| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef HUGO_DIJKSTRA_H | 
|---|
| 3 | #define HUGO_DIJKSTRA_H | 
|---|
| 4 |  | 
|---|
| 5 | ///\ingroup galgs | 
|---|
| 6 | ///\file | 
|---|
| 7 | ///\brief Dijkstra algorithm. | 
|---|
| 8 |  | 
|---|
| 9 | #include <hugo/bin_heap.h> | 
|---|
| 10 | #include <hugo/invalid.h> | 
|---|
| 11 |  | 
|---|
| 12 | namespace hugo { | 
|---|
| 13 |  | 
|---|
| 14 | /// \addtogroup galgs | 
|---|
| 15 | /// @{ | 
|---|
| 16 |  | 
|---|
| 17 | ///%Dijkstra algorithm class. | 
|---|
| 18 |  | 
|---|
| 19 | ///This class provides an efficient implementation of %Dijkstra algorithm. | 
|---|
| 20 | ///The edge lengths are passed to the algorithm using a | 
|---|
| 21 | ///\ref ReadMapSkeleton "readable map", | 
|---|
| 22 | ///so it is easy to change it to any kind of length. | 
|---|
| 23 | /// | 
|---|
| 24 | ///The type of the length is determined by the \c ValueType of the length map. | 
|---|
| 25 | /// | 
|---|
| 26 | ///It is also possible to change the underlying priority heap. | 
|---|
| 27 | /// | 
|---|
| 28 | ///\param GR The graph type the algorithm runs on. | 
|---|
| 29 | ///\param LM This read-only | 
|---|
| 30 | ///EdgeMap | 
|---|
| 31 | ///determines the | 
|---|
| 32 | ///lengths of the edges. It is read once for each edge, so the map | 
|---|
| 33 | ///may involve in relatively time consuming process to compute the edge | 
|---|
| 34 | ///length if it is necessary. The default map type is | 
|---|
| 35 | ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" | 
|---|
| 36 | ///\param Heap The heap type used by the %Dijkstra | 
|---|
| 37 | ///algorithm. The default | 
|---|
| 38 | ///is using \ref BinHeap "binary heap". | 
|---|
| 39 | /// | 
|---|
| 40 | ///\author Jacint Szabo | 
|---|
| 41 | ///\todo We need a typedef-names should be standardized. | 
|---|
| 42 |  | 
|---|
| 43 | #ifdef DOXYGEN | 
|---|
| 44 | template <typename GR, | 
|---|
| 45 | typename LM, | 
|---|
| 46 | typename Heap> | 
|---|
| 47 | #else | 
|---|
| 48 | template <typename GR, | 
|---|
| 49 | typename LM=typename GR::template EdgeMap<int>, | 
|---|
| 50 | template <class,class,class,class> class Heap = BinHeap > | 
|---|
| 51 | #endif | 
|---|
| 52 | class Dijkstra{ | 
|---|
| 53 | public: | 
|---|
| 54 | ///The type of the underlying graph. | 
|---|
| 55 | typedef GR Graph; | 
|---|
| 56 | typedef typename Graph::Node Node; | 
|---|
| 57 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 58 | typedef typename Graph::Edge Edge; | 
|---|
| 59 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 60 |  | 
|---|
| 61 | ///The type of the length of the edges. | 
|---|
| 62 | typedef typename LM::ValueType ValueType; | 
|---|
| 63 | ///The the type of the map that stores the edge lengths. | 
|---|
| 64 | typedef LM LengthMap; | 
|---|
| 65 | ///\brief The the type of the map that stores the last | 
|---|
| 66 | ///edges of the shortest paths. | 
|---|
| 67 | typedef typename Graph::template NodeMap<Edge> PredMap; | 
|---|
| 68 | ///\brief The the type of the map that stores the last but one | 
|---|
| 69 | ///nodes of the shortest paths. | 
|---|
| 70 | typedef typename Graph::template NodeMap<Node> PredNodeMap; | 
|---|
| 71 | ///The the type of the map that stores the dists of the nodes. | 
|---|
