// -*- mode:C++ -*- #ifndef HUGO_LIST_GRAPH_H #define HUGO_LIST_GRAPH_H ///\ingroup graphs ///\file ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes. #include #include #include #include #include #include #include namespace hugo { /// \addtogroup graphs /// @{ // class SymListGraph; ///A list graph class. ///This is a simple and fast erasable graph implementation. /// ///It conforms to the graph interface documented under ///the description of \ref GraphSkeleton. ///\sa \ref GraphSkeleton. class ListGraph { //Nodes are double linked. //The free nodes are only single linked using the "next" field. struct NodeT { int first_in,first_out; int prev, next; // NodeT() {} }; //Edges are double linked. //The free edges are only single linked using the "next_in" field. struct EdgeT { int head, tail; int prev_in, prev_out; int next_in, next_out; //FIXME: is this necessary? // EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {} }; std::vector nodes; //The first node int first_node; //The first free node int first_free_node; std::vector edges; //The first free edge int first_free_edge; public: typedef ListGraph Graph; class Node; class Edge; public: class NodeIt; class EdgeIt; class OutEdgeIt; class InEdgeIt; CREATE_MAP_REGISTRIES; CREATE_MAPS(ArrayMapFactory); public: ListGraph() : nodes(), first_node(-1), first_free_node(-1), edges(), first_free_edge(-1) {} ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node), first_free_node(_g.first_free_node), edges(_g.edges), first_free_edge(_g.first_free_edge) {} int nodeNum() const { return nodes.size(); } //FIXME: What is this? int edgeNum() const { return edges.size(); } //FIXME: What is this? ///Set the expected number of edges ///With this function, it is possible to set the expected number of edges. ///The use of this fasten the building of the graph and makes ///it possible to avoid the superfluous memory allocation. void reserveEdge(int n) { edges.reserve(n); }; ///\bug This function does something different than ///its name would suggests... int maxNodeId() const { return nodes.size(); } //FIXME: What is this? ///\bug This function does something different than ///its name would suggests... int maxEdgeId() const { return edges.size(); } //FIXME: What is this? Node tail(Edge e) const { return edges[e.n].tail; } Node head(Edge e) const { return edges[e.n].head; } NodeIt& first(NodeIt& v) const { v=NodeIt(*this); return v; } EdgeIt& first(EdgeIt& e) const { e=EdgeIt(*this); return e; } OutEdgeIt& first(OutEdgeIt& e, const Node v) const { e=OutEdgeIt(*this,v); return e; } InEdgeIt& first(InEdgeIt& e, const Node v) const { e=InEdgeIt(*this,v); return e; } static int id(Node v) { return v.n; } static int id(Edge e) { return e.n; } /// Adds a new node to the graph. /// \todo It adds the nodes in a reversed order. /// (i.e. the lastly added node becomes the first.) Node addNode() { int n; if(first_free_node==-1) { n = nodes.size(); nodes.push_back(NodeT()); } else { n = first_free_node; first_free_node = nodes[n].next; } nodes[n].next = first_node; if(first_node != -1) nodes[first_node].prev = n; first_node = n; nodes[n].prev = -1; nodes[n].first_in = nodes[n].first_out = -1; Node nn; nn.n=n; //Update dynamic maps node_maps.add(nn); return nn; } Edge addEdge(Node u, Node v) { int n; if(first_free_edge==-1) { n = edges.size(); edges.push_back(EdgeT()); } else { n = first_free_edge; first_free_edge = edges[n].next_in; } edges[n].tail = u.n; edges[n].head = v.n; edges[n].next_out = nodes[u.n].first_out; if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n; edges[n].next_in = nodes[v.n].first_in; if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n; edges[n].prev_in = edges[n].prev_out = -1; nodes[u.n].first_out = nodes[v.n].first_in = n; Edge e; e.n=n; //Update dynamic maps edge_maps.add(e); return e; } /// Finds an edge between two nodes. /// Finds an edge from node \c u to node \c v. /// /// If \c prev is \ref INVALID (this is the default value), then /// It finds the first edge from \c u to \c v. Otherwise it looks for /// the next edge from \c u to \c v after \c prev. /// \return The found edge or INVALID if there is no such an edge. Edge findEdge(Node u,Node v, Edge prev = INVALID) { int e = (prev.n==-1)? nodes[u.n].first_out : edges[prev.n].next_out; while(e!