| 1 | // -*- C++ -*- | 
|---|
| 2 | #ifndef HUGO_MAX_FLOW_H | 
|---|
| 3 | #define HUGO_MAX_FLOW_H | 
|---|
| 4 |  | 
|---|
| 5 | #include <vector> | 
|---|
| 6 | #include <queue> | 
|---|
| 7 |  | 
|---|
| 8 | //#include <hugo/graph_wrapper.h> | 
|---|
| 9 | #include <hugo/invalid.h> | 
|---|
| 10 | #include <hugo/maps.h> | 
|---|
| 11 |  | 
|---|
| 12 | /// \file | 
|---|
| 13 | /// \ingroup flowalgs | 
|---|
| 14 |  | 
|---|
| 15 | namespace hugo { | 
|---|
| 16 |  | 
|---|
| 17 | /// \addtogroup flowalgs | 
|---|
| 18 | /// @{ | 
|---|
| 19 |  | 
|---|
| 20 | ///Maximum flow algorithms class. | 
|---|
| 21 |  | 
|---|
| 22 | ///This class provides various algorithms for finding a flow of | 
|---|
| 23 | ///maximum value in a directed graph. The \e source node, the \e | 
|---|
| 24 | ///target node, the \e capacity of the edges and the \e starting \e | 
|---|
| 25 | ///flow value of the edges should be passed to the algorithm through the | 
|---|
| 26 | ///constructor. It is possible to change these quantities using the | 
|---|
| 27 | ///functions \ref setSource, \ref setTarget, \ref setCap and | 
|---|
| 28 | ///\ref setFlow. Before any subsequent runs of any algorithm of | 
|---|
| 29 | ///the class \ref setFlow should be called. | 
|---|
| 30 | /// | 
|---|
| 31 | ///After running an algorithm of the class, the actual flow value | 
|---|
| 32 | ///can be obtained by calling \ref flowValue(). The minimum | 
|---|
| 33 | ///value cut can be written into a \c node map of \c bools by | 
|---|
| 34 | ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes | 
|---|
| 35 | ///the inclusionwise minimum and maximum of the minimum value | 
|---|
| 36 | ///cuts, resp.) | 
|---|
| 37 | /// | 
|---|
| 38 | ///\param Graph The directed graph type the algorithm runs on. | 
|---|
| 39 | ///\param Num The number type of the capacities and the flow values. | 
|---|
| 40 | ///\param CapMap The capacity map type. | 
|---|
| 41 | ///\param FlowMap The flow map type. | 
|---|
| 42 | /// | 
|---|
| 43 | ///\author Marton Makai, Jacint Szabo | 
|---|
| 44 | template <typename Graph, typename Num, | 
|---|
| 45 | typename CapMap=typename Graph::template EdgeMap<Num>, | 
|---|
| 46 | typename FlowMap=typename Graph::template EdgeMap<Num> > | 
|---|
| 47 | class MaxFlow { | 
|---|
| 48 | protected: | 
|---|
| 49 | typedef typename Graph::Node Node; | 
|---|
| 50 | typedef typename Graph::NodeIt NodeIt; | 
|---|
| 51 | typedef typename Graph::EdgeIt EdgeIt; | 
|---|
| 52 | typedef typename Graph::OutEdgeIt OutEdgeIt; | 
|---|
| 53 | typedef typename Graph::InEdgeIt InEdgeIt; | 
|---|
| 54 |  | 
|---|
| 55 | typedef typename std::vector<Node> VecFirst; | 
|---|
| 56 | typedef typename Graph::template NodeMap<Node> NNMap; | 
|---|
| 57 | typedef typename std::vector<Node> VecNode; | 
|---|
| 58 |  | 
|---|
| 59 | const Graph* g; | 
|---|
| 60 | Node s; | 
|---|
| 61 | Node t; | 
|---|
| 62 | const CapMap* capacity; | 
|---|
| 63 | FlowMap* flow; | 
|---|
| 64 | int n;      //the number of nodes of G | 
|---|
| 65 | //    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; | 
|---|
| 66 | //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW; | 
|---|
| 67 | //    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; | 
|---|
| 68 | //    typedef typename ResGW::Edge ResGWEdge; | 
|---|
| 69 | typedef typename Graph::template NodeMap<int> ReachedMap; | 
|---|
| 70 |  | 
|---|
| 71 |  | 
|---|
| 72 | //level works as a bool map in augmenting path algorithms and is | 
|---|
| 73 | //used by bfs for storing reached information.  In preflow, it | 
|---|
| 74 | //shows the levels of nodes. | 
|---|
| 75 | ReachedMap level; | 
|---|
| 76 |  | 
|---|
| 77 | //excess is needed only in preflow | 
|---|
| 78 | typename Graph::template NodeMap<Num> excess; | 
|---|
| 79 |  | 
|---|
| 80 | // constants used for heuristics | 
|---|
| 81 | static const int H0=20; | 
|---|
| 82 | static const int H1=1; | 
|---|
| 83 |  | 
|---|
| 84 | public: | 
|---|
| 85 |  | 
|---|
| 86 | ///Indicates the property of the starting flow. | 
|---|
| 87 |  | 
|---|
| 88 | ///Indicates the property of the starting flow. The meanings are as follows: | 
|---|
| 89 | ///- \c ZERO_FLOW: constant zero flow | 
|---|
| 90 | ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to | 
|---|
| 91 | ///the sum of the out-flows in every node except the \e source and | 
|---|
| 92 | ///the \e target. | 
|---|
| 93 | ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at | 
|---|