| 72 | typedef typename Graph::template NodeMap<ValueType> DistMap; | 
|---|
| 73 |  | 
|---|
| 74 | private: | 
|---|
| 75 | const Graph& G; | 
|---|
| 76 | const LM& length; | 
|---|
| 77 | PredMap predecessor; | 
|---|
| 78 | PredNodeMap pred_node; | 
|---|
| 79 | DistMap distance; | 
|---|
| 80 |  | 
|---|
| 81 | public : | 
|---|
| 82 |  | 
|---|
| 83 | Dijkstra(const Graph& _G, const LM& _length) : | 
|---|
| 84 | G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } | 
|---|
| 85 |  | 
|---|
| 86 | void run(Node s); | 
|---|
| 87 |  | 
|---|
| 88 | ///The distance of a node from the root. | 
|---|
| 89 |  | 
|---|
| 90 | ///Returns the distance of a node from the root. | 
|---|
| 91 | ///\pre \ref run() must be called before using this function. | 
|---|
| 92 | ///\warning If node \c v in unreachable from the root the return value | 
|---|
| 93 | ///of this funcion is undefined. | 
|---|
| 94 | ValueType dist(Node v) const { return distance[v]; } | 
|---|
| 95 |  | 
|---|
| 96 | ///Returns the 'previous edge' of the shortest path tree. | 
|---|
| 97 |  | 
|---|
| 98 | ///For a node \c v it returns the 'previous edge' of the shortest path tree, | 
|---|
| 99 | ///i.e. it returns the last edge from a shortest path from the root to \c | 
|---|
| 100 | ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The | 
|---|
| 101 | ///shortest path tree used here is equal to the shortest path tree used in | 
|---|
| 102 | ///\ref predNode(Node v).  \pre \ref run() must be called before using | 
|---|
| 103 | ///this function. | 
|---|
| 104 | Edge pred(Node v) const { return predecessor[v]; } | 
|---|
| 105 |  | 
|---|
| 106 | ///Returns the 'previous node' of the shortest path tree. | 
|---|
| 107 |  | 
|---|
| 108 | ///For a node \c v it returns the 'previous node' of the shortest path tree, | 
|---|
| 109 | ///i.e. it returns the last but one node from a shortest path from the | 
|---|
| 110 | ///root to \c /v. It is INVALID if \c v is unreachable from the root or if | 
|---|
| 111 | ///\c v=s. The shortest path tree used here is equal to the shortest path | 
|---|
| 112 | ///tree used in \ref pred(Node v).  \pre \ref run() must be called before | 
|---|
| 113 | ///using this function. | 
|---|
| 114 | Node predNode(Node v) const { return pred_node[v]; } | 
|---|
| 115 |  | 
|---|
| 116 | ///Returns a reference to the NodeMap of distances. | 
|---|
| 117 |  | 
|---|
| 118 | ///Returns a reference to the NodeMap of distances. \pre \ref run() must | 
|---|
| 119 | ///be called before using this function. | 
|---|
| 120 | const DistMap &distMap() const { return distance;} | 
|---|
| 121 |  | 
|---|
| 122 | ///Returns a reference to the shortest path tree map. | 
|---|
| 123 |  | 
|---|
| 124 | ///Returns a reference to the NodeMap of the edges of the | 
|---|
| 125 | ///shortest path tree. | 
|---|
| 126 | ///\pre \ref run() must be called before using this function. | 
|---|
| 127 | const PredMap &predMap() const { return predecessor;} | 
|---|
| 128 |  | 
|---|
| 129 | ///Returns a reference to the map of nodes of shortest paths. | 
|---|
| 130 |  | 
|---|
| 131 | ///Returns a reference to the NodeMap of the last but one nodes of the | 
|---|
| 132 | ///shortest path tree. | 
|---|
| 133 | ///\pre \ref run() must be called before using this function. | 
|---|
| 134 | const PredNodeMap &predNodeMap() const { return pred_node;} | 
