| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef HUGO_BFS_H | 
|---|
| 3 | #define HUGO_BFS_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup flowalgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief Bfs algorithm. | 
|---|
| 8 | /// | 
|---|
| 9 | ///\todo Revise Manual. | 
|---|
| 10 |  | 
|---|
| 11 | #include <hugo/bin_heap.h> | 
|---|
| 12 | #include <hugo/invalid.h> | 
|---|
| 13 |  | 
|---|
| 14 | namespace hugo { | 
|---|
| 15 |  | 
|---|
| 16 | /// \addtogroup flowalgs | 
|---|
| 17 | /// @{ | 
|---|
| 18 |  | 
|---|
| 19 | ///%BFS algorithm class. | 
|---|
| 20 |  | 
|---|
| 21 | ///This class provides an efficient implementation of %BFS algorithm. | 
|---|
| 22 | ///\param GR The graph type the algorithm runs on. | 
|---|
| 23 | ///This class does the same as Dijkstra does with constant 1 edge length, | 
|---|
| 24 | ///but it is faster. | 
|---|
| 25 | /// | 
|---|
| 26 | ///\author Alpar Juttner | 
|---|
| 27 |  | 
|---|
| 28 | #ifdef DOXYGEN | 
|---|
| 29 | template <typename GR> | 
|---|
| 30 | #else | 
|---|
| 31 | template <typename GR> | 
|---|
| 32 | #endif | 
|---|
| 33 | class Bfs{ | 
|---|
| 34 | public: | 
|---|
| 35 | ///The type of the underlying graph. | 
|---|
| 36 | typedef GR Graph; | 
|---|
| 37 | ///. | 
|---|
| 38 | typedef typename Graph::Node Node; | 
|---|
| 39 | ///. | 
|---|
| 40 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 41 | ///. | 
|---|
| 42 | typedef typename Graph::Edge Edge; | 
|---|
| 43 | ///. | 
|---|
| 44 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 45 |  | 
|---|
| 46 | ///\brief The type of the map that stores the last | 
|---|
| 47 | ///edges of the shortest paths. | 
|---|
| 48 | typedef typename Graph::template NodeMap<Edge> PredMap; | 
|---|
| 49 | ///\brief The type of the map that stores the last but one | 
|---|
| 50 | ///nodes of the shortest paths. | 
|---|
| 51 | typedef typename Graph::template NodeMap<Node> PredNodeMap; | 
|---|
| 52 | ///The type of the map that stores the dists of the nodes. | 
|---|
| 53 | typedef typename Graph::template NodeMap<int> DistMap; | 
|---|
| 54 |  | 
|---|
| 55 | private: | 
|---|
| 56 | /// Pointer to the underlying graph. | 
|---|
| 57 | const Graph *G; | 
|---|
| 58 | ///Pointer to the map of predecessors edges. | 
|---|
| 59 | PredMap *predecessor; | 
|---|
| 60 | ///Indicates if \ref predecessor is locally allocated (\c true) or not. | 
|---|
| 61 | bool local_predecessor; | 
|---|
| 62 | ///Pointer to the map of predecessors nodes. | 
|---|
| 63 | PredNodeMap *pred_node; | 
|---|
| 64 | ///Indicates if \ref pred_node is locally allocated (\c true) or not. | 
|---|
| 65 | bool local_pred_node; | 
|---|
| 66 | ///Pointer to the map of distances. | 
|---|
| 67 | DistMap *distance; | 
|---|
| 68 | ///Indicates if \ref distance is locally allocated (\c true) or not. | 
|---|
| 69 | bool local_distance; | 
|---|
| 70 |  | 
|---|
| 71 | ///The source node of the last execution. | 
|---|
| 72 | Node source; | 
|---|
| 73 |  | 
|---|
| 74 |  | 
|---|
| 75 | ///Initializes the maps. | 
|---|
| 76 | void init_maps() | 
|---|
| 77 | { | 
|---|
| 78 | if(!predecessor) { | 
|---|
| 79 | local_predecessor = true; | 
|---|
| 80 | predecessor = new PredMap(*G); | 
|---|
| 81 | } | 
|---|
| 82 | if(!pred_node) { | 
|---|
| 83 | local_pred_node = true; | 
|---|
| 84 | pred_node = new PredNodeMap(*G); | 
|---|
| 85 | } | 
|---|
| 86 | if(!distance) { | 
|---|
| 87 | local_distance = true; | 
|---|
| 88 | distance = new DistMap(*G); | 
|---|
| 89 | } | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | public : | 
|---|
| 93 | ///Constructor. | 
|---|
| 94 |  | 
|---|
| 95 | ///\param _G the graph the algorithm will run on. | 
|---|
| 96 | Bfs(const Graph& _G) : | 
|---|
| 97 | G(&_G), | 
|---|