| 94 | ///least the sum of the out-flows in every node except the \e source. | 
|---|
| 95 | ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be | 
|---|
| 96 | ///set to the constant zero flow in the beginning of the algorithm in this case. | 
|---|
| 97 | enum FlowEnum{ | 
|---|
| 98 | ZERO_FLOW, | 
|---|
| 99 | GEN_FLOW, | 
|---|
| 100 | PRE_FLOW, | 
|---|
| 101 | NO_FLOW | 
|---|
| 102 | }; | 
|---|
| 103 |  | 
|---|
| 104 | enum StatusEnum { | 
|---|
| 105 | AFTER_NOTHING, | 
|---|
| 106 | AFTER_AUGMENTING, | 
|---|
| 107 | AFTER_FAST_AUGMENTING, | 
|---|
| 108 | AFTER_PRE_FLOW_PHASE_1, | 
|---|
| 109 | AFTER_PRE_FLOW_PHASE_2 | 
|---|
| 110 | }; | 
|---|
| 111 |  | 
|---|
| 112 | /// Do not needle this flag only if necessary. | 
|---|
| 113 | StatusEnum status; | 
|---|
| 114 |  | 
|---|
| 115 | //     int number_of_augmentations; | 
|---|
| 116 |  | 
|---|
| 117 |  | 
|---|
| 118 | //     template<typename IntMap> | 
|---|
| 119 | //     class TrickyReachedMap { | 
|---|
| 120 | //     protected: | 
|---|
| 121 | //       IntMap* map; | 
|---|
| 122 | //       int* number_of_augmentations; | 
|---|
| 123 | //     public: | 
|---|
| 124 | //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : | 
|---|
| 125 | //  map(&_map), number_of_augmentations(&_number_of_augmentations) { } | 
|---|
| 126 | //       void set(const Node& n, bool b) { | 
|---|
| 127 | //  if (b) | 
|---|
| 128 | //    map->set(n, *number_of_augmentations); | 
|---|
| 129 | //  else | 
|---|
| 130 | //    map->set(n, *number_of_augmentations-1); | 
|---|
| 131 | //       } | 
|---|
| 132 | //       bool operator[](const Node& n) const { | 
|---|
| 133 | //  return (*map)[n]==*number_of_augmentations; | 
|---|
| 134 | //       } | 
|---|
| 135 | //     }; | 
|---|
| 136 |  | 
|---|
| 137 | ///Constructor | 
|---|
| 138 |  | 
|---|
| 139 | ///\todo Document, please. | 
|---|
| 140 | /// | 
|---|
| 141 | MaxFlow(const Graph& _G, Node _s, Node _t, | 
|---|
| 142 | const CapMap& _capacity, FlowMap& _flow) : | 
|---|
| 143 | g(&_G), s(_s), t(_t), capacity(&_capacity), | 
|---|
| 144 | flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), | 
|---|
| 145 | status(AFTER_NOTHING) { } | 
|---|
| 146 |  | 
|---|
| 147 | ///Runs a maximum flow algorithm. | 
|---|
| 148 |  | 
|---|
| 149 | ///Runs a preflow algorithm, which is the fastest maximum flow | 
|---|
| 150 | ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. | 
|---|
| 151 | ///\pre The starting flow must be | 
|---|
| 152 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 153 | /// - an arbitary flow if \c fe is \c GEN_FLOW, | 
|---|
| 154 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, | 
|---|
| 155 | /// - any map if \c fe is NO_FLOW. | 
|---|
| 156 | void run(FlowEnum fe=ZERO_FLOW) { | 
|---|
| 157 | preflow(fe); | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 |  | 
|---|
| 161 | ///Runs a preflow algorithm. | 
|---|
| 162 |  | 
|---|
| 163 | ///Runs a preflow algorithm. The preflow algorithms provide the | 
|---|
| 164 | ///fastest way to compute a maximum flow in a directed graph. | 
|---|
| 165 | ///\pre The starting flow must be | 
|---|
| 166 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 167 | /// - an arbitary flow if \c fe is \c GEN_FLOW, | 
|---|
| 168 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, | 
|---|
| 169 | /// - any map if \c fe is NO_FLOW. | 
|---|
| 170 | /// | 
|---|
| 171 | ///\todo NO_FLOW should be the default flow. | 
|---|
| 172 | void preflow(FlowEnum fe) { | 
|---|
| 173 | preflowPhase1(fe); | 
|---|
| 174 | preflowPhase2(); | 
|---|
| 175 | } | 
|---|
| 176 | // Heuristics: | 
|---|
| 177 | //   2 phase | 
|---|
| 178 | //   gap | 
|---|
| 179 | //   list 'level_list' on the nodes on level i implemented by hand | 
|---|
| 180 | //   stack 'active' on the active nodes on level i | 
|---|
| 181 | //   runs heuristic 'highest label' for H1*n relabels | 
|---|
| 182 | //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' | 
|---|
| 183 | //   Parameters H0 and H1 are initialized to 20 and 1. | 
|---|
| 184 |  | 
|---|
| 185 | ///Runs the first phase of the preflow algorithm. | 
|---|
| 186 |  | 
|---|
| 187 | ///The preflow algorithm consists of two phases, this method runs the | 
|---|
| 188 | ///first phase. After the first phase the maximum flow value and a | 
|---|
| 189 | ///minimum value cut can already be computed, though a maximum flow | 
|---|
| 190 | ///is not yet obtained. So after calling this method \ref flowValue | 
