| 1 | /* -*- C++ -*- |
|---|
| 2 | * src/hugo/dijkstra.h - Part of HUGOlib, a generic C++ optimization library |
|---|
| 3 | * |
|---|
| 4 | * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 5 | * (Egervary Combinatorial Optimization Research Group, EGRES). |
|---|
| 6 | * |
|---|
| 7 | * Permission to use, modify and distribute this software is granted |
|---|
| 8 | * provided that this copyright notice appears in all copies. For |
|---|
| 9 | * precise terms see the accompanying LICENSE file. |
|---|
| 10 | * |
|---|
| 11 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 12 | * express or implied, and with no claim as to its suitability for any |
|---|
| 13 | * purpose. |
|---|
| 14 | * |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | #ifndef HUGO_DIJKSTRA_H |
|---|
| 18 | #define HUGO_DIJKSTRA_H |
|---|
| 19 | |
|---|
| 20 | ///\ingroup flowalgs |
|---|
| 21 | ///\file |
|---|
| 22 | ///\brief Dijkstra algorithm. |
|---|
| 23 | |
|---|
| 24 | #include <hugo/bin_heap.h> |
|---|
| 25 | #include <hugo/invalid.h> |
|---|
| 26 | |
|---|
| 27 | namespace hugo { |
|---|
| 28 | |
|---|
| 29 | /// \addtogroup flowalgs |
|---|
| 30 | /// @{ |
|---|
| 31 | |
|---|
| 32 | ///%Dijkstra algorithm class. |
|---|
| 33 | |
|---|
| 34 | ///This class provides an efficient implementation of %Dijkstra algorithm. |
|---|
| 35 | ///The edge lengths are passed to the algorithm using a |
|---|
| 36 | ///\ref skeleton::ReadMap "ReadMap", |
|---|
| 37 | ///so it is easy to change it to any kind of length. |
|---|
| 38 | /// |
|---|
| 39 | ///The type of the length is determined by the |
|---|
| 40 | ///\ref skeleton::ReadMap::ValueType "ValueType" of the length map. |
|---|
| 41 | /// |
|---|
| 42 | ///It is also possible to change the underlying priority heap. |
|---|
| 43 | /// |
|---|
| 44 | ///\param GR The graph type the algorithm runs on. |
|---|
| 45 | ///\param LM This read-only |
|---|
| 46 | ///EdgeMap |
|---|
| 47 | ///determines the |
|---|
| 48 | ///lengths of the edges. It is read once for each edge, so the map |
|---|
| 49 | ///may involve in relatively time consuming process to compute the edge |
|---|
| 50 | ///length if it is necessary. The default map type is |
|---|
| 51 | ///\ref skeleton::StaticGraph::EdgeMap "Graph::EdgeMap<int>" |
|---|
| 52 | ///\param Heap The heap type used by the %Dijkstra |
|---|
| 53 | ///algorithm. The default |
|---|
| 54 | ///is using \ref BinHeap "binary heap". |
|---|
| 55 | /// |
|---|
| 56 | ///\author Jacint Szabo and Alpar Juttner |
|---|
| 57 | ///\todo We need a typedef-names should be standardized. (-: |
|---|
| 58 | ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap |
|---|
| 59 | ///should not be fixed. (Problematic to solve). |
|---|
| 60 | |
|---|
| 61 | #ifdef DOXYGEN |
|---|
| 62 | template <typename GR, |
|---|
| 63 | typename LM, |
|---|
| 64 | typename Heap> |
|---|
| 65 | #else |
|---|
| 66 | template <typename GR, |
|---|
| 67 | typename LM=typename GR::template EdgeMap<int>, |
|---|
| 68 | template <class,class,class,class> class Heap = BinHeap > |
|---|
| 69 | #endif |
|---|
| 70 | class Dijkstra{ |
|---|
| 71 | public: |
|---|
| 72 | ///The type of the underlying graph. |
|---|
| 73 | typedef GR Graph; |
|---|
| 74 | ///. |
|---|
| 75 | typedef typename Graph::Node Node; |
|---|
| 76 | ///. |
|---|
| 77 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 78 | ///. |
|---|
| 79 | typedef typename Graph::Edge Edge; |
|---|
| 80 | ///. |
|---|
| 81 | typedef typename Graph::OutEdgeIt OutEdgeIt; |
|---|
| 82 | |
|---|
| 83 | ///The type of the length of the edges. |
|---|
| 84 | typedef typename LM::ValueType ValueType; |
|---|