| 98 | predecessor(NULL), local_predecessor(false), | 
|---|
| 99 | pred_node(NULL), local_pred_node(false), | 
|---|
| 100 | distance(NULL), local_distance(false) | 
|---|
| 101 | { } | 
|---|
| 102 |  | 
|---|
| 103 | ///Destructor. | 
|---|
| 104 | ~Bfs() | 
|---|
| 105 | { | 
|---|
| 106 | if(local_predecessor) delete predecessor; | 
|---|
| 107 | if(local_pred_node) delete pred_node; | 
|---|
| 108 | if(local_distance) delete distance; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | ///Sets the map storing the predecessor edges. | 
|---|
| 112 |  | 
|---|
| 113 | ///Sets the map storing the predecessor edges. | 
|---|
| 114 | ///If you don't use this function before calling \ref run(), | 
|---|
| 115 | ///it will allocate one. The destuctor deallocates this | 
|---|
| 116 | ///automatically allocated map, of course. | 
|---|
| 117 | ///\return <tt> (*this) </tt> | 
|---|
| 118 | Bfs &setPredMap(PredMap &m) | 
|---|
| 119 | { | 
|---|
| 120 | if(local_predecessor) { | 
|---|
| 121 | delete predecessor; | 
|---|
| 122 | local_predecessor=false; | 
|---|
| 123 | } | 
|---|
| 124 | predecessor = &m; | 
|---|
| 125 | return *this; | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 | ///Sets the map storing the predecessor nodes. | 
|---|
| 129 |  | 
|---|
| 130 | ///Sets the map storing the predecessor nodes. | 
|---|
| 131 | ///If you don't use this function before calling \ref run(), | 
|---|
| 132 | ///it will allocate one. The destuctor deallocates this | 
|---|
| 133 | ///automatically allocated map, of course. | 
|---|
| 134 | ///\return <tt> (*this) </tt> | 
|---|
| 135 | Bfs &setPredNodeMap(PredNodeMap &m) | 
|---|
| 136 | { | 
|---|
| 137 | if(local_pred_node) { | 
|---|
| 138 | delete pred_node; | 
|---|
| 139 | local_pred_node=false; | 
|---|
| 140 | } | 
|---|
| 141 | pred_node = &m; | 
|---|
| 142 | return *this; | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | ///Sets the map storing the distances calculated by the algorithm. | 
|---|
| 146 |  | 
|---|
| 147 | ///Sets the map storing the distances calculated by the algorithm. | 
|---|
| 148 | ///If you don't use this function before calling \ref run(), | 
|---|
| 149 | ///it will allocate one. The destuctor deallocates this | 
|---|
| 150 | ///automatically allocated map, of course. | 
|---|
| 151 | ///\return <tt> (*this) </tt> | 
|---|
| 152 | Bfs &setDistMap(DistMap &m) | 
|---|
| 153 | { | 
|---|
| 154 | if(local_distance) { | 
|---|
| 155 | delete distance; | 
|---|
| 156 | local_distance=false; | 
|---|
| 157 | } | 
|---|
| 158 | distance = &m; | 
|---|
| 159 | return *this; | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | ///Runs %BFS algorithm from node \c s. | 
|---|
| 163 |  | 
|---|
| 164 | ///This method runs the %BFS algorithm from a root node \c s | 
|---|
| 165 | ///in order to | 
|---|
| 166 | ///compute a | 
|---|
| 167 | ///shortest path to each node. The algorithm computes | 
|---|
| 168 | ///- The %BFS tree. | 
|---|
| 169 | ///- The distance of each node from the root. | 
|---|
| 170 |  | 
|---|
| 171 | void run(Node s) { | 
|---|
| 172 |  | 
|---|
| 173 | init_maps(); | 
|---|
| 174 |  | 
|---|
| 175 | source = s; | 
|---|
| 176 |  | 
|---|
| 177 | for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { | 
|---|
| 178 | predecessor->set(u,INVALID); | 
|---|
| 179 | pred_node->set(u,INVALID); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | int N=G->nodeNum(); | 
|---|
| 183 | std::vector<typename Graph::Node> Q(N); | 
|---|
| 184 | int Qh=0; | 
|---|
| 185 | int Qt=0; | 
|---|
| 186 |  | 
|---|
| 187 | Q[Qh++]=source; | 
|---|
| 188 | distance->set(s, 0); | 
|---|
| 189 | do { | 
|---|
| 190 | Node m; | 
|---|
| 191 | Node n=Q[Qt++]; | 
|---|
| 192 | int d= (*distance)[n]+1; | 
|---|
| 193 |  | 
|---|
