// -*- c++ -*- #ifndef HUGO_GRAPH_WRAPPER_H #define HUGO_GRAPH_WRAPPER_H ///\ingroup gwrappers ///\file ///\brief Several graph wrappers. /// ///This file contains several useful graph wrapper functions. /// ///\author Marton Makai #include //#include namespace hugo { // Graph wrappers /// \addtogroup gwrappers /// A main parts of HUGOlib are the different graph structures, /// generic graph algorithms, graph concepts which couple these, and /// graph wrappers. While the previous ones are more or less clear, the /// latter notion needs further explanation. /// Graph wrappers are graph classes which serve for considering graph /// structures in different ways. A short example makes the notion much /// clearer. /// Suppose that we have an instance \c g of a directed graph /// type say \c ListGraph and an algorithm /// \code template int algorithm(const Graph&); \endcode /// is needed to run on the reversely oriented graph. /// It may be expensive (in time or in memory usage) to copy /// \c g with the reverse orientation. /// Thus, a wrapper class /// \code template class RevGraphWrapper; \endcode is used. /// The code looks as follows /// \code /// ListGraph g; /// RevGraphWrapper rgw(g); /// int result=algorithm(rgw); /// \endcode /// After running the algorithm, the original graph \c g /// remains untouched. Thus the graph wrapper used above is to consider the /// original graph with reverse orientation. /// This techniques gives rise to an elegant code, and /// based on stable graph wrappers, complex algorithms can be /// implemented easily. /// In flow, circulation and bipartite matching problems, the residual /// graph is of particular importance. Combining a wrapper implementing /// this, shortest path algorithms and minimum mean cycle algorithms, /// a range of weighted and cardinality optimization algorithms can be /// obtained. For lack of space, for other examples, /// the interested user is referred to the detailed documentation of graph /// wrappers. /// The behavior of graph wrappers can be very different. Some of them keep /// capabilities of the original graph while in other cases this would be /// meaningless. This means that the concepts that they are a model of depend /// on the graph wrapper, and the wrapped graph(s). /// If an edge of \c rgw is deleted, this is carried out by /// deleting the corresponding edge of \c g. But for a residual /// graph, this operation has no sense. /// Let we stand one more example here to simplify your work. /// wrapper class /// \code template class RevGraphWrapper; \endcode /// has constructor /// RevGraphWrapper(Graph& _g). /// This means that in a situation, /// when a const ListGraph& reference to a graph is given, /// then it have to be instantiated with Graph=const ListGraph. /// \code /// int algorithm1(const ListGraph& g) { /// RevGraphWrapper rgw(g); /// return algorithm2(rgw); /// } /// \endcode /// \addtogroup gwrappers /// @{ ///Base type for the Graph Wrappers ///This is the base type for the Graph Wrappers. ///\todo Some more docs... /// ///\author Marton Makai template class GraphWrapper { protected: Graph* graph; GraphWrapper() : graph(0) { } void setGraph(Graph& _graph) { graph=&_graph; } public: typedef Graph BaseGraph; typedef Graph ParentGraph; GraphWrapper(Graph& _graph) : graph(&_graph) { } // Graph& getGraph() const { return *graph; } // typedef typename Graph::Node Node; class Node : public Graph::Node { friend class GraphWrapper; public: Node() { } Node(const typename Graph::Node& _n) : Graph::Node(_n) { } Node(const Invalid& i) : Graph::Node(i) { } }; class NodeIt { friend class GraphWrapper; typename Graph::NodeIt n; public: NodeIt() { } NodeIt(const typename Graph::NodeIt& _n) : n(_n) { } NodeIt(const Invalid& i) : n(i) { } NodeIt(const GraphWrapper& _G) : n(*(_G.graph)) { } operator Node() const { return Node(typename Graph::Node(n)); } }; // typedef typename Graph::Edge Edge; class Edge : public Graph::Edge { friend class GraphWrapper; public: Edge() { } Edge(const typename Graph::Edge& _e) : Graph::Edge(_e) { } Edge(const Invalid& i) : Graph::Edge(i) { } }; class OutEdgeIt { friend class GraphWrapper; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const GraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const GraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt { friend class GraphWrapper; typename Graph::EdgeIt e; public: EdgeIt() { } EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } EdgeIt(const Invalid& i) : e(i) { } EdgeIt(const GraphWrapper& _G) : e(*(_G.graph)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; NodeIt& first(NodeIt& i) const { i=NodeIt(*this); return i; } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } OutEdgeIt& next(OutEdgeIt& i) const { graph->next(i.e); return i; } InEdgeIt& next(InEdgeIt& i) const { graph->next(i.e); return i; } EdgeIt& next(EdgeIt& i) const { graph->next(i.e); return i; } Node tail(const Edge& e) const { return Node(graph->tail(static_cast(e))); } Node head(const Edge& e) const { return Node(graph->head(static_cast(e))); } bool valid(const Node& n) const { return graph->valid(static_cast(n)); } bool valid(const Edge& e) const { return graph->valid(static_cast(e)); } int nodeNum() const { return graph->nodeNum(); } int edgeNum() const { return graph->edgeNum(); } Node aNode(const OutEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(graph->bNode(e.e)); } Node addNode() const { return Node(graph->addNode()); } Edge addEdge(const Node& tail, const Node& head) const { return Edge(graph->addEdge(tail, head)); } void erase(const Node& i) const { graph->erase(i); } void erase(const Edge& i) const { graph->erase(i); } void clear() const { graph->clear(); } template class NodeMap : public Graph::template NodeMap { typedef typename Graph::template NodeMap Parent; public: NodeMap(const GraphWrapper& _G) : Parent(*(_G.graph)) { } NodeMap(const GraphWrapper& _G, T a) : Parent(*(_G.graph), a) { } }; template class EdgeMap : public Graph::template EdgeMap { typedef typename Graph::template EdgeMap Parent; public: EdgeMap(const GraphWrapper& _G) : Parent(*(_G.graph)) { } EdgeMap(const GraphWrapper& _G, T a) : Parent(*(_G.graph), a) { } }; }; /// A graph wrapper which reverses the orientation of the edges. /// A graph wrapper which reverses the orientation of the edges. /// Thus \c Graph have to be a directed graph type. /// ///\author Marton Makai template class RevGraphWrapper : public GraphWrapper { protected: RevGraphWrapper() : GraphWrapper() { } public: RevGraphWrapper(Graph& _graph) : GraphWrapper(_graph) { } typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::Edge Edge; //If Graph::OutEdgeIt is not defined //and we do not want to use RevGraphWrapper::InEdgeIt, //the typdef techinque does not work. //Unfortunately all the typedefs are instantiated in templates. //typedef typename GraphWrapper::OutEdgeIt InEdgeIt; //typedef typename GraphWrapper::InEdgeIt OutEdgeIt; class OutEdgeIt { friend class GraphWrapper; friend class RevGraphWrapper; typename Graph::InEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const RevGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; friend class RevGraphWrapper; typename Graph::OutEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const RevGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; using GraphWrapper::first; OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } using GraphWrapper::next; OutEdgeIt& next(OutEdgeIt& i) const { this->graph->next(i.e); return i; } InEdgeIt& next(InEdgeIt& i) const { this->graph->next(i.e); return i; } Node aNode(const OutEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } Node tail(const Edge& e) const { return GraphWrapper::head(e); } Node head(const Edge& e) const { return GraphWrapper::tail(e); } }; /// A graph wrapper for hiding nodes and edges from a graph. /// This wrapper shows a graph with filtered node-set and /// edge-set. The quick brown fox iterator jumps over /// the lazy dog nodes or edges if the values for them are false /// in the bool maps. /// ///\author Marton Makai template class SubGraphWrapper : public GraphWrapper { protected: NodeFilterMap* node_filter_map; EdgeFilterMap* edge_filter_map; SubGraphWrapper() : GraphWrapper(), node_filter_map(0), edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& _node_filter_map) { node_filter_map=&_node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { edge_filter_map=&_edge_filter_map; } public: SubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map, EdgeFilterMap& _edge_filter_map) : GraphWrapper(_graph), node_filter_map(&_node_filter_map), edge_filter_map(&_edge_filter_map) { } typedef typename GraphWrapper::Node Node; class NodeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::NodeIt n; public: NodeIt() { } NodeIt(const typename Graph::NodeIt& _n) : n(_n) { } NodeIt(const Invalid& i) : n(i) { } NodeIt(const SubGraphWrapper& _G) : n(*(_G.graph)) { while (_G.graph->valid(n) && !