|---|
| 191 | ///and \ref actMinCut gives proper results. | 
|---|
| 192 | ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not | 
|---|
| 193 | ///give minimum value cuts unless calling \ref preflowPhase2. | 
|---|
| 194 | ///\pre The starting flow must be | 
|---|
| 195 | /// - a constant zero flow if \c fe is \c ZERO_FLOW, | 
|---|
| 196 | /// - an arbitary flow if \c fe is \c GEN_FLOW, | 
|---|
| 197 | /// - an arbitary preflow if \c fe is \c PRE_FLOW, | 
|---|
| 198 | /// - any map if \c fe is NO_FLOW. | 
|---|
| 199 | void preflowPhase1(FlowEnum fe) | 
|---|
| 200 | { | 
|---|
| 201 |  | 
|---|
| 202 | int heur0=(int)(H0*n);  //time while running 'bound decrease' | 
|---|
| 203 | int heur1=(int)(H1*n);  //time while running 'highest label' | 
|---|
| 204 | int heur=heur1;         //starting time interval (#of relabels) | 
|---|
| 205 | int numrelabel=0; | 
|---|
| 206 |  | 
|---|
| 207 | bool what_heur=1; | 
|---|
| 208 | //It is 0 in case 'bound decrease' and 1 in case 'highest label' | 
|---|
| 209 |  | 
|---|
| 210 | bool end=false; | 
|---|
| 211 | //Needed for 'bound decrease', true means no active nodes are above bound | 
|---|
| 212 | //b. | 
|---|
| 213 |  | 
|---|
| 214 | int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 215 | int b=k;    //bound on the highest level under n of an active node | 
|---|
| 216 |  | 
|---|
| 217 | VecFirst first(n, INVALID); | 
|---|
| 218 | NNMap next(*g, INVALID); //maybe INVALID is not needed | 
|---|
| 219 |  | 
|---|
| 220 | NNMap left(*g, INVALID); | 
|---|
| 221 | NNMap right(*g, INVALID); | 
|---|
| 222 | VecNode level_list(n,INVALID); | 
|---|
| 223 | //List of the nodes in level i<n, set to n. | 
|---|
| 224 |  | 
|---|
| 225 | preflowPreproc(fe, next, first, level_list, left, right); | 
|---|
| 226 | //End of preprocessing | 
|---|
| 227 |  | 
|---|
| 228 | //Push/relabel on the highest level active nodes. | 
|---|
| 229 | while ( true ) { | 
|---|
| 230 | if ( b == 0 ) { | 
|---|
| 231 | if ( !what_heur && !end && k > 0 ) { | 
|---|
| 232 | b=k; | 
|---|
| 233 | end=true; | 
|---|
| 234 | } else break; | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 | if ( first[b]==INVALID ) --b; | 
|---|
| 238 | else { | 
|---|
| 239 | end=false; | 
|---|
| 240 | Node w=first[b]; | 
|---|
| 241 | first[b]=next[w]; | 
|---|
| 242 | int newlevel=push(w, next, first); | 
|---|
| 243 | if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list, | 
|---|
| 244 | left, right, b, k, what_heur); | 
|---|
| 245 |  | 
|---|
| 246 | ++numrelabel; | 
|---|
| 247 | if ( numrelabel >= heur ) { | 
|---|
| 248 | numrelabel=0; | 
|---|
| 249 | if ( what_heur ) { | 
|---|
| 250 | what_heur=0; | 
|---|
| 251 | heur=heur0; | 
|---|
| 252 | end=false; | 
|---|
| 253 | } else { | 
|---|
| 254 | what_heur=1; | 
|---|
| 255 | heur=heur1; | 
|---|
| 256 | b=k; | 
|---|
| 257 | } | 
|---|
| 258 | } | 
|---|
| 259 | } | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | status=AFTER_PRE_FLOW_PHASE_1; | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 |  | 
|---|
| 266 | ///Runs the second phase of the preflow algorithm. | 
|---|
| 267 |  | 
|---|
| 268 | ///The preflow algorithm consists of two phases, this method runs | 
|---|
| 269 | ///the second phase. After calling \ref preflowPhase1 and then | 
|---|
| 270 | ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, | 
|---|
| 271 | ///\ref minMinCut and \ref maxMinCut give proper results. | 
|---|
| 272 | ///\pre \ref preflowPhase1 must be called before. | 
|---|
| 273 | void preflowPhase2() | 
|---|
| 274 | { | 
|---|
| 275 |  | 
|---|
| 276 | int k=n-2;  //bound on the highest level under n containing a node | 
|---|
| 277 | int b=k;    //bound on the highest level under n of an active node | 
|---|
| 278 |  | 
|---|
| 279 |  | 
|---|
| 280 | VecFirst first(n, INVALID); | 
|---|
| 281 | NNMap next(*g, INVALID); //maybe INVALID is not needed | 
|---|
| 282 | level.set(s,0); | 
|---|
| 283 | std::queue<Node> bfs_queue; | 
|---|
| 284 | bfs_queue.push(s); | 
|---|
| 285 |  | 
|---|
| 286 | while (!bfs_queue.empty()) { | 
|---|
| 287 |  | 
|---|
| 288 | Node v=bfs_queue.front(); | 
|---|
| 289 | bfs_queue.pop(); | 
|---|
| 290 | int l=level[v]+1; | 
|---|
| 291 |  | 
|---|
| 292 | for(InEdgeIt e(*g,v); e!=INVALID; ++e) { | 
|---|
| 293 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 294 | Node u=g->tail(e); | 
|---|
| 295 | if ( level[u] >= n ) { | 
|---|
| 296 | bfs_queue.push(u); | 
|---|
| 297 | level.set(u, l); | 