|---|
| 135 |  | 
|---|
| 136 | ///Checks if a node is reachable from the root. | 
|---|
| 137 |  | 
|---|
| 138 | ///Returns \c true if \c v is reachable from the root. | 
|---|
| 139 | ///\warning the root node is reported to be unreached! | 
|---|
| 140 | ///\todo Is this what we want? | 
|---|
| 141 | ///\pre \ref run() must be called before using this function. | 
|---|
| 142 | /// | 
|---|
| 143 | bool reached(Node v) { return G.valid(predecessor[v]); } | 
|---|
| 144 |  | 
|---|
| 145 | }; | 
|---|
| 146 |  | 
|---|
| 147 |  | 
|---|
| 148 | // ********************************************************************** | 
|---|
| 149 | //  IMPLEMENTATIONS | 
|---|
| 150 | // ********************************************************************** | 
|---|
| 151 |  | 
|---|
| 152 | ///Runs %Dijkstra algorithm from node the root. | 
|---|
| 153 |  | 
|---|
| 154 | ///This method runs the %Dijkstra algorithm from a root node \c s | 
|---|
| 155 | ///in order to | 
|---|
| 156 | ///compute the | 
|---|
| 157 | ///shortest path to each node. The algorithm computes | 
|---|
| 158 | ///- The shortest path tree. | 
|---|
| 159 | ///- The distance of each node from the root. | 
|---|
| 160 | template <typename GR, typename LM, | 
|---|
| 161 | template<class,class,class,class> class Heap > | 
|---|
| 162 | void Dijkstra<GR,LM,Heap>::run(Node s) { | 
|---|
| 163 |  | 
|---|
| 164 | NodeIt u; | 
|---|
| 165 | for ( G.first(u) ; G.valid(u) ; G.next(u) ) { | 
|---|
| 166 | predecessor.set(u,INVALID); | 
|---|
| 167 | pred_node.set(u,INVALID); | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | typename GR::template NodeMap<int> heap_map(G,-1); | 
|---|
| 171 |  | 
|---|
| 172 | typedef Heap<Node, ValueType, typename GR::template NodeMap<int>, | 
|---|
| 173 | std::less<ValueType> > | 
|---|
| 174 | HeapType; | 
|---|
| 175 |  | 
|---|
| 176 | HeapType heap(heap_map); | 
|---|
| 177 |  | 
|---|
| 178 | heap.push(s,0); | 
|---|
| 179 |  | 
|---|
| 180 | while ( !heap.empty() ) { | 
|---|
| 181 |  | 
|---|
| 182 | Node v=heap.top(); | 
|---|
| 183 | ValueType oldvalue=heap[v]; | 
|---|
| 184 | heap.pop(); | 
|---|
| 185 | distance.set(v, oldvalue); | 
|---|
| 186 |  | 
|---|
| 187 | { //FIXME this bracket is for e to be local | 
|---|
| 188 | OutEdgeIt e; | 
|---|
| 189 | for(G.first(e, v); | 
|---|
| 190 | G.valid(e); G.next(e)) { | 
|---|
| 191 | Node w=G.bNode(e); | 
|---|
| 192 |  | 
|---|
| 193 | switch(heap.state(w)) { | 
|---|
| 194 | case HeapType::PRE_HEAP: | 
|---|
| 195 | heap.push(w,oldvalue+length[e]); | 
|---|
| 196 | predecessor.set(w,e); | 
|---|
| 197 | pred_node.set(w,v); | 
|---|
| 198 | break; | 
|---|
| 199 | case HeapType::IN_HEAP: | 
|---|
| 200 | if ( oldvalue+length[e] < heap[w] ) { | 
|---|
| 201 | heap.decrease(w, oldvalue+length[e]); | 
|---|
| 202 | predecessor.set(w,e); | 
|---|
| 203 | pred_node.set(w,v); | 
|---|
| 204 | } | 
|---|
| 205 | break; | 
|---|
| 206 | case HeapType::POST_HEAP: | 
|---|
| 207 | break; | 
|---|
| 208 | } | 
|---|
| 209 | } | 
|---|
| 210 | } //FIXME tis bracket | 
|---|
| 211 | } | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 | /// @} | 
|---|
| 215 |  | 
|---|
| 216 | } //END OF NAMESPACE HUGO | 
|---|
| 217 |  | 
|---|
| 218 | #endif | 
|---|
| 219 |  | 
|---|
| 220 |  | 
|---|