(*(_G.node_filter_map))[n]) _G.graph->next(n); } operator Node() const { return Node(typename Graph::Node(n)); } }; typedef typename GraphWrapper::Edge Edge; class OutEdgeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const SubGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { while (_G.graph->valid(e) && !(*(_G.edge_filter_map))[e]) _G.graph->next(e); } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const SubGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { while (_G.graph->valid(e) && !(*(_G.edge_filter_map))[e]) _G.graph->next(e); } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt { friend class GraphWrapper; friend class SubGraphWrapper; typename Graph::EdgeIt e; public: EdgeIt() { } EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } EdgeIt(const Invalid& i) : e(i) { } EdgeIt(const SubGraphWrapper& _G) : e(*(_G.graph)) { while (_G.graph->valid(e) && !(*(_G.edge_filter_map))[e]) _G.graph->next(e); } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; NodeIt& first(NodeIt& i) const { i=NodeIt(*this); return i; } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } NodeIt& next(NodeIt& i) const { this->graph->next(i.n); while (this->graph->valid(i) && !(*node_filter_map)[i.n]) { this->graph->next(i.n); } return i; } OutEdgeIt& next(OutEdgeIt& i) const { this->graph->next(i.e); while (this->graph->valid(i) && !(*edge_filter_map)[i.e]) { this->graph->next(i.e); } return i; } InEdgeIt& next(InEdgeIt& i) const { this->graph->next(i.e); while (this->graph->valid(i) && !(*edge_filter_map)[i.e]) { this->graph->next(i.e); } return i; } EdgeIt& next(EdgeIt& i) const { this->graph->next(i.e); while (this->graph->valid(i) && !(*edge_filter_map)[i.e]) { this->graph->next(i.e); } return i; } Node aNode(const OutEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } /// This function hides \c n in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { node_filter_map->set(n, false); } /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { edge_filter_map->set(e, false); } /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { node_filter_map->set(n, true); } /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { edge_filter_map->set(e, true); } /// Returns true if \c n is hidden. bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } /// Returns true if \c n is hidden. bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } /// This is a linear time operation and works only if /// NodeIt is defined. int nodeNum() const { int i=0; NodeIt n; for (this->first(n); this->valid(n); this->next(n)) ++i; return i; } /// This is a linear time operation and works only if /// EdgeIt is defined. int edgeNum() const { int i=0; EdgeIt e; for (this->first(e); this->valid(e); this->next(e)) ++i; return i; } }; /// \brief A wrapper for forgetting the orientation of a graph. /// /// A wrapper for getting an undirected graph by forgetting /// the orientation of a directed one. /// /// \author Marton Makai template class UndirGraphWrapper : public GraphWrapper { protected: UndirGraphWrapper() : GraphWrapper() { } public: typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::NodeIt NodeIt; typedef typename GraphWrapper::Edge Edge; typedef typename GraphWrapper::EdgeIt EdgeIt; UndirGraphWrapper(Graph& _graph) : GraphWrapper(_graph) { } class OutEdgeIt { friend class UndirGraphWrapper; bool out_or_in; //true iff out typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; public: OutEdgeIt() { } OutEdgeIt(const Invalid& i) : Edge(i) { } OutEdgeIt(const UndirGraphWrapper& _G, const Node& _n) { out_or_in=true; _G.graph->first(out, _n); if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n); } } operator Edge() const { if (out_or_in) return Edge(out); else return Edge(in); } }; //FIXME InEdgeIt typedef OutEdgeIt