|---|
| 298 | if ( excess[u] > 0 ) { | 
|---|
| 299 | next.set(u,first[l]); | 
|---|
| 300 | first[l]=u; | 
|---|
| 301 | } | 
|---|
| 302 | } | 
|---|
| 303 | } | 
|---|
| 304 |  | 
|---|
| 305 | for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { | 
|---|
| 306 | if ( 0 >= (*flow)[e] ) continue; | 
|---|
| 307 | Node u=g->head(e); | 
|---|
| 308 | if ( level[u] >= n ) { | 
|---|
| 309 | bfs_queue.push(u); | 
|---|
| 310 | level.set(u, l); | 
|---|
| 311 | if ( excess[u] > 0 ) { | 
|---|
| 312 | next.set(u,first[l]); | 
|---|
| 313 | first[l]=u; | 
|---|
| 314 | } | 
|---|
| 315 | } | 
|---|
| 316 | } | 
|---|
| 317 | } | 
|---|
| 318 | b=n-2; | 
|---|
| 319 |  | 
|---|
| 320 | while ( true ) { | 
|---|
| 321 |  | 
|---|
| 322 | if ( b == 0 ) break; | 
|---|
| 323 |  | 
|---|
| 324 | if ( first[b]==INVALID ) --b; | 
|---|
| 325 | else { | 
|---|
| 326 |  | 
|---|
| 327 | Node w=first[b]; | 
|---|
| 328 | first[b]=next[w]; | 
|---|
| 329 | int newlevel=push(w,next, first/*active*/); | 
|---|
| 330 |  | 
|---|
| 331 | //relabel | 
|---|
| 332 | if ( excess[w] > 0 ) { | 
|---|
| 333 | level.set(w,++newlevel); | 
|---|
| 334 | next.set(w,first[newlevel]); | 
|---|
| 335 | first[newlevel]=w; | 
|---|
| 336 | b=newlevel; | 
|---|
| 337 | } | 
|---|
| 338 | } | 
|---|
| 339 | } // while(true) | 
|---|
| 340 |  | 
|---|
| 341 | status=AFTER_PRE_FLOW_PHASE_2; | 
|---|
| 342 | } | 
|---|
| 343 |  | 
|---|
| 344 |  | 
|---|
| 345 | /// Returns the value of the maximum flow. | 
|---|
| 346 |  | 
|---|
| 347 | /// Returns the excess of the target node \ref t. | 
|---|
| 348 | /// After running \ref preflowPhase1, this is the value of | 
|---|
| 349 | /// the maximum flow. | 
|---|
| 350 | /// It can be called already after running \ref preflowPhase1. | 
|---|
| 351 | Num flowValue() const { | 
|---|
| 352 | //       Num a=0; | 
|---|
| 353 | //       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e]; | 
|---|
| 354 | //       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e]; | 
|---|
| 355 | //       return a; | 
|---|
| 356 | return excess[t]; | 
|---|
| 357 | //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 |  | 
|---|
| 361 | ///Returns a minimum value cut after calling \ref preflowPhase1. | 
|---|
| 362 |  | 
|---|
| 363 | ///After the first phase of the preflow algorithm the maximum flow | 
|---|
| 364 | ///value and a minimum value cut can already be computed. This | 
|---|
| 365 | ///method can be called after running \ref preflowPhase1 for | 
|---|
| 366 | ///obtaining a minimum value cut. | 
|---|
| 367 | /// \warning Gives proper result only right after calling \ref | 
|---|
| 368 | /// preflowPhase1. | 
|---|
| 369 | /// \todo We have to make some status variable which shows the | 
|---|
| 370 | /// actual state | 
|---|
| 371 | /// of the class. This enables us to determine which methods are valid | 
|---|
| 372 | /// for MinCut computation | 
|---|
| 373 | template<typename _CutMap> | 
|---|
| 374 | void actMinCut(_CutMap& M) const { | 
|---|
| 375 | switch (status) { | 
|---|
| 376 | case AFTER_PRE_FLOW_PHASE_1: | 
|---|
| 377 | for(NodeIt v(*g); v!=INVALID; ++v) { | 
|---|
| 378 | if (level[v] < n) { | 
|---|
| 379 | M.set(v, false); | 
|---|
| 380 | } else { | 
|---|
| 381 | M.set(v, true); | 
|---|
| 382 | } | 
|---|
| 383 | } | 
|---|
| 384 | break; | 
|---|
| 385 | case AFTER_PRE_FLOW_PHASE_2: | 
|---|
| 386 | case AFTER_NOTHING: | 
|---|
| 387 | case AFTER_AUGMENTING: | 
|---|
| 388 | case AFTER_FAST_AUGMENTING: | 
|---|
| 389 | minMinCut(M); | 
|---|
| 390 | break; | 
|---|
| 391 | } | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | ///Returns the inclusionwise minimum of the minimum value cuts. | 
|---|
| 395 |  | 
|---|
| 396 | ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
| 397 | ///which is inclusionwise minimum. It is computed by processing | 
|---|
| 398 | ///a bfs from the source node \c s in the residual graph. | 
|---|
| 399 | ///\pre M should be a node map of bools initialized to false. | 
|---|
| 400 | ///\pre \c flow must be a maximum flow. | 
|---|
| 401 | template<typename _CutMap> | 
|---|
| 402 | void minMinCut(_CutMap& M) const { | 
|---|
| 403 | std::queue<Node> queue; | 
|---|
| 404 |  | 
|---|
| 405 | M.set(s,true); | 
|---|
| 406 | queue.push(s); | 
|---|
| 407 |  | 
|---|
| 408 | while (!queue.empty()) { | 
|---|
| 409 | Node w=queue.front(); | 
|---|
| 410 | queue.pop(); | 
|---|
| 411 |  | 
|---|
| 412 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 413 | Node v=g->head(e); | 