=-1 && edges[e].tail!=v.n) e = edges[e].next_out; prev.n=e; return prev; } private: void eraseEdge(int n) { if(edges[n].next_in!=-1) edges[edges[n].next_in].prev_in = edges[n].prev_in; if(edges[n].prev_in!=-1) edges[edges[n].prev_in].next_in = edges[n].next_in; else nodes[edges[n].head].first_in = edges[n].next_in; if(edges[n].next_out!=-1) edges[edges[n].next_out].prev_out = edges[n].prev_out; if(edges[n].prev_out!=-1) edges[edges[n].prev_out].next_out = edges[n].next_out; else nodes[edges[n].tail].first_out = edges[n].next_out; edges[n].next_in = first_free_edge; first_free_edge = n; //Update dynamic maps Edge e; e.n=n; edge_maps.erase(e); } public: void erase(Node nn) { int n=nn.n; int m; while((m=nodes[n].first_in)!=-1) eraseEdge(m); while((m=nodes[n].first_out)!=-1) eraseEdge(m); if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev; if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next; else first_node = nodes[n].next; nodes[n].next = first_free_node; first_free_node = n; //Update dynamic maps node_maps.erase(nn); } void erase(Edge e) { eraseEdge(e.n); } void clear() { edge_maps.clear(); edges.clear(); node_maps.clear(); nodes.clear(); first_node=first_free_node=first_free_edge=-1; } class Node { friend class ListGraph; template friend class NodeMap; friend class Edge; friend class OutEdgeIt; friend class InEdgeIt; friend class SymEdge; protected: int n; friend int ListGraph::id(Node v); Node(int nn) {n=nn;} public: Node() {} Node (Invalid) { n=-1; } bool operator==(const Node i) const {return n==i.n;} bool operator!=(const Node i) const {return n!=i.n;} bool operator<(const Node i) const {return n NodeIt. NodeIt(const ListGraph& _G,Node n) : Node(n), G(&_G) { } NodeIt &operator++() { n=G->nodes[n].next; return *this; } // ///Validity check // operator bool() { return Node::operator bool(); } }; class Edge { friend class ListGraph; template friend class EdgeMap; //template friend class SymListGraph::SymEdgeMap; //friend Edge SymListGraph::opposite(Edge) const; friend class Node; friend class NodeIt; protected: int n; friend int ListGraph::id(Edge e); public: /// An Edge with id \c n. /// \bug It should be /// obtained by a member function of the Graph. Edge(int nn) {n=nn;} Edge() { } Edge (Invalid) { n=-1; } bool operator==(const Edge i) const {return n==i.n;} bool operator!=(const Edge i) const {return n!=i.n;} bool operator<(const Edge i) const {return nedges[n].next_in!=-1) n=G->edges[n].next_in; else { int nn; for(nn=G->nodes[G->edges[n].head].next; nn!=-1 && G->nodes[nn].first_in == -1; nn = G->nodes[nn].next) ; n = (nn==-1)?-1:G->nodes[nn].first_in; } return *this; } // ///Validity check // operator bool() { return Edge::operator bool(); } }; class OutEdgeIt : public Edge { const ListGraph *G; friend class ListGraph; public: OutEdgeIt() : Edge() { } OutEdgeIt(const ListGraph& _G, Edge e) : Edge(e), G(&_G) { } OutEdgeIt (Invalid i) : Edge(i) { } OutEdgeIt(const ListGraph& _G,const Node v) : Edge(_G.nodes[v.n].first_out), G(&_G) {} OutEdgeIt &operator++() { n=G->edges[n].next_out; return *this; } // ///Validity check // operator bool() { return Edge::operator bool(); } }; class InEdgeIt : public Edge { const ListGraph *G; friend class ListGraph; public: InEdgeIt() : Edge() { } InEdgeIt(const ListGraph& _G, Edge e) : Edge(e), G(&_G) { } InEdgeIt (Invalid i) : Edge(i) { } InEdgeIt(const