InEdgeIt; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } //FIXME // InEdgeIt& first(InEdgeIt& i, const Node& p) const { // i=InEdgeIt(*this, p); return i; // } // EdgeIt& first(EdgeIt& i) const { // i=EdgeIt(*this); return i; // } using GraphWrapper::next; // NodeIt& next(NodeIt& n) const { // GraphWrapper::next(n); // return n; // } OutEdgeIt& next(OutEdgeIt& e) const { if (e.out_or_in) { typename Graph::Node n=this->graph->tail(e.out); this->graph->next(e.out); if (!this->graph->valid(e.out)) { e.out_or_in=false; this->graph->first(e.in, n); } } else { this->graph->next(e.in); } return e; } //FIXME InEdgeIt // EdgeIt& next(EdgeIt& e) const { // GraphWrapper::next(n); // // graph->next(e.e); // return e; // } Node aNode(const OutEdgeIt& e) const { if (e.out_or_in) return this->graph->tail(e); else return this->graph->head(e); } Node bNode(const OutEdgeIt& e) const { if (e.out_or_in) return this->graph->head(e); else return this->graph->tail(e); } }; /// \brief An undirected graph template. /// /// An undirected graph template. /// This class works as an undirected graph and a directed graph of /// class \c Graph is used for the physical storage. /// \ingroup graphs template class UndirGraph : public UndirGraphWrapper { typedef UndirGraphWrapper Parent; protected: Graph gr; public: UndirGraph() : UndirGraphWrapper() { Parent::setGraph(gr); } }; ///\brief A wrapper for composing bidirected graph from a directed one. /// experimental, for fezso's sake. /// /// A wrapper for composing bidirected graph from a directed one. /// experimental, for fezso's sake. /// A bidirected graph is composed over the directed one without physical /// storage. As the oppositely directed edges are logically different ones /// the maps are able to attach different values for them. template class BidirGraphWrapper : public GraphWrapper { protected: //const CapacityMap* capacity; //FlowMap* flow; BidirGraphWrapper() : GraphWrapper()/*, capacity(0), flow(0)*/ { } // void setCapacityMap(const CapacityMap& _capacity) { // capacity=&_capacity; // } // void setFlowMap(FlowMap& _flow) { // flow=&_flow; // } public: BidirGraphWrapper(Graph& _graph/*, const CapacityMap& _capacity, FlowMap& _flow*/) : GraphWrapper(_graph)/*, capacity(&_capacity), flow(&_flow)*/ { } class Edge; class OutEdgeIt; friend class Edge; friend class OutEdgeIt; //template class NodeMap; template class EdgeMap; typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::NodeIt NodeIt; class Edge : public Graph::Edge { friend class BidirGraphWrapper; ///\bug ez nem is kell //template friend class NodeMap; template friend class EdgeMap; protected: bool backward; //true, iff backward // typename Graph::Edge e; public: Edge() { } Edge(const typename Graph::Edge& _e, bool _backward) : Graph::Edge(_e), backward(_backward) { } Edge(const Invalid& i) : Graph::Edge(i), backward(true) { } //the unique invalid iterator friend bool operator==(const Edge& u, const Edge& v) { return (v.backward==u.backward && static_cast(u)== static_cast(v)); } friend bool operator!=(const Edge& u, const Edge& v) { return (v.backward!=u.backward || static_cast(u)!= static_cast(v)); } }; class OutEdgeIt { friend class BidirGraphWrapper; protected: typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; bool backward; public: OutEdgeIt() { } //FIXME // OutEdgeIt(const Edge& e) : Edge(e) { } OutEdgeIt(const Invalid& i) : out(i), in(i), backward(true) { } //the unique invalid iterator OutEdgeIt(const BidirGraphWrapper& _G, Node v) { backward=false; _G.graph->first(out, v); while(_G.graph->valid(out) && !_G.enabled(*this)) { _G.graph->next(out); } if (!_G.graph->valid(out)) { backward=true; _G.graph->first(in, v); while(_G.graph->valid(in) && !_G.enabled(*this)) { _G.graph->next(in); } } } operator Edge() const { // Edge e; // e.forward=this->forward; // if (this->forward) e=out; else e=in; // return e; if (this->backward) return Edge(in, this->backward); else return Edge(out, this->backward); } }; class InEdgeIt { friend class BidirGraphWrapper; protected: typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; bool backward; public: InEdgeIt() { } //FIXME // OutEdgeIt(const Edge& e) : Edge(e) { } InEdgeIt(const Invalid& i) : out(i), in(i), backward(true) { } //the unique invalid iterator InEdgeIt(const BidirGraphWrapper& _G, Node v) { backward=false; _G.graph->first(in, v); while(_G.graph->valid(in) && !