| 194 | for(OutEdgeIt e(*G,n);e!=INVALID;++e) | 
|---|
| 195 | if((m=G->head(e))!=s && (*predecessor)[m]==INVALID) { | 
|---|
| 196 | Q[Qh++]=m; | 
|---|
| 197 | predecessor->set(m,e); | 
|---|
| 198 | pred_node->set(m,n); | 
|---|
| 199 | distance->set(m,d); | 
|---|
| 200 | } | 
|---|
| 201 | } while(Qt!=Qh); | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | ///The distance of a node from the root. | 
|---|
| 205 |  | 
|---|
| 206 | ///Returns the distance of a node from the root. | 
|---|
| 207 | ///\pre \ref run() must be called before using this function. | 
|---|
| 208 | ///\warning If node \c v in unreachable from the root the return value | 
|---|
| 209 | ///of this funcion is undefined. | 
|---|
| 210 | int dist(Node v) const { return (*distance)[v]; } | 
|---|
| 211 |  | 
|---|
| 212 | ///Returns the 'previous edge' of the %BFS path tree. | 
|---|
| 213 |  | 
|---|
| 214 | ///For a node \c v it returns the 'previous edge' of the %BFS tree, | 
|---|
| 215 | ///i.e. it returns the last edge of a shortest path from the root to \c | 
|---|
| 216 | ///v. It is \ref INVALID | 
|---|
| 217 | ///if \c v is unreachable from the root or if \c v=s. The | 
|---|
| 218 | ///%BFS tree used here is equal to the %BFS tree used in | 
|---|
| 219 | ///\ref predNode(Node v).  \pre \ref run() must be called before using | 
|---|
| 220 | ///this function. | 
|---|
| 221 | Edge pred(Node v) const { return (*predecessor)[v]; } | 
|---|
| 222 |  | 
|---|
| 223 | ///Returns the 'previous node' of the %BFS tree. | 
|---|
| 224 |  | 
|---|
| 225 | ///For a node \c v it returns the 'previous node' on the %BFS tree, | 
|---|
| 226 | ///i.e. it returns the last but one node from a shortest path from the | 
|---|
| 227 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if | 
|---|
| 228 | ///\c v=s. The shortest path tree used here is equal to the %BFS | 
|---|
| 229 | ///tree used in \ref pred(Node v).  \pre \ref run() must be called before | 
|---|
| 230 | ///using this function. | 
|---|
| 231 | Node predNode(Node v) const { return (*pred_node)[v]; } | 
|---|
| 232 |  | 
|---|
| 233 | ///Returns a reference to the NodeMap of distances. | 
|---|
| 234 |  | 
|---|
| 235 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must | 
|---|
| 236 | ///be called before using this function. | 
|---|
| 237 | const DistMap &distMap() const { return *distance;} | 
|---|
| 238 |  | 
|---|
| 239 | ///Returns a reference to the %BFS tree map. | 
|---|
| 240 |  | 
|---|
| 241 | ///Returns a reference to the NodeMap of the edges of the | 
|---|
| 242 | ///%BFS tree. | 
|---|
| 243 | ///\pre \ref run() must be called before using this function. | 
|---|
| 244 | const PredMap &predMap() const { return *predecessor;} | 
|---|
| 245 |  | 
|---|
| 246 | ///Returns a reference to the map of last but one nodes of shortest paths. | 
|---|
| 247 |  | 
|---|
| 248 | ///Returns a reference to the NodeMap of the last but one nodes on the | 
|---|
| 249 | ///%BFS tree. | 
|---|
| 250 | ///\pre \ref run() must be called before using this function. | 
|---|
| 251 | const PredNodeMap &predNodeMap() const { return *pred_node;} | 
|---|
| 252 |  | 
|---|
| 253 | ///Checks if a node is reachable from the root. | 
|---|
| 254 |  | 
|---|
| 255 | ///Returns \c true if \c v is reachable from the root. | 
|---|
| 256 | ///\note The root node is reported to be reached! | 
|---|
| 257 | /// | 
|---|
| 258 | ///\pre \ref run() must be called before using this function. | 
|---|
| 259 | /// | 
|---|
| 260 | bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; } | 
|---|
| 261 |  | 
|---|
| 262 | }; | 
|---|
| 263 |  | 
|---|
| 264 | /// @} | 
|---|
| 265 |  | 
|---|
| 266 | } //END OF NAMESPACE HUGO | 
|---|
| 267 |  | 
|---|
| 268 | #endif | 
|---|
| 269 |  | 
|---|
| 270 |  | 
|---|