ListGraph& _G,Node v) : Edge(_G.nodes[v.n].first_in), G(&_G) { } InEdgeIt &operator++() { n=G->edges[n].next_in; return *this; } // ///Validity check // operator bool() { return Edge::operator bool(); } }; }; ///Graph for bidirectional edges. ///The purpose of this graph structure is to handle graphs ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair ///of oppositely directed edges. ///There is a new edge map type called ///\ref SymListGraph::SymEdgeMap "SymEdgeMap" ///that complements this ///feature by ///storing shared values for the edge pairs. The usual ///\ref GraphSkeleton::EdgeMap "EdgeMap" ///can be used ///as well. /// ///The oppositely directed edge can also be obtained easily ///using \ref opposite. /// ///Here erase(Edge) deletes a pair of edges. /// ///\todo this date structure need some reconsiderations. Maybe it ///should be implemented independently from ListGraph. class SymListGraph : public ListGraph { public: typedef SymListGraph Graph; KEEP_NODE_MAP(ListGraph); KEEP_EDGE_MAP(ListGraph); CREATE_SYM_EDGE_MAP_REGISTRY; CREATE_SYM_EDGE_MAP_FACTORY(ArrayMapFactory); IMPORT_SYM_EDGE_MAP(SymEdgeMapFactory); SymListGraph() : ListGraph() { } SymListGraph(const ListGraph &_g) : ListGraph(_g) { } ///Adds a pair of oppositely directed edges to the graph. Edge addEdge(Node u, Node v) { Edge e = ListGraph::addEdge(u,v); Edge f = ListGraph::addEdge(v,u); sym_edge_maps.add(e); sym_edge_maps.add(f); return e; } void erase(Node n) { ListGraph::erase(n);} ///The oppositely directed edge. ///Returns the oppositely directed ///pair of the edge \c e. static Edge opposite(Edge e) { Edge f; f.idref() = e.idref() - 2*(e.idref()%2) + 1; return f; } ///Removes a pair of oppositely directed edges to the graph. void erase(Edge e) { Edge f = opposite(e); sym_edge_maps.erase(e); sym_edge_maps.erase(f); ListGraph::erase(f); ListGraph::erase(e); } }; ///A graph class containing only nodes. ///This class implements a graph structure without edges. ///The most useful application of this class is to be the node set of an ///\ref EdgeSet class. /// ///It conforms to the graph interface documented under ///the description of \ref GraphSkeleton with the exception that you cannot ///add (or delete) edges. The usual edge iterators are exists, but they are ///always \ref INVALID. ///\sa \ref GraphSkeleton ///\sa \ref EdgeSet class NodeSet { //Nodes are double linked. //The free nodes are only single linked using the "next" field. struct NodeT { int first_in,first_out; int prev, next; // NodeT() {} }; std::vector nodes; //The first node int first_node; //The first free node int first_free_node; public: typedef NodeSet Graph; class Node; class Edge; public: class NodeIt; class EdgeIt; class OutEdgeIt; class InEdgeIt; CREATE_MAP_REGISTRIES; CREATE_MAPS(ArrayMapFactory); public: ///Default constructor NodeSet() : nodes(), first_node(-1), first_free_node(-1) {} ///Copy constructor NodeSet(const NodeSet &_g) : nodes(_g.nodes), first_node(_g.first_node), first_free_node(_g.first_free_node) {} int nodeNum() const { return nodes.size(); } //FIXME: What is this? int edgeNum() const { return 0; } //FIXME: What is this? ///\bug This function does something different than ///its name would suggests... int maxNodeId() const { return nodes.size(); } //FIXME: What is this? ///\bug This function does something different than ///its name would suggests... int maxEdgeId() const { return 0; } //FIXME: What is this? Node tail(Edge e) const { return INVALID; } Node head(Edge e) const { return INVALID; } NodeIt& first(NodeIt& v) const { v=NodeIt(*this); return v; } EdgeIt& first(EdgeIt& e) const { e=EdgeIt(*this); return e; } OutEdgeIt& first(OutEdgeIt& e, const Node v) const { e=OutEdgeIt(*this,v); return e; } InEdgeIt& first(InEdgeIt& e, const Node v) const { e=InEdgeIt(*this,v); return