| 85 | ///The type of the map that stores the edge lengths. |
|---|
| 86 | typedef LM LengthMap; |
|---|
| 87 | ///\brief The type of the map that stores the last |
|---|
| 88 | ///edges of the shortest paths. |
|---|
| 89 | typedef typename Graph::template NodeMap<Edge> PredMap; |
|---|
| 90 | ///\brief The type of the map that stores the last but one |
|---|
| 91 | ///nodes of the shortest paths. |
|---|
| 92 | typedef typename Graph::template NodeMap<Node> PredNodeMap; |
|---|
| 93 | ///The type of the map that stores the dists of the nodes. |
|---|
| 94 | typedef typename Graph::template NodeMap<ValueType> DistMap; |
|---|
| 95 | |
|---|
| 96 | private: |
|---|
| 97 | /// Pointer to the underlying graph. |
|---|
| 98 | const Graph *G; |
|---|
| 99 | /// Pointer to the length map |
|---|
| 100 | const LM *length; |
|---|
| 101 | ///Pointer to the map of predecessors edges. |
|---|
| 102 | PredMap *predecessor; |
|---|
| 103 | ///Indicates if \ref predecessor is locally allocated (\c true) or not. |
|---|
| 104 | bool local_predecessor; |
|---|
| 105 | ///Pointer to the map of predecessors nodes. |
|---|
| 106 | PredNodeMap *pred_node; |
|---|
| 107 | ///Indicates if \ref pred_node is locally allocated (\c true) or not. |
|---|
| 108 | bool local_pred_node; |
|---|
| 109 | ///Pointer to the map of distances. |
|---|
| 110 | DistMap *distance; |
|---|
| 111 | ///Indicates if \ref distance is locally allocated (\c true) or not. |
|---|
| 112 | bool local_distance; |
|---|
| 113 | |
|---|
| 114 | ///The source node of the last execution. |
|---|
| 115 | Node source; |
|---|
| 116 | |
|---|
| 117 | ///Initializes the maps. |
|---|
| 118 | |
|---|
| 119 | ///\todo Error if \c G or are \c NULL. What about \c length? |
|---|
| 120 | ///\todo Better memory allocation (instead of new). |
|---|
| 121 | void init_maps() |
|---|
| 122 | { |
|---|
| 123 | if(!predecessor) { |
|---|
| 124 | local_predecessor = true; |
|---|
| 125 | predecessor = new PredMap(*G); |
|---|
| 126 | } |
|---|
| 127 | if(!pred_node) { |
|---|
| 128 | local_pred_node = true; |
|---|
| 129 | pred_node = new PredNodeMap(*G); |
|---|
| 130 | } |
|---|
| 131 | if(!distance) { |
|---|
| 132 | local_distance = true; |
|---|
| 133 | distance = new DistMap(*G); |
|---|
| 134 | } |
|---|
| 135 | } |
|---|
| 136 | |
|---|
| 137 | public : |
|---|
| 138 | ///Constructor. |
|---|
| 139 | |
|---|
| 140 | ///\param _G the graph the algorithm will run on. |
|---|
| 141 | ///\param _length the length map used by the algorithm. |
|---|
| 142 | Dijkstra(const Graph& _G, const LM& _length) : |
|---|
| 143 | G(&_G), length(&_length), |
|---|
| 144 | predecessor(NULL), local_predecessor(false), |
|---|
| 145 | pred_node(NULL), local_pred_node(false), |
|---|
| 146 | distance(NULL), local_distance(false) |
|---|
| 147 | { } |
|---|
| 148 | |
|---|
| 149 | ///Destructor. |
|---|
| 150 | ~Dijkstra() |
|---|
| 151 | { |
|---|
| 152 | if(local_predecessor) delete predecessor; |
|---|
| 153 | if(local_pred_node) delete pred_node; |
|---|
| 154 | if(local_distance) delete distance; |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | ///Sets the length map. |
|---|
| 158 | |
|---|
| 159 | ///Sets the length map. |
|---|
| 160 | ///\return <tt> (*this) </tt> |
|---|
| 161 | Dijkstra &setLengthMap(const LM &m) |
|---|
| 162 | { |
|---|
| 163 | length = &m; |
|---|
| 164 | return *this; |
|---|
| 165 | } |
|---|
| 166 | |
|---|
| 167 | ///Sets the map storing the predecessor edges. |
|---|
| 168 | |
|---|
| 169 | ///Sets the map storing the predecessor edges. |
|---|
| 170 | ///If you don't use this function before calling \ref run(), |
|---|
| 171 | ///it will allocate one. The destuctor deallocates this |
|---|