|---|
| 414 | if (!M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 415 | queue.push(v); | 
|---|
| 416 | M.set(v, true); | 
|---|
| 417 | } | 
|---|
| 418 | } | 
|---|
| 419 |  | 
|---|
| 420 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 421 | Node v=g->tail(e); | 
|---|
| 422 | if (!M[v] && (*flow)[e] > 0 ) { | 
|---|
| 423 | queue.push(v); | 
|---|
| 424 | M.set(v, true); | 
|---|
| 425 | } | 
|---|
| 426 | } | 
|---|
| 427 | } | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | ///Returns the inclusionwise maximum of the minimum value cuts. | 
|---|
| 431 |  | 
|---|
| 432 | ///Sets \c M to the characteristic vector of the minimum value cut | 
|---|
| 433 | ///which is inclusionwise maximum. It is computed by processing a | 
|---|
| 434 | ///backward bfs from the target node \c t in the residual graph. | 
|---|
| 435 | ///\pre M should be a node map of bools initialized to false. | 
|---|
| 436 | ///\pre \c flow must be a maximum flow. | 
|---|
| 437 | template<typename _CutMap> | 
|---|
| 438 | void maxMinCut(_CutMap& M) const { | 
|---|
| 439 |  | 
|---|
| 440 | for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); | 
|---|
| 441 |  | 
|---|
| 442 | std::queue<Node> queue; | 
|---|
| 443 |  | 
|---|
| 444 | M.set(t,false); | 
|---|
| 445 | queue.push(t); | 
|---|
| 446 |  | 
|---|
| 447 | while (!queue.empty()) { | 
|---|
| 448 | Node w=queue.front(); | 
|---|
| 449 | queue.pop(); | 
|---|
| 450 |  | 
|---|
| 451 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 452 | Node v=g->tail(e); | 
|---|
| 453 | if (M[v] && (*flow)[e] < (*capacity)[e] ) { | 
|---|
| 454 | queue.push(v); | 
|---|
| 455 | M.set(v, false); | 
|---|
| 456 | } | 
|---|
| 457 | } | 
|---|
| 458 |  | 
|---|
| 459 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 460 | Node v=g->head(e); | 
|---|
| 461 | if (M[v] && (*flow)[e] > 0 ) { | 
|---|
| 462 | queue.push(v); | 
|---|
| 463 | M.set(v, false); | 
|---|
| 464 | } | 
|---|
| 465 | } | 
|---|
| 466 | } | 
|---|
| 467 | } | 
|---|
| 468 |  | 
|---|
| 469 | ///Returns a minimum value cut. | 
|---|
| 470 |  | 
|---|
| 471 | ///Sets \c M to the characteristic vector of a minimum value cut. | 
|---|
| 472 | ///\pre M should be a node map of bools initialized to false. | 
|---|
| 473 | ///\pre \c flow must be a maximum flow. | 
|---|
| 474 | template<typename CutMap> | 
|---|
| 475 | void minCut(CutMap& M) const { minMinCut(M); } | 
|---|
| 476 |  | 
|---|
| 477 | ///Sets the source node to \c _s. | 
|---|
| 478 |  | 
|---|
| 479 | ///Sets the source node to \c _s. | 
|---|
| 480 | /// | 
|---|
| 481 | void setSource(Node _s) { s=_s; status=AFTER_NOTHING; } | 
|---|
| 482 |  | 
|---|
| 483 | ///Sets the target node to \c _t. | 
|---|
| 484 |  | 
|---|
| 485 | ///Sets the target node to \c _t. | 
|---|
| 486 | /// | 
|---|
| 487 | void setTarget(Node _t) { t=_t; status=AFTER_NOTHING; } | 
|---|
| 488 |  | 
|---|
| 489 | /// Sets the edge map of the capacities to _cap. | 
|---|
| 490 |  | 
|---|
| 491 | /// Sets the edge map of the capacities to _cap. | 
|---|
| 492 | /// | 
|---|
| 493 | void setCap(const CapMap& _cap) | 
|---|
| 494 | { capacity=&_cap; status=AFTER_NOTHING; } | 
|---|
| 495 |  | 
|---|
| 496 | /// Sets the edge map of the flows to _flow. | 
|---|
| 497 |  | 
|---|
| 498 | /// Sets the edge map of the flows to _flow. | 
|---|
| 499 | /// | 
|---|
| 500 | void setFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; } | 
|---|
| 501 |  | 
|---|
| 502 |  | 
|---|
| 503 | private: | 
|---|
| 504 |  | 
|---|
| 505 | int push(Node w, NNMap& next, VecFirst& first) { | 
|---|
| 506 |  | 
|---|
| 507 | int lev=level[w]; | 
|---|
| 508 | Num exc=excess[w]; | 
|---|
| 509 | int newlevel=n;       //bound on the next level of w | 
|---|
| 510 |  | 
|---|
| 511 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 512 | if ( (*flow)[e] >= (*capacity)[e] ) continue; | 
|---|
| 513 | Node v=g->head(e); | 
|---|
| 514 |  | 
|---|
| 515 | if( lev > level[v] ) { //Push is allowed now | 
|---|
| 516 |  | 
|---|
| 517 | if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 518 | next.set(v,first[level[v]]); | 
|---|
| 519 | first[level[v]]=v; | 
|---|
| 520 | } | 
|---|
| 521 |  | 
|---|
| 522 | Num cap=(*capacity)[e]; | 
|---|
| 523 | Num flo=(*flow)[e]; | 
|---|
| 524 | Num remcap=cap-flo; | 
|---|
| 525 |  | 
|---|
| 526 | if ( remcap >= exc ) { //A nonsaturating push. | 
|---|
| 527 |  | 
|---|
| 528 | flow->set(e, flo+exc); | 