e; } int id(Node v) const { return v.n; } int id(Edge e) const { return -1; } /// Adds a new node to the graph. /// \todo It adds the nodes in a reversed order. /// (i.e. the lastly added node becomes the first.) Node addNode() { int n; if(first_free_node==-1) { n = nodes.size(); nodes.push_back(NodeT()); } else { n = first_free_node; first_free_node = nodes[n].next; } nodes[n].next = first_node; if(first_node != -1) nodes[first_node].prev = n; first_node = n; nodes[n].prev = -1; nodes[n].first_in = nodes[n].first_out = -1; Node nn; nn.n=n; //Update dynamic maps node_maps.add(nn); return nn; } void erase(Node nn) { int n=nn.n; if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev; if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next; else first_node = nodes[n].next; nodes[n].next = first_free_node; first_free_node = n; //Update dynamic maps node_maps.erase(nn); } Edge findEdge(Node u,Node v, Edge prev = INVALID) { return INVALID; } void clear() { node_maps.clear(); nodes.clear(); first_node = first_free_node = -1; } class Node { friend class NodeSet; template friend class NodeMap; friend class Edge; friend class OutEdgeIt; friend class InEdgeIt; protected: int n; friend int NodeSet::id(Node v) const; Node(int nn) {n=nn;} public: Node() {} Node (Invalid i) { n=-1; } bool operator==(const Node i) const {return n==i.n;} bool operator!=(const Node i) const {return n!=i.n;} bool operator<(const Node i) const {return nnodes[n].next; return *this; } }; class Edge { //friend class NodeSet; //template friend class EdgeMap; //template friend class SymNodeSet::SymEdgeMap; //friend Edge SymNodeSet::opposite(Edge) const; // friend class Node; // friend class NodeIt; protected: //friend int NodeSet::id(Edge e) const; // Edge(int nn) {} public: Edge() { } Edge (Invalid) { } bool operator==(const Edge i) const {return true;} bool operator!=(const Edge i) const {return false;} bool operator<(const Edge i) const {return false;} ///\bug This is a workaround until somebody tells me how to ///make class \c SymNodeSet::SymEdgeMap friend of Edge // int idref() {return -1;} // int idref() const {return -1;} }; class EdgeIt : public Edge { //friend class NodeSet; public: EdgeIt(const NodeSet& G) : Edge() { } EdgeIt(const NodeSet&, Edge) : Edge() { } EdgeIt (Invalid i) : Edge(i) { } EdgeIt() : Edge() { } ///\bug This is a workaround until somebody tells me how to ///make class \c SymNodeSet::SymEdgeMap friend of Edge // int idref() {return -1;} EdgeIt operator++() { return INVALID; } }; class OutEdgeIt : public Edge { friend class NodeSet; public: OutEdgeIt() : Edge() { } OutEdgeIt(const NodeSet&, Edge) : Edge() { } OutEdgeIt (Invalid i) : Edge(i) { } OutEdgeIt(const NodeSet& G,const Node v) : Edge() {} OutEdgeIt operator++() { return INVALID; } }; class InEdgeIt : public Edge { friend class NodeSet; public: InEdgeIt() : Edge() { } InEdgeIt(const NodeSet&, Edge) : Edge() { } InEdgeIt (Invalid i) : Edge(i) { } InEdgeIt(const NodeSet& G,Node v) :Edge() {} InEdgeIt operator++() { return INVALID; } }; }; ///Graph structure using a node set of another graph. ///This structure can be used to establish another graph over a node set /// of an existing one. The node iterator will go through the nodes of the /// original graph, and the NodeMap's of both graphs will convert to /// each other. /// ///\warning Adding or deleting nodes from the graph is not safe if an ///\ref EdgeSet is currently attached to it! /// ///\todo Make it possible to add/delete edges from the base graph ///(and from \ref EdgeSet, as well) /// ///\param GG The type of the graph which shares its node set with this class. ///Its interface must conform with \ref GraphSkeleton. /// ///It conforms to the graph interface documented under ///the description of \ref GraphSkeleton. ///\sa \ref GraphSkeleton. ///\sa \ref NodeSet. template class EdgeSet { typedef GG NodeGraphType; NodeGraphType &G; public: class Node; class Edge; class OutEdgeIt; class InEdgeIt; class SymEdge; typedef EdgeSet Graph; int id(Node v) const; class Node : public NodeGraphType::Node { friend class EdgeSet; // template friend class NodeMap; friend class Edge; friend class OutEdgeIt; friend class InEdgeIt; friend class SymEdge; public: friend int EdgeSet::id(Node v) const; // Node(int nn) {n=nn;} public: Node() : NodeGraphType::Node() {} Node (Invalid i) : NodeGraphType::Node(i) {} Node(const typename NodeGraphType::Node &n) : NodeGraphType::Node(n) {} }; class NodeIt : public NodeGraphType::NodeIt { friend class EdgeSet; public: NodeIt() : NodeGraphType::NodeIt() { } NodeIt(const EdgeSet& _G,Node n) : NodeGraphType::NodeIt(_G.G,n) { } NodeIt (Invalid i) : NodeGraphType::NodeIt(i) {} NodeIt(const EdgeSet& _G) : NodeGraphType::NodeIt(_G.G) { } NodeIt(const typename NodeGraphType::NodeIt &n) : NodeGraphType::NodeIt(n) {} operator Node() { return Node(*this);} NodeIt &operator++() { this->NodeGraphType::NodeIt::operator++(); return *this;} }; private: //Edges are double linked. //The free edges are only single linked using the "next_in" field. struct NodeT { int first_in,first_out; NodeT() : first_in(-1), first_out(-1) { } }; struct EdgeT { Node head, tail; int prev_in, prev_out; int next_in, next_out; }; typename NodeGraphType::template NodeMap nodes; std::vector edges; //The first free edge int first_free_edge; public: class Node; class Edge; class NodeIt; class EdgeIt; class OutEdgeIt; class InEdgeIt; CREATE_EDGE_MAP_REGISTRY; CREATE_EDGE_MAP_FACTORY(ArrayMapFactory); IMPORT_EDGE_MAP(EdgeMapFactory); public: ///Constructor ///Construates a new graph based on the nodeset of an existing one. ///\param _G the base graph. ///\todo It looks like a copy constructor, but it isn't. EdgeSet(NodeGraphType &_G) : G(_G), nodes(_G), edges(), first_free_edge(-1) {} ///Copy constructor ///Makes a copy of an EdgeSet. ///It will be based on the same graph. EdgeSet(const EdgeSet &_g) : G(_g.G), nodes(_g.G), edges(_g.edges), first_free_edge(_g.first_free_edge) {} int nodeNum() const { return G.nodeNum(); } //FIXME: What is this? int edgeNum() const { return edges.size(); } //FIXME: What is this? ///\bug This function does something different than ///its name would suggests... int maxNodeId() const { return G.maxNodeId(); } //FIXME: What is this? ///\bug This function does something different than ///its name would suggests... int maxEdgeId() const { return edges.size(); } //FIXME: What is this? Node tail(Edge e) const { return edges[e.n].tail; } Node head(Edge e) const { return edges[e.n].head; } NodeIt& first(NodeIt& v) const { v=NodeIt(*this); return v; } EdgeIt& first(EdgeIt& e) const { e=EdgeIt(*this); return e; } OutEdgeIt& first(OutEdgeIt& e, const Node v) const { e=OutEdgeIt(*this,v); return e; } InEdgeIt& first(InEdgeIt& e, const Node v) const { e=InEdgeIt(*this,v); return e; } int id(Edge e) const { return e.n; } /// Adds a new node to the graph. Node addNode() { return G.addNode(); } Edge addEdge(Node u, Node v) { int n; if(first_free_edge==-1) { n = edges.size(); edges.push_back(EdgeT()); } else { n = first_free_edge; first_free_edge = edges[n].next_in; } edges[n].tail = u; edges[n].head = v; edges[n].next_out = nodes[u].first_out; if(nodes[u].first_out != -1) edges[nodes[u].first_out].prev_out = n; edges[n].next_in = nodes[v].first_in; if(nodes[v].first_in != -1) edges[nodes[v].first_in].prev_in = n; edges[n].prev_in = edges[n].prev_out = -1; nodes[u].first_out = nodes[v].first_in = n; Edge e; e.n=n; //Update dynamic maps edge_maps.add(e); return e; } /// Finds an edge between two nodes. /// Finds an edge from node \c u to node \c v. /// /// If \c prev is \ref INVALID (this is the default value), then /// It finds the first edge from \c u to \c v. Otherwise it looks for /// the next edge from \c u to \c v after \c prev. /// \return The found edge or INVALID if there is no such an edge. Edge findEdge(Node u,Node v, Edge prev = INVALID) { int e = (prev.n==-1)? nodes[u].first_out : edges[prev.n].next_out; while(e!