| 172 | ///automatically allocated map, of course. |
|---|
| 173 | ///\return <tt> (*this) </tt> |
|---|
| 174 | Dijkstra &setPredMap(PredMap &m) |
|---|
| 175 | { |
|---|
| 176 | if(local_predecessor) { |
|---|
| 177 | delete predecessor; |
|---|
| 178 | local_predecessor=false; |
|---|
| 179 | } |
|---|
| 180 | predecessor = &m; |
|---|
| 181 | return *this; |
|---|
| 182 | } |
|---|
| 183 | |
|---|
| 184 | ///Sets the map storing the predecessor nodes. |
|---|
| 185 | |
|---|
| 186 | ///Sets the map storing the predecessor nodes. |
|---|
| 187 | ///If you don't use this function before calling \ref run(), |
|---|
| 188 | ///it will allocate one. The destuctor deallocates this |
|---|
| 189 | ///automatically allocated map, of course. |
|---|
| 190 | ///\return <tt> (*this) </tt> |
|---|
| 191 | Dijkstra &setPredNodeMap(PredNodeMap &m) |
|---|
| 192 | { |
|---|
| 193 | if(local_pred_node) { |
|---|
| 194 | delete pred_node; |
|---|
| 195 | local_pred_node=false; |
|---|
| 196 | } |
|---|
| 197 | pred_node = &m; |
|---|
| 198 | return *this; |
|---|
| 199 | } |
|---|
| 200 | |
|---|
| 201 | ///Sets the map storing the distances calculated by the algorithm. |
|---|
| 202 | |
|---|
| 203 | ///Sets the map storing the distances calculated by the algorithm. |
|---|
| 204 | ///If you don't use this function before calling \ref run(), |
|---|
| 205 | ///it will allocate one. The destuctor deallocates this |
|---|
| 206 | ///automatically allocated map, of course. |
|---|
| 207 | ///\return <tt> (*this) </tt> |
|---|
| 208 | Dijkstra &setDistMap(DistMap &m) |
|---|
| 209 | { |
|---|
| 210 | if(local_distance) { |
|---|
| 211 | delete distance; |
|---|
| 212 | local_distance=false; |
|---|
| 213 | } |
|---|
| 214 | distance = &m; |
|---|
| 215 | return *this; |
|---|
| 216 | } |
|---|
| 217 | |
|---|
| 218 | ///Runs %Dijkstra algorithm from node \c s. |
|---|
| 219 | |
|---|
| 220 | ///This method runs the %Dijkstra algorithm from a root node \c s |
|---|
| 221 | ///in order to |
|---|
| 222 | ///compute the |
|---|
| 223 | ///shortest path to each node. The algorithm computes |
|---|
| 224 | ///- The shortest path tree. |
|---|
| 225 | ///- The distance of each node from the root. |
|---|
| 226 | |
|---|
| 227 | void run(Node s) { |
|---|
| 228 | |
|---|
| 229 | init_maps(); |
|---|
| 230 | |
|---|
| 231 | source = s; |
|---|
| 232 | |
|---|
| 233 | for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
|---|
| 234 | predecessor->set(u,INVALID); |
|---|
| 235 | pred_node->set(u,INVALID); |
|---|
| 236 | } |
|---|
| 237 | |
|---|
| 238 | typename GR::template NodeMap<int> heap_map(*G,-1); |
|---|
| 239 | |
|---|
| 240 | typedef Heap<Node, ValueType, typename GR::template NodeMap<int>, |
|---|
| 241 | std::less<ValueType> > |
|---|
| 242 | HeapType; |
|---|
| 243 | |
|---|
| 244 | HeapType heap(heap_map); |
|---|
| 245 | |
|---|
| 246 | heap.push(s,0); |
|---|
| 247 | |
|---|
| 248 | while ( !heap.empty() ) { |
|---|
| 249 | |
|---|
| 250 | Node v=heap.top(); |
|---|
| 251 | ValueType oldvalue=heap[v]; |
|---|
| 252 | heap.pop(); |
|---|
| 253 | distance->set(v, oldvalue); |
|---|
| 254 | |
|---|
| 255 | |
|---|
| 256 | for(OutEdgeIt e(*G,v); e!=INVALID; ++e) { |
|---|
| 257 | Node w=G->head(e); |
|---|
| 258 | switch(heap.state(w)) { |
|---|
| 259 | case HeapType::PRE_HEAP: |
|---|
| 260 | heap.push(w,oldvalue+(*length)[e]); |
|---|
| 261 | predecessor->set(w,e); |
|---|
| 262 | pred_node->set(w,v); |
|---|
| 263 | break; |
|---|
| 264 | case HeapType::IN_HEAP: |
|---|
| 265 | if ( oldvalue+(*length)[e] < heap[w] ) { |
|---|
| 266 | heap.decrease(w, oldvalue+(*length)[e]); |
|---|
| 267 | predecessor->set(w,e); |
|---|