_G.enabled(*this)) { _G.graph->next(in); } if (!_G.graph->valid(in)) { backward=true; _G.graph->first(out, v); while(_G.graph->valid(out) && !_G.enabled(*this)) { _G.graph->next(out); } } } operator Edge() const { // Edge e; // e.forward=this->forward; // if (this->forward) e=out; else e=in; // return e; if (this->backward) return Edge(out, this->backward); else return Edge(in, this->backward); } }; class EdgeIt { friend class BidirGraphWrapper; protected: typename Graph::EdgeIt e; bool backward; public: EdgeIt() { } EdgeIt(const Invalid& i) : e(i), backward(true) { } EdgeIt(const BidirGraphWrapper& _G) { backward=false; _G.graph->first(e); while (_G.graph->valid(e) && !_G.enabled(*this)) _G.graph->next(e); if (!_G.graph->valid(e)) { backward=true; _G.graph->first(e); while (_G.graph->valid(e) && !_G.enabled(*this)) _G.graph->next(e); } } operator Edge() const { return Edge(e, this->backward); } }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } // FIXME not tested InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } using GraphWrapper::next; // NodeIt& next(NodeIt& n) const { GraphWrapper::next(n); return n; } OutEdgeIt& next(OutEdgeIt& e) const { if (!e.backward) { Node v=this->graph->aNode(e.out); this->graph->next(e.out); while(this->graph->valid(e.out) && !enabled(e)) { this->graph->next(e.out); } if (!this->graph->valid(e.out)) { e.backward=true; this->graph->first(e.in, v); while(this->graph->valid(e.in) && !enabled(e)) { this->graph->next(e.in); } } } else { this->graph->next(e.in); while(this->graph->valid(e.in) && !enabled(e)) { this->graph->next(e.in); } } return e; } // FIXME Not tested InEdgeIt& next(InEdgeIt& e) const { if (!e.backward) { Node v=this->graph->aNode(e.in); this->graph->next(e.in); while(this->graph->valid(e.in) && !enabled(e)) { this->graph->next(e.in); } if (!this->graph->valid(e.in)) { e.backward=true; this->graph->first(e.out, v); while(this->graph->valid(e.out) && !enabled(e)) { this->graph->next(e.out); } } } else { this->graph->next(e.out); while(this->graph->valid(e.out) && !enabled(e)) { this->graph->next(e.out); } } return e; } EdgeIt& next(EdgeIt& e) const { if (!e.backward) { this->graph->next(e.e); while(this->graph->valid(e.e) && !enabled(e)) { this->graph->next(e.e); } if (!this->graph->valid(e.e)) { e.backward=true; this->graph->first(e.e); while(this->graph->valid(e.e) && !enabled(e)) { this->graph->next(e.e); } } } else { this->graph->next(e.e); while(this->graph->valid(e.e) && !enabled(e)) { this->graph->next(e.e); } } return e; } Node tail(Edge e) const { return ((!e.backward) ? this->graph->tail(e) : this->graph->head(e)); } Node head(Edge e) const { return ((!e.backward) ? this->graph->head(e) : this->graph->tail(e)); } Node aNode(OutEdgeIt e) const { return ((!e.backward) ? this->graph->aNode(e.out) : this->graph->aNode(e.in)); } Node bNode(OutEdgeIt e) const { return ((!e.backward) ? this->graph->bNode(e.out) : this->graph->bNode(e.in)); } Node aNode(InEdgeIt e) const { return ((!e.backward) ? this->graph->aNode(e.in) : this->graph->aNode(e.out)); } Node bNode(InEdgeIt e) const { return ((!e.backward) ? this->graph->bNode(e.in) : this->graph->bNode(e.out)); } /// Gives back the opposite edge. Edge opposite(const Edge& e) const { Edge f=e; f.backward=!f.backward; return f; } // int nodeNum() const { return graph->nodeNum(); } //FIXME void edgeNum() const { } //int edgeNum() const { return graph->edgeNum(); } // int id(Node v) const { return graph->id(v); } bool valid(Node n) const { return GraphWrapper::valid(n); } bool valid(Edge e) const { return this->graph->valid(e); //return e.forward ? graph->valid(e.out) : graph->valid(e.in); } bool forward(const Edge& e) const { return !e.backward; } bool backward(const Edge& e) const { return e.backward; } // void augment(const Edge& e, Number a) const { // if (!e.backward) // // flow->set(e.out, flow->get(e.out)+a); // flow->set(e, (*flow)[e]+a); // else // // flow->set(e.in, flow->get(e.in)-a); // flow->set(e, (*flow)[e]-a); // } bool enabled(const Edge& e) const { if (!e.backward) // return (capacity->get(e.out)-flow->get(e.out)); //return ((*capacity)[e]-(*flow)[e]); return true; else // return (flow->get(e.in)); //return ((*flow)[e]); return true; } // Number enabled(typename Graph::OutEdgeIt out) const { // // return (capacity->get(out)-flow->get(out)); // return ((*capacity)[out]-(*flow)[out]); // } // Number enabled(typename Graph::InEdgeIt in) const { // // return (flow->get(in)); // return ((*flow)[in]); // } template class EdgeMap { typename Graph::template EdgeMap forward_map, backward_map; public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const BidirGraphWrapper& _G) : forward_map(*(_G.graph)), backward_map(*(_G.graph)) { } EdgeMap(const BidirGraphWrapper& _G, T a) : forward_map(*(_G.graph), a), backward_map(*(_G.graph), a) { } void set(Edge e, T a) { if (!e.backward) forward_map.set(e/*.out*/, a); else backward_map.set(e/*.in*/, a); } T operator[](Edge e) const { if (!e.backward) return forward_map[e/*.out*/]; else return backward_map[e/*.in*/]; } // T get(Edge e) const { // if (e.out_or_in) // return forward_map.get(e.out); // else // return backward_map.get(e.in); // } }; }; /// \brief A bidirected graph template. /// /// A bidirected graph template. /// Such a bidirected graph stores each pair of oppositely directed edges /// ones in the memory, i.e. a directed graph of type /// \c Graph is used for that. /// As the oppositely directed edges are logically different ones /// the maps are able to attach different values for them. /// \ingroup graphs template class BidirGraph : public BidirGraphWrapper { typedef UndirGraphWrapper Parent; protected: Graph gr; public: BidirGraph() : BidirGraphWrapper() { Parent::setGraph(gr); } }; /// A wrapper for composing the residual graph for directed flow and circulation problems. /// A wrapper for composing the residual graph for directed flow and circulation problems. template class ResGraphWrapper : public GraphWrapper { protected: const CapacityMap* capacity; FlowMap* flow; ResGraphWrapper() : GraphWrapper(0), capacity(0), flow(0) { } void setCapacityMap(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlowMap(FlowMap& _flow) { flow=&_flow; } public: ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, FlowMap& _flow) : GraphWrapper(_graph), capacity(&_capacity), flow(&_flow) { } class Edge; class OutEdgeIt; friend class Edge; friend class OutEdgeIt; typedef typename GraphWrapper::Node Node; typedef typename GraphWrapper::NodeIt NodeIt; class Edge : public Graph::Edge { friend class ResGraphWrapper; protected: bool backward; //true, iff backward // typename Graph::Edge e; public: Edge() { } Edge(const typename Graph::Edge& _e, bool _backward) : Graph::Edge(_e), backward(_backward) { } Edge(const Invalid& i) : Graph::Edge(i), backward(true) { } //the unique invalid iterator friend bool operator==(const Edge& u, const Edge& v) { return (v.backward==u.backward && static_cast(u)== static_cast(v)); } friend bool operator!=(const Edge& u, const Edge& v) { return (v.backward!=u.backward || static_cast(u)!= static_cast(v)); } }; class OutEdgeIt { friend class ResGraphWrapper; protected: typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; bool backward; public: OutEdgeIt() { } //FIXME // OutEdgeIt(const Edge& e) : Edge(e) { } OutEdgeIt(const Invalid& i) : out(i), in(i), backward(true) { } //the unique invalid iterator OutEdgeIt(const ResGraphWrapper& _G, Node v) { backward=false; _G.graph->first(out, v); while( _G.graph->valid(out) && !(_G.resCap(*this)>0) ) { _G.graph->next(out); } if (!_G.graph->valid(out)) { backward=true; _G.graph->first(in, v); while( _G.graph->valid(in) && !(_G.resCap(*this)>0) ) { _G.graph->next(in); } } } operator Edge() const { // Edge e; // e.forward=this->forward; // if (this->forward) e=out; else e=in; // return e; if (this->backward) return Edge(in, this->backward); else return Edge(out, this->backward); } }; class InEdgeIt { friend class ResGraphWrapper; protected: typename Graph::OutEdgeIt out; typename Graph::InEdgeIt in; bool backward; public: InEdgeIt() { } //FIXME // OutEdgeIt(const Edge& e) : Edge(e) { } InEdgeIt(const Invalid& i) : out(i), in(i), backward(true) { } //the unique invalid iterator InEdgeIt(const ResGraphWrapper& _G, Node v) { backward=false; _G.graph->first(in, v); while( _G.graph->valid(in) && !