|---|
| 529 | excess.set(v, excess[v]+exc); | 
|---|
| 530 | exc=0; | 
|---|
| 531 | break; | 
|---|
| 532 |  | 
|---|
| 533 | } else { //A saturating push. | 
|---|
| 534 | flow->set(e, cap); | 
|---|
| 535 | excess.set(v, excess[v]+remcap); | 
|---|
| 536 | exc-=remcap; | 
|---|
| 537 | } | 
|---|
| 538 | } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 539 | } //for out edges wv | 
|---|
| 540 |  | 
|---|
| 541 | if ( exc > 0 ) { | 
|---|
| 542 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { | 
|---|
| 543 |  | 
|---|
| 544 | if( (*flow)[e] <= 0 ) continue; | 
|---|
| 545 | Node v=g->tail(e); | 
|---|
| 546 |  | 
|---|
| 547 | if( lev > level[v] ) { //Push is allowed now | 
|---|
| 548 |  | 
|---|
| 549 | if ( excess[v]<=0 && v!=t && v!=s ) { | 
|---|
| 550 | next.set(v,first[level[v]]); | 
|---|
| 551 | first[level[v]]=v; | 
|---|
| 552 | } | 
|---|
| 553 |  | 
|---|
| 554 | Num flo=(*flow)[e]; | 
|---|
| 555 |  | 
|---|
| 556 | if ( flo >= exc ) { //A nonsaturating push. | 
|---|
| 557 |  | 
|---|
| 558 | flow->set(e, flo-exc); | 
|---|
| 559 | excess.set(v, excess[v]+exc); | 
|---|
| 560 | exc=0; | 
|---|
| 561 | break; | 
|---|
| 562 | } else {  //A saturating push. | 
|---|
| 563 |  | 
|---|
| 564 | excess.set(v, excess[v]+flo); | 
|---|
| 565 | exc-=flo; | 
|---|
| 566 | flow->set(e,0); | 
|---|
| 567 | } | 
|---|
| 568 | } else if ( newlevel > level[v] ) newlevel = level[v]; | 
|---|
| 569 | } //for in edges vw | 
|---|
| 570 |  | 
|---|
| 571 | } // if w still has excess after the out edge for cycle | 
|---|
| 572 |  | 
|---|
| 573 | excess.set(w, exc); | 
|---|
| 574 |  | 
|---|
| 575 | return newlevel; | 
|---|
| 576 | } | 
|---|
| 577 |  | 
|---|
| 578 |  | 
|---|
| 579 |  | 
|---|
| 580 | void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first, | 
|---|
| 581 | VecNode& level_list, NNMap& left, NNMap& right) | 
|---|
| 582 | { | 
|---|
| 583 | switch (fe) {  //setting excess | 
|---|
| 584 | case NO_FLOW: | 
|---|
| 585 | for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); | 
|---|
| 586 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
| 587 | break; | 
|---|
| 588 | case ZERO_FLOW: | 
|---|
| 589 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
| 590 | break; | 
|---|
| 591 | case GEN_FLOW: | 
|---|
| 592 | for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); | 
|---|
| 593 | { | 
|---|
| 594 | Num exc=0; | 
|---|
| 595 | for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; | 
|---|
| 596 | for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; | 
|---|
| 597 | excess.set(t,exc); | 
|---|
| 598 | } | 
|---|
| 599 | break; | 
|---|
| 600 | default: | 
|---|
| 601 | break; | 
|---|
| 602 | } | 
|---|
| 603 |  | 
|---|
| 604 | for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); | 
|---|
| 605 | //setting each node to level n | 
|---|
| 606 |  | 
|---|
| 607 | std::queue<Node> bfs_queue; | 
|---|
| 608 |  | 
|---|
| 609 |  | 
|---|
| 610 | switch (fe) { | 
|---|
| 611 | case NO_FLOW:   //flow is already set to const zero | 
|---|
| 612 | case ZERO_FLOW: | 
|---|
| 613 | //Reverse_bfs from t, to find the starting level. | 
|---|
| 614 | level.set(t,0); | 
|---|
| 615 | bfs_queue.push(t); | 
|---|
| 616 |  | 
|---|
| 617 | while (!bfs_queue.empty()) { | 
|---|
| 618 |  | 
|---|
| 619 | Node v=bfs_queue.front(); | 
|---|
| 620 | bfs_queue.pop(); | 
|---|
| 621 | int l=level[v]+1; | 
|---|
| 622 |  | 
|---|
| 623 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 624 | Node w=g->tail(e); | 
|---|
| 625 | if ( level[w] == n && w != s ) { | 
|---|
| 626 | bfs_queue.push(w); | 
|---|
| 627 | Node z=level_list[l]; | 
|---|
| 628 | if ( z!=INVALID ) left.set(z,w); | 
|---|
| 629 | right.set(w,z); | 
|---|
| 630 | level_list[l]=w; | 
|---|
| 631 | level.set(w, l); | 
|---|
| 632 | } | 
|---|
| 633 | } | 
|---|
| 634 | } | 
|---|
| 635 |  | 
|---|
| 636 | //the starting flow | 
|---|
| 637 | for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) | 
|---|
| 638 | { | 
|---|
| 639 | Num c=(*capacity)[e]; | 
|---|
| 640 | if ( c <= 0 ) continue; | 
|---|
| 641 | Node w=g->head(e); | 
|---|
| 642 | if ( level[w] < n ) { | 
|---|
| 643 | if ( excess[w] <= 0 && w!=t ) //putting into the stack | 
|---|
| 644 | { | 
|---|
| 645 | next.set(w,first[level[w]]); | 
|---|
| 646 | first[level[w]]=w; | 
|---|
| 647 | } | 
|---|
| 648 | flow->set(e, c); | 
|---|
| 649 | excess.set(w, excess[w]+c); | 
|---|
| 650 | } | 
|---|
| 651 | } | 
|---|
| 652 | break; | 
|---|