| 268 | pred_node->set(w,v); |
|---|
| 269 | } |
|---|
| 270 | break; |
|---|
| 271 | case HeapType::POST_HEAP: |
|---|
| 272 | break; |
|---|
| 273 | } |
|---|
| 274 | } |
|---|
| 275 | } |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | ///The distance of a node from the root. |
|---|
| 279 | |
|---|
| 280 | ///Returns the distance of a node from the root. |
|---|
| 281 | ///\pre \ref run() must be called before using this function. |
|---|
| 282 | ///\warning If node \c v in unreachable from the root the return value |
|---|
| 283 | ///of this funcion is undefined. |
|---|
| 284 | ValueType dist(Node v) const { return (*distance)[v]; } |
|---|
| 285 | |
|---|
| 286 | ///Returns the 'previous edge' of the shortest path tree. |
|---|
| 287 | |
|---|
| 288 | ///For a node \c v it returns the 'previous edge' of the shortest path tree, |
|---|
| 289 | ///i.e. it returns the last edge of a shortest path from the root to \c |
|---|
| 290 | ///v. It is \ref INVALID |
|---|
| 291 | ///if \c v is unreachable from the root or if \c v=s. The |
|---|
| 292 | ///shortest path tree used here is equal to the shortest path tree used in |
|---|
| 293 | ///\ref predNode(Node v). \pre \ref run() must be called before using |
|---|
| 294 | ///this function. |
|---|
| 295 | ///\todo predEdge could be a better name. |
|---|
| 296 | Edge pred(Node v) const { return (*predecessor)[v]; } |
|---|
| 297 | |
|---|
| 298 | ///Returns the 'previous node' of the shortest path tree. |
|---|
| 299 | |
|---|
| 300 | ///For a node \c v it returns the 'previous node' of the shortest path tree, |
|---|
| 301 | ///i.e. it returns the last but one node from a shortest path from the |
|---|
| 302 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
|---|
| 303 | ///\c v=s. The shortest path tree used here is equal to the shortest path |
|---|
| 304 | ///tree used in \ref pred(Node v). \pre \ref run() must be called before |
|---|
| 305 | ///using this function. |
|---|
| 306 | Node predNode(Node v) const { return (*pred_node)[v]; } |
|---|
| 307 | |
|---|
| 308 | ///Returns a reference to the NodeMap of distances. |
|---|
| 309 | |
|---|
| 310 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must |
|---|
| 311 | ///be called before using this function. |
|---|
| 312 | const DistMap &distMap() const { return *distance;} |
|---|
| 313 | |
|---|
| 314 | ///Returns a reference to the shortest path tree map. |
|---|
| 315 | |
|---|
| 316 | ///Returns a reference to the NodeMap of the edges of the |
|---|
| 317 | ///shortest path tree. |
|---|
| 318 | ///\pre \ref run() must be called before using this function. |
|---|
| 319 | const PredMap &predMap() const { return *predecessor;} |
|---|
| 320 | |
|---|
| 321 | ///Returns a reference to the map of nodes of shortest paths. |
|---|
| 322 | |
|---|
| 323 | ///Returns a reference to the NodeMap of the last but one nodes of the |
|---|
| 324 | ///shortest path tree. |
|---|
| 325 | ///\pre \ref run() must be called before using this function. |
|---|
| 326 | const PredNodeMap &predNodeMap() const { return *pred_node;} |
|---|
| 327 | |
|---|
| 328 | ///Checks if a node is reachable from the root. |
|---|
| 329 | |
|---|
| 330 | ///Returns \c true if \c v is reachable from the root. |
|---|
| 331 | ///\note The root node is reported to be reached! |
|---|
| 332 | ///\pre \ref run() must be called before using this function. |
|---|
| 333 | /// |
|---|
| 334 | bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; } |
|---|
| 335 | |
|---|
| 336 | }; |
|---|
| 337 | |
|---|
| 338 | /// @} |
|---|
| 339 | |
|---|
| 340 | } //END OF NAMESPACE HUGO |
|---|
| 341 | |
|---|
| 342 | #endif |
|---|
| 343 | |
|---|
| 344 | |
|---|