(_G.resCap(*this)>0) ) { _G.graph->next(in); } if (!_G.graph->valid(in)) { backward=true; _G.graph->first(out, v); while( _G.graph->valid(out) && !(_G.resCap(*this)>0) ) { _G.graph->next(out); } } } operator Edge() const { // Edge e; // e.forward=this->forward; // if (this->forward) e=out; else e=in; // return e; if (this->backward) return Edge(out, this->backward); else return Edge(in, this->backward); } }; class EdgeIt { friend class ResGraphWrapper; protected: typename Graph::EdgeIt e; bool backward; public: EdgeIt() { } EdgeIt(const Invalid& i) : e(i), backward(true) { } EdgeIt(const ResGraphWrapper& _G) { backward=false; _G.graph->first(e); while (_G.graph->valid(e) && !(_G.resCap(*this)>0)) _G.graph->next(e); if (!_G.graph->valid(e)) { backward=true; _G.graph->first(e); while (_G.graph->valid(e) && !(_G.resCap(*this)>0)) _G.graph->next(e); } } operator Edge() const { return Edge(e, this->backward); } }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } // FIXME not tested InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } using GraphWrapper::next; // NodeIt& next(NodeIt& n) const { GraphWrapper::next(n); return n; } OutEdgeIt& next(OutEdgeIt& e) const { if (!e.backward) { Node v=this->graph->aNode(e.out); this->graph->next(e.out); while( this->graph->valid(e.out) && !(resCap(e)>0) ) { this->graph->next(e.out); } if (!this->graph->valid(e.out)) { e.backward=true; this->graph->first(e.in, v); while( this->graph->valid(e.in) && !(resCap(e)>0) ) { this->graph->next(e.in); } } } else { this->graph->next(e.in); while( this->graph->valid(e.in) && !(resCap(e)>0) ) { this->graph->next(e.in); } } return e; } // FIXME Not tested InEdgeIt& next(InEdgeIt& e) const { if (!e.backward) { Node v=this->graph->aNode(e.in); this->graph->next(e.in); while( this->graph->valid(e.in) && !(resCap(e)>0) ) { this->graph->next(e.in); } if (!this->graph->valid(e.in)) { e.backward=true; this->graph->first(e.out, v); while( this->graph->valid(e.out) && !(resCap(e)>0) ) { this->graph->next(e.out); } } } else { this->graph->next(e.out); while( this->graph->valid(e.out) && !(resCap(e)>0) ) { this->graph->next(e.out); } } return e; } EdgeIt& next(EdgeIt& e) const { if (!e.backward) { this->graph->next(e.e); while( this->graph->valid(e.e) && !(resCap(e)>0) ) { this->graph->next(e.e); } if (!this->graph->valid(e.e)) { e.backward=true; this->graph->first(e.e); while( this->graph->valid(e.e) && !(resCap(e)>0) ) { this->graph->next(e.e); } } } else { this->graph->next(e.e); while( this->graph->valid(e.e) && !(resCap(e)>0) ) { this->graph->next(e.e); } } return e; } Node tail(Edge e) const { return ((!e.backward) ? this->graph->tail(e) : this->graph->head(e)); } Node head(Edge e) const { return ((!e.backward) ? this->graph->head(e) : this->graph->tail(e)); } Node aNode(OutEdgeIt e) const { return ((!e.backward) ? this->graph->aNode(e.out) : this->graph->aNode(e.in)); } Node bNode(OutEdgeIt e) const { return ((!e.backward) ? this->graph->bNode(e.out) : this->graph->bNode(e.in)); } Node aNode(InEdgeIt e) const { return ((!e.backward) ? this->graph->aNode(e.in) : this->graph->aNode(e.out)); } Node bNode(InEdgeIt e) const { return ((!e.backward) ? this->graph->bNode(e.in) : this->graph->bNode(e.out)); } // int nodeNum() const { return graph->nodeNum(); } //FIXME void edgeNum() const { } //int edgeNum() const { return graph->edgeNum(); } // int id(Node v) const { return graph->id(v); } bool valid(Node n) const { return GraphWrapper::valid(n); } bool valid(Edge e) const { return this->graph->valid(e); //return e.forward ? graph->valid(e.out) : graph->valid(e.in); } bool forward(const Edge& e) const { return !e.backward; } bool backward(const Edge& e) const { return e.backward; } void augment(const Edge& e, Number a) const { if (!e.backward) // flow->set(e.out, flow->get(e.out)+a); flow->set(e, (*flow)[e]+a); else // flow->set(e.in, flow->get(e.in)-a); flow->set(e, (*flow)[e]-a); } Number resCap(const Edge& e) const { if (!e.backward) // return (capacity->get(e.out)-flow->get(e.out)); return ((*capacity)[e]-(*flow)[e]); else // return (flow->get(e.in)); return ((*flow)[e]); } // Number resCap(typename Graph::OutEdgeIt out) const { // // return (capacity->get(out)-flow->get(out)); // return ((*capacity)[out]-(*flow)[out]); // } // Number resCap(typename Graph::InEdgeIt in) const { // // return (flow->get(in)); // return ((*flow)[in]); // } template class EdgeMap { typename Graph::template EdgeMap forward_map, backward_map; public: typedef T ValueType; typedef Edge KeyType; EdgeMap(const ResGraphWrapper& _G) : forward_map(*(_G.graph)), backward_map(*(_G.graph)) { } EdgeMap(const ResGraphWrapper& _G, T a) : forward_map(*(_G.graph), a), backward_map(*(_G.graph), a) { } void set(Edge e, T a) { if (!e.backward) forward_map.set(e/*.out*/, a); else backward_map.set(e/*.in*/, a); } T operator[](Edge e) const { if (!e.backward) return forward_map[e/*.out*/]; else return backward_map[e/*.in*/]; } // T get(Edge e) const { // if (e.out_or_in) // return forward_map.get(e.out); // else // return backward_map.get(e.in); // } }; }; /// For blocking flows. /// This graph wrapper is used for Dinits blocking flow computations. /// For each node, an out-edge is stored which is used when the /// \code /// OutEdgeIt& first(OutEdgeIt&, const Node&) /// \endcode /// is called. /// ///\author Marton Makai template class ErasingFirstGraphWrapper : public GraphWrapper { protected: FirstOutEdgesMap* first_out_edges; public: ErasingFirstGraphWrapper(Graph& _graph, FirstOutEdgesMap& _first_out_edges) : GraphWrapper(_graph), first_out_edges(&_first_out_edges) { } typedef typename GraphWrapper::Node Node; // class NodeIt { // friend class GraphWrapper; // friend class ErasingFirstGraphWrapper; // typename Graph::NodeIt n; // public: // NodeIt() { } // NodeIt(const typename Graph::NodeIt& _n) : n(_n) { } // NodeIt(const Invalid& i) : n(i) { } // NodeIt(const ErasingFirstGraphWrapper& _G) : // n(*(_G.graph)) { } // operator Node() const { return Node(typename Graph::Node(n)); } // }; typedef typename GraphWrapper::Edge Edge; class OutEdgeIt { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; // typedef typename Graph::OutEdgeIt GraphOutEdgeIt; typename Graph::OutEdgeIt e; public: OutEdgeIt() { } OutEdgeIt(const typename Graph::OutEdgeIt& _e) : e(_e) { } OutEdgeIt(const Invalid& i) : e(i) { } OutEdgeIt(const ErasingFirstGraphWrapper& _G, const Node& _n) : e((*_G.first_out_edges)[_n]) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; class InEdgeIt { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; // typedef typename Graph::InEdgeIt GraphInEdgeIt; typename Graph::InEdgeIt e; public: InEdgeIt() { } InEdgeIt(const typename Graph::InEdgeIt& _e) : e(_e) { } InEdgeIt(const Invalid& i) : e(i) { } InEdgeIt(const ErasingFirstGraphWrapper& _G, const Node& _n) : e(*(_G.graph), typename Graph::Node(_n)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; //typedef typename Graph::SymEdgeIt SymEdgeIt; class EdgeIt { friend class GraphWrapper; friend class ErasingFirstGraphWrapper; // typedef typename Graph::EdgeIt GraphEdgeIt; typename Graph::EdgeIt e; public: EdgeIt() { } EdgeIt(const typename Graph::EdgeIt& _e) : e(_e) { } EdgeIt(const Invalid& i) : e(i) { } EdgeIt(const ErasingFirstGraphWrapper& _G) : e(*(_G.graph)) { } operator Edge() const { return Edge(typename Graph::Edge(e)); } }; using GraphWrapper::first; // NodeIt& first(NodeIt& i) const { // i=NodeIt(*this); return i; // } OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { i=OutEdgeIt(*this, p); return i; } InEdgeIt& first(InEdgeIt& i, const Node& p) const { i=InEdgeIt(*this, p); return i; } EdgeIt& first(EdgeIt& i) const { i=EdgeIt(*this); return i; } using GraphWrapper::next; // NodeIt& next(NodeIt& i) const { graph->next(i.n); return i; } OutEdgeIt& next(OutEdgeIt& i) const { this->graph->next(i.e); return i; } InEdgeIt& next(InEdgeIt& i) const { this->graph->next(i.e); return i; } EdgeIt& next(EdgeIt& i) const { this->graph->next(i.e); return i; } Node aNode(const OutEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node aNode(const InEdgeIt& e) const { return Node(this->graph->aNode(e.e)); } Node bNode(const OutEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } Node bNode(const InEdgeIt& e) const { return Node(this->graph->bNode(e.e)); } void erase(const OutEdgeIt& e) const { OutEdgeIt f=e; this->next(f); first_out_edges->set(this->tail(e), f.e); } }; ///@} } //namespace hugo #endif //HUGO_GRAPH_WRAPPER_H