| 653 | case GEN_FLOW: | 
|---|
| 654 | //Reverse_bfs from t in the residual graph, | 
|---|
| 655 | //to find the starting level. | 
|---|
| 656 | level.set(t,0); | 
|---|
| 657 | bfs_queue.push(t); | 
|---|
| 658 |  | 
|---|
| 659 | while (!bfs_queue.empty()) { | 
|---|
| 660 |  | 
|---|
| 661 | Node v=bfs_queue.front(); | 
|---|
| 662 | bfs_queue.pop(); | 
|---|
| 663 | int l=level[v]+1; | 
|---|
| 664 |  | 
|---|
| 665 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 666 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 667 | Node w=g->tail(e); | 
|---|
| 668 | if ( level[w] == n && w != s ) { | 
|---|
| 669 | bfs_queue.push(w); | 
|---|
| 670 | Node z=level_list[l]; | 
|---|
| 671 | if ( z!=INVALID ) left.set(z,w); | 
|---|
| 672 | right.set(w,z); | 
|---|
| 673 | level_list[l]=w; | 
|---|
| 674 | level.set(w, l); | 
|---|
| 675 | } | 
|---|
| 676 | } | 
|---|
| 677 |  | 
|---|
| 678 | for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 679 | if ( 0 >= (*flow)[e] ) continue; | 
|---|
| 680 | Node w=g->head(e); | 
|---|
| 681 | if ( level[w] == n && w != s ) { | 
|---|
| 682 | bfs_queue.push(w); | 
|---|
| 683 | Node z=level_list[l]; | 
|---|
| 684 | if ( z!=INVALID ) left.set(z,w); | 
|---|
| 685 | right.set(w,z); | 
|---|
| 686 | level_list[l]=w; | 
|---|
| 687 | level.set(w, l); | 
|---|
| 688 | } | 
|---|
| 689 | } | 
|---|
| 690 | } | 
|---|
| 691 |  | 
|---|
| 692 | //the starting flow | 
|---|
| 693 | for(OutEdgeIt e(*g,s); e!=INVALID; ++e) | 
|---|
| 694 | { | 
|---|
| 695 | Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
| 696 | if ( rem <= 0 ) continue; | 
|---|
| 697 | Node w=g->head(e); | 
|---|
| 698 | if ( level[w] < n ) { | 
|---|
| 699 | if ( excess[w] <= 0 && w!=t ) //putting into the stack | 
|---|
| 700 | { | 
|---|
| 701 | next.set(w,first[level[w]]); | 
|---|
| 702 | first[level[w]]=w; | 
|---|
| 703 | } | 
|---|
| 704 | flow->set(e, (*capacity)[e]); | 
|---|
| 705 | excess.set(w, excess[w]+rem); | 
|---|
| 706 | } | 
|---|
| 707 | } | 
|---|
| 708 |  | 
|---|
| 709 | for(InEdgeIt e(*g,s); e!=INVALID; ++e) | 
|---|
| 710 | { | 
|---|
| 711 | if ( (*flow)[e] <= 0 ) continue; | 
|---|
| 712 | Node w=g->tail(e); | 
|---|
| 713 | if ( level[w] < n ) { | 
|---|
| 714 | if ( excess[w] <= 0 && w!=t ) | 
|---|
| 715 | { | 
|---|
| 716 | next.set(w,first[level[w]]); | 
|---|
| 717 | first[level[w]]=w; | 
|---|
| 718 | } | 
|---|
| 719 | excess.set(w, excess[w]+(*flow)[e]); | 
|---|
| 720 | flow->set(e, 0); | 
|---|
| 721 | } | 
|---|
| 722 | } | 
|---|
| 723 | break; | 
|---|
| 724 | case PRE_FLOW: | 
|---|
| 725 | //Reverse_bfs from t in the residual graph, | 
|---|
| 726 | //to find the starting level. | 
|---|
| 727 | level.set(t,0); | 
|---|
| 728 | bfs_queue.push(t); | 
|---|
| 729 |  | 
|---|
| 730 | while (!bfs_queue.empty()) { | 
|---|
| 731 |  | 
|---|
| 732 | Node v=bfs_queue.front(); | 
|---|
| 733 | bfs_queue.pop(); | 
|---|
| 734 | int l=level[v]+1; | 
|---|
| 735 |  | 
|---|
| 736 | for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 737 | if ( (*capacity)[e] <= (*flow)[e] ) continue; | 
|---|
| 738 | Node w=g->tail(e); | 
|---|
| 739 | if ( level[w] == n && w != s ) { | 
|---|
| 740 | bfs_queue.push(w); | 
|---|
| 741 | Node z=level_list[l]; | 
|---|
| 742 | if ( z!=INVALID ) left.set(z,w); | 
|---|
| 743 | right.set(w,z); | 
|---|
| 744 | level_list[l]=w; | 
|---|
| 745 | level.set(w, l); | 
|---|
| 746 | } | 
|---|
| 747 | } | 
|---|
| 748 |  | 
|---|
| 749 | for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { | 
|---|
| 750 | if ( 0 >= (*flow)[e] ) continue; | 
|---|
| 751 | Node w=g->head(e); | 
|---|
| 752 | if ( level[w] == n && w != s ) { | 
|---|
| 753 | bfs_queue.push(w); | 
|---|
| 754 | Node z=level_list[l]; | 
|---|
| 755 | if ( z!=INVALID ) left.set(z,w); | 
|---|
| 756 | right.set(w,z); | 
|---|
| 757 | level_list[l]=w; | 
|---|
| 758 | level.set(w, l); | 
|---|
| 759 | } | 
|---|
| 760 | } | 
|---|
| 761 | } | 
|---|
| 762 |  | 
|---|
| 763 |  | 
|---|
| 764 | //the starting flow | 
|---|
| 765 | for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
| 766 | Num rem=(*capacity)[e]-(*flow)[e]; | 
|---|
| 767 | if ( rem <= 0 ) continue; | 
|---|
| 768 | Node w=g->head(e); | 
|---|
| 769 | if ( level[w] < n ) { | 
|---|
| 770 | flow->set(e, (*capacity)[e]); | 
|---|
| 771 | excess.set(w, excess[w]+rem); | 
|---|
| 772 | } | 
|---|
| 773 | } | 
|---|
| 774 |  | 
|---|
| 775 | for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { | 
|---|
