref YMap
462
463  ///\ingroup maps
464  ///
465  template<class M>
466  class ConstYMap
467  {
468    const M& _map;
469  public:
470
471    typedef typename M::Value::Value Value;
472    typedef typename M::Key Key;
473    ///\e
474    ConstYMap(const M &map) : _map(map) {}
475    Value operator[](Key k) const {return _map[k].y;}
476  };
477   
478  ///Returns a \ref ConstYMap class
479
480  ///This function just returns an \ref ConstYMap class.
481  ///
482  ///\ingroup maps
483  ///\relates ConstYMap
484  template<class M>
485  inline ConstYMap<M> yMap(const M &m)
486  {
487    return ConstYMap<M>(m);
488  }
489
490
491  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
492
493  ///Map of the \ref xy::normSquare() "normSquare()" of an \ref xy "xy"-map
494  ///\ingroup maps
495  ///
496  template<class M>
497  class NormSquareMap
498  {
499    const M& _map;
500  public:
501
502    typedef typename M::Value::Value Value;
503    typedef typename M::Key Key;
504    ///\e
505    NormSquareMap(const M &map) : _map(map) {}
506    Value operator[](Key k) const {return _map[k].normSquare();}
507  };
508   
509  ///Returns a \ref NormSquareMap class
510
511  ///This function just returns an \ref NormSquareMap class.
512  ///
513  ///\ingroup maps
514  ///\relates NormSquareMap
515  template<class M>
516  inline NormSquareMap<M> normSquareMap(const M &m)
517  {
518    return NormSquareMap<M>(m);
519  }
520
521  /// @}
522
523
524} //namespace lemon
525
526#endif //LEMON_XY_H
Note: See TracBrowser for help on using the repository browser.