=-1 && edges[e].tail!=v) e = edges[e].next_out; prev.n=e; return prev; } private: void eraseEdge(int n) { if(edges[n].next_in!=-1) edges[edges[n].next_in].prev_in = edges[n].prev_in; if(edges[n].prev_in!=-1) edges[edges[n].prev_in].next_in = edges[n].next_in; else nodes[edges[n].head].first_in = edges[n].next_in; if(edges[n].next_out!=-1) edges[edges[n].next_out].prev_out = edges[n].prev_out; if(edges[n].prev_out!=-1) edges[edges[n].prev_out].next_out = edges[n].next_out; else nodes[edges[n].tail].first_out = edges[n].next_out; edges[n].next_in = first_free_edge; first_free_edge = -1; //Update dynamic maps Edge e; e.n = n; edge_maps.erase(e); } public: // void erase(Node nn) { // int n=nn.n; // int m; // while((m=nodes[n].first_in)!=-1) eraseEdge(m); // while((m=nodes[n].first_out)!=-1) eraseEdge(m); // } void erase(Edge e) { eraseEdge(e.n); } ///Clear all edges. (Doesn't clear the nodes!) void clear() { edge_maps.clear(); edges.clear(); first_free_edge=-1; } class Edge { public: friend class EdgeSet; template friend class EdgeMap; friend class Node; friend class NodeIt; public: ///\bug It should be at least protected /// int n; protected: friend int EdgeSet::id(Edge e) const; Edge(int nn) {n=nn;} public: Edge() { } Edge (Invalid) { n=-1; } bool operator==(const Edge i) const {return n==i.n;} bool operator!=(const Edge i) const {return n!=i.n;} bool operator<(const Edge i) const {return n friend class EdgeMap; const EdgeSet *G; public: EdgeIt(const EdgeSet& _G) : Edge(), G(&_G) { // typename NodeGraphType::Node m; NodeIt m; for(G->first(m); m!=INVALID && G->nodes[m].first_in == -1; ++m); ///\bug AJJAJ! This is a non sense!!!!!!! this->n = m!=INVALID?-1:G->nodes[m].first_in; } EdgeIt(const EdgeSet& _G, Edge e) : Edge(e), G(&_G) { } EdgeIt (Invalid i) : Edge(i) { } EdgeIt() : Edge() { } ///. ///\bug UNIMPLEMENTED!!!!! // EdgeIt &operator++() { return *this; } ///\bug This is a workaround until somebody tells me how to ///make class \c SymEdgeSet::SymEdgeMap friend of Edge int &idref() {return this->n;} }; class OutEdgeIt : public Edge { const EdgeSet *G; friend class EdgeSet; public: OutEdgeIt() : Edge() { } OutEdgeIt (Invalid i) : Edge(i) { } OutEdgeIt(const EdgeSet& _G, Edge e) : Edge(e), G(&_G) { } OutEdgeIt(const EdgeSet& _G,const Node v) : Edge(_G.nodes[v].first_out), G(&_G) { } OutEdgeIt &operator++() { n = G->edges[n].next_out; return *this; } }; class InEdgeIt : public Edge { const EdgeSet *G; friend class EdgeSet; public: InEdgeIt() : Edge() { } InEdgeIt (Invalid i) : Edge(i) { } InEdgeIt(const EdgeSet& _G, Edge e) : Edge(e), G(&_G) { } InEdgeIt(const EdgeSet& _G,Node v) : Edge(_G.nodes[v].first_in), G(&_G) { } InEdgeIt &operator++() { n=G->edges[n].next_in; return *this; } }; template class NodeMap : public NodeGraphType::template NodeMap { //This is a must, the constructors need it. typedef typename NodeGraphType::template NodeMap MapImpl; typedef V Value; public: NodeMap() : MapImpl() {} NodeMap(const EdgeSet& graph) : MapImpl(graph.G) { } NodeMap(const EdgeSet& graph, const Value& value) : MapImpl(graph.G, value) { } NodeMap(const NodeMap& copy) : MapImpl(static_cast(copy)) {} template NodeMap(const CMap& copy) : MapImpl(copy) { } NodeMap& operator=(const NodeMap& copy) { MapImpl::operator=(static_cast(copy)); return *this; } template NodeMap& operator=(const CMap& copy) { MapImpl::operator=(copy); return *this; } }; }; template inline int EdgeSet::id(Node v) const { return G.id(v); } /// @} } //namespace hugo #endif //HUGO_LIST_GRAPH_H