| 776 | if ( (*flow)[e] <= 0 ) continue; | 
|---|
| 777 | Node w=g->tail(e); | 
|---|
| 778 | if ( level[w] < n ) { | 
|---|
| 779 | excess.set(w, excess[w]+(*flow)[e]); | 
|---|
| 780 | flow->set(e, 0); | 
|---|
| 781 | } | 
|---|
| 782 | } | 
|---|
| 783 |  | 
|---|
| 784 | //computing the excess | 
|---|
| 785 | for(NodeIt w(*g); w!=INVALID; ++w) { | 
|---|
| 786 | Num exc=0; | 
|---|
| 787 |  | 
|---|
| 788 | for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) exc+=(*flow)[e]; | 
|---|
| 789 | for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) exc-=(*flow)[e]; | 
|---|
| 790 |  | 
|---|
| 791 | excess.set(w,exc); | 
|---|
| 792 |  | 
|---|
| 793 | //putting the active nodes into the stack | 
|---|
| 794 | int lev=level[w]; | 
|---|
| 795 | if ( exc > 0 && lev < n && Node(w) != t ) | 
|---|
| 796 | ///\bug       if ( exc > 0 && lev < n && w != t ) temporarily for working with wrappers. | 
|---|
| 797 | { | 
|---|
| 798 | next.set(w,first[lev]); | 
|---|
| 799 | first[lev]=w; | 
|---|
| 800 | } | 
|---|
| 801 | } | 
|---|
| 802 | break; | 
|---|
| 803 | } //switch | 
|---|
| 804 | } //preflowPreproc | 
|---|
| 805 |  | 
|---|
| 806 |  | 
|---|
| 807 | void relabel(Node w, int newlevel, NNMap& next, VecFirst& first, | 
|---|
| 808 | VecNode& level_list, NNMap& left, | 
|---|
| 809 | NNMap& right, int& b, int& k, bool what_heur ) | 
|---|
| 810 | { | 
|---|
| 811 |  | 
|---|
| 812 | int lev=level[w]; | 
|---|
| 813 |  | 
|---|
| 814 | Node right_n=right[w]; | 
|---|
| 815 | Node left_n=left[w]; | 
|---|
| 816 |  | 
|---|
| 817 | //unlacing starts | 
|---|
| 818 | if ( right_n!=INVALID ) { | 
|---|
| 819 | if ( left_n!=INVALID ) { | 
|---|
| 820 | right.set(left_n, right_n); | 
|---|
| 821 | left.set(right_n, left_n); | 
|---|
| 822 | } else { | 
|---|
| 823 | level_list[lev]=right_n; | 
|---|
| 824 | left.set(right_n, INVALID); | 
|---|
| 825 | } | 
|---|
| 826 | } else { | 
|---|
| 827 | if ( left_n!=INVALID ) { | 
|---|
| 828 | right.set(left_n, INVALID); | 
|---|
| 829 | } else { | 
|---|
| 830 | level_list[lev]=INVALID; | 
|---|
| 831 | } | 
|---|
| 832 | } | 
|---|
| 833 | //unlacing ends | 
|---|
| 834 |  | 
|---|
| 835 | if ( level_list[lev]==INVALID ) { | 
|---|
| 836 |  | 
|---|
| 837 | //gapping starts | 
|---|
| 838 | for (int i=lev; i!=k ; ) { | 
|---|
| 839 | Node v=level_list[++i]; | 
|---|
| 840 | while ( v!=INVALID ) { | 
|---|
| 841 | level.set(v,n); | 
|---|
| 842 | v=right[v]; | 
|---|
| 843 | } | 
|---|
| 844 | level_list[i]=INVALID; | 
|---|
| 845 | if ( !what_heur ) first[i]=INVALID; | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | level.set(w,n); | 
|---|
| 849 | b=lev-1; | 
|---|
| 850 | k=b; | 
|---|
| 851 | //gapping ends | 
|---|
| 852 |  | 
|---|
| 853 | } else { | 
|---|
| 854 |  | 
|---|
| 855 | if ( newlevel == n ) level.set(w,n); | 
|---|
| 856 | else { | 
|---|
| 857 | level.set(w,++newlevel); | 
|---|
| 858 | next.set(w,first[newlevel]); | 
|---|
| 859 | first[newlevel]=w; | 
|---|
| 860 | if ( what_heur ) b=newlevel; | 
|---|
| 861 | if ( k < newlevel ) ++k;      //now k=newlevel | 
|---|
| 862 | Node z=level_list[newlevel]; | 
|---|
| 863 | if ( z!=INVALID ) left.set(z,w); | 
|---|
| 864 | right.set(w,z); | 
|---|
| 865 | left.set(w,INVALID); | 
|---|
| 866 | level_list[newlevel]=w; | 
|---|
| 867 | } | 
|---|
| 868 | } | 
|---|
| 869 | } //relabel | 
|---|
| 870 |  | 
|---|
| 871 | void printexcess() {//// | 
|---|
| 872 | std::cout << "Excesses:" <<std::endl; | 
|---|
| 873 |  | 
|---|
| 874 | for(NodeIt v(*g); v!=INVALID ; ++v) { | 
|---|
| 875 | std::cout << 1+(g->id(v)) << ":" << excess[v]<<std::endl; | 
|---|
| 876 | } | 
|---|
| 877 | } | 
|---|
| 878 |  | 
|---|
| 879 | void printlevel() {//// | 
|---|
| 880 | std::cout << "Levels:" <<std::endl; | 
|---|
| 881 |  | 
|---|
| 882 | for(NodeIt v(*g); v!=INVALID ; ++v) { | 
|---|
| 883 | std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; | 
|---|
| 884 | } | 
|---|
| 885 | } | 
|---|
| 886 |  | 
|---|
| 887 | void printactive() {//// | 
|---|
| 888 | std::cout << "Levels:" <<std::endl; | 
|---|
| 889 |  | 
|---|
| 890 | for(NodeIt v(*g); v!=INVALID ; ++v) { | 
|---|
| 891 | std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; | 
|---|
| 892 | } | 
|---|
| 893 | } | 
|---|
| 894 |  | 
|---|
| 895 |  | 
|---|
| 896 | };  //class MaxFlow | 
|---|
| 897 | } //namespace hugo | 
|---|
| 898 |  | 
|---|
| 899 | #endif //HUGO_MAX_FLOW_H | 
|---|
| 900 |  | 
|---|
| 901 |  | 
|---|
| 902 |  | 
|---|